
Alignment of Multiple Languages for Historical Comparison

M i c h a e l A . C o v i n g t o n
Artificial Intelligence Center

The University of Georgia
Athens, GA 30602-7415 U.S.A.

mc@uga.edu

A b s t r a c t

An essential step in comparative reconstruction
is to align corresponding phonological segments
in the words being compared. To do this, one
must search among huge numbers of potential
alignments to find those that give a good pho-
netic fit. This is a hard computational prob-
lem, and it becomes exponentially more difficult
when more than two strings are being aligned.
In this paper I extend the guided-search align-
ment algorithm of Covington (Computational
Linguistics, 1996) to handle more than two
strings. The resulting algorithm has been im-
plemented in Prolog and gives reasonable results
when tested on data from several languages.

1 B a c k g r o u n d

The Comparative Method for reconstructing
languages consists of at least the following steps:

1. Choose sets of words in the daughter lan-
guages that appear to be cognate;

2. Align the phonological segments that ap-
pear to correspond (e.g., skip the [k] when
aligning German [knY] with English [niy]
'knee'); t

3. Find regular correspondence sets (proto-
allophones, Hoenigswald 1950);

4. Classify the proto-allophones into proto-
phonemes with phonological rules (sound
laws).

The results of each step can be used to refine
guesses made at previous steps. For example,

~These phonetic transcriptions may nor may not be
phonemic. Because of the way the Comparative Method
works, synchronic allophony is, in general, factored out
along with diachronic allophony as the reconstruction
proceeds.

275

a regular correspondence, once discovered, can
be used to refine one's choice of alignments and
even putative cognates.

Parts of the Comparative Method have been
computerized by Frantz (1970), Hewson (1974),
Wimbish (1989), and Lowe and Mazaudon
(1994), but none of them have tackled the align-
ment step. Covington (1996) presents a work-
able alignment algorithm for comparing two lan~
guages. In this paper I extend that algorithm to
handle more than two languages at once.

2 M u l t i p l e - s t r i n g a l i g n m e n t

The alignment step is hard to automate be~
cause there are too many possible alignments
to choose from. For example, French le [lo] and
Spanish el [eli can be lined up at least three
ways:

e l e l - - e l
l o - 1 ~ 1 3 -

Of these, the second is etymologically correct,
and the third would merit consideration if one
did not know the etymology.

The number of alignments rises exponentially
with tile length of the strings and the number
of strings being aligned. Two ten-letter strings
have anywhere from 26,797 to 8,079,453 differ-
ent alignments depending on exactly what align-
ments are considered distinct (Covington 1996,
Covington and Canfield 1996). As for multiple
strings, if two strings have A alignments then
n strings have roughly A n-1 alignments, assum-
ing the alignments are generated by aligning the
first two strings, then aligning the third string
against the second, and so forth. In fact, the
search space isn't quite that large because some
combinations are equivalent to others, but it is
clearly too large to search exhaustively.

Table 1: Evaluation metric used by Covington
(1996).

B a d n e s s

10

30

60

100
40

50

C o n d i t i o n s

E x a c t m a t c h o f c o n s o n a n t s or g l ides

Exact match of vowels (nonzero so the
aligner will prefer to match consonants,
given a choice)
Match of 2 vowels that differ only in
length, or [i] and [y], or [u] and [w]
Match of 2 dissimilar vowels
Match of 2 dissimilar consonants
Match of 2 unrelated segments
Skip preceded by another skip in the
same string
Skip not preceded by another skip in
the same string

Fortunately the comparative linguist is not
looking for all possible alignments, only the ones
that are likely to manifest regular sound corre-
spondences - that is, those with a reasonable
degree of phonetic similarity. Thus, phonetic
similarity can be used to constrain the search.

3 A p p l y i n g a n e v a l u a t i o n m e t r i c

The phonetic similarity criterion used by Cov-
ington (1996) is shown in Table 1. It is obviously
just a stand-in for a more sophisticated, per-
haps feature-based, system of phonology. The
algorithm computes a "badness" or "penalty" for
each step (column) in the alignment, summing
the values to judge the badness of the whole
alignment, thus:

e 1
1

100+100 = 2 0 0

e 1 -

1

50 + 0 + 50 = 100

The alignment with the lowest total badness is
the one with the greatest phonetic similarity.
Note that two separate skips count exactly the
same as one complete mismatch; thus the align-
ments

e - e

1 l -

are equally valued. In fact, a "no-alternating-
skips rule" prevents the second one from being
generated; deciding whether [e] and [1] corre-
spond is left for another, unstated, part of the
comparison process. I will explain below why
this is not satisfactory.

Naturally, the alignment with the best overall
phonetic similarity is not always the etymolog-
ically correct one, although it is usually close;
we are looking for a good phonetic fit, not nec-
essarily the best one.

4 G e n e r a l i z i n g t o t h r e e o r m o r e
l a n g u a g e s

When a guided search is involved, aligning
strings from three or more languages is not sim-
ply a mat ter of finding the best alignment of
the first two, then adding a third, and then a
fourth, and so on. Thus, an algorithm to align
two strings cannot be used iteratively to align
more than two.

The reason is that the best overall alignment
of three or more strings is not necessarily the
best alignment of any given pair in the set. Fox
(1995:68) gives a striking example, originally
from Haas (1969). The best alignment of the
Choctaw and Cree words for 'squirrel' appears
to be:

Choctaw f a n i
Cree - i l u

Here the correspondence [a]:[i] is problematic.
Add the Koasati word, though, and it becomes
clear that the correct alignment is actually:

Choctaw - fani
Koasati i p - ! u
Cree i - - 1 u

Any algorithm that started by finding the best
alignment of Choctaw against Cree would miss
this solution.

A much better strategy is to evaluate each col-
umn of the alignment (I'll call it a "step") before
generating the next column. That is, evaluate
the first step,

and then the second step,

276

f

P

and so on. At each step, the total badness is
computed by comparing each segment to all of
the other segments. Titus the total badness of

a

b
C

is badness(a, b) + badness(b, c) + badness(a, c).
That way, no string gets aligned against another
without considering the rest of the strings in the
set.

Another detail has to do with skips. Empiri-
cally, I found that the badness of

f

P

comes out too high if computed as
badness(f,p) + badness(p,-) + badness(f,-);
that is, the algorithm is too reluctant to take
skips. The reason, intuitively, is that in this
alignment step, there is really only one skip,
not two separate skips (one skipping [f] and
one skipping [p]). This becomes even more
apparent when more than three strings are
being aligned.

Accordingly, when computing badness I count
each skip only once (assessing it 50 points),
then ignore skips when comparing the segments
against each other. I have not implemented the
rule from Covington (1996) that gives a reduced
penalty for adjacent skips in the same string to
reflect the fact that affixes tend to be contigu-
OILS.

5 Searching the set of a l ignments
The standard way to find the best alignment of
two strings is a matrix-based technique known
as dynamic programming (Ukkonen 1985, Wa-
terman 1995). However, dynamic program-
ming cannot accommodate rules that look ahead
along the string to recognize assimilation or
metathesis, a possibility that needs to be left
open when implementing comparative recon-
struction. Additionally, generalization of dy-
namic programming to multiple strings does not
entirely appear to be a solved problem (cf. Ke-
cecioglu 1993).

Accordingly, I follow Covington (1996) in re-
casting the problem as a tree search. Consider
the problem of aligning [el] with [12]. Coving-
ton (1996) treats this as a process that steps
through both strings and, at each step, per-
forms either a "match" (accepting a character
from both strings), a "skip-l" (skipping a char-
acter in the first string), or a "skip-2" (skipping
a character in the second string). That results
in the search tree shown in Fig. 1 (ignoring Cov-
ington's "no-alternating-skips rule").

The search tree can be generalized to multiple
strings by breaking up each step into a series
of operations, one on each string, as shown in
Fig. 2. Instead of three choices, match, skip-l,
and skip-2, there are really 2x2: accept, or skip
on string 1 and then accept or skip on string
2. One of the four combinations is disallowed -
you can't have a step in which no characters are
accepted from any string.

Similarly, if there were three strings, there
would be three two-way decisions, leading to
eight (= 2 a) states, one of which would b(~ dis-
allowed. Using search trees of this type, the de-
cisions necessary to align any number of strings
can be strung together in a satisfactory way.

6 Al ternat ing skips

Covington (1996) considers the alignments

e - e

1 I -

equivalent and generates only the first of them,
leaving it to some later step in the comparison
process to decide whether [e] and [I] really cor-
respond. The rule is:

N O - A L T E R N A T I N G - S K I P S RULE: If there is
a skip in one string, there cannot be a skip
in the other string at the next step.

Although this tactic narrows the search space,
I do not think this is linguistically satisfactory;
after all, aligning [el with [1] and skipping then:
in tandem are quite different linguistic claims.
Consider for example the final segment of Span-
ish [dos] and Italian [due] 'two'; it is correct to
skip the [s] and the [e] in tandem because they
come from different Latin endings. It is not his-
torically correct to pair [s] with [e] in a corre-
spondence set.

277

Start

, r e l / s k i p on re- 1
L, oJ

[]('s,<,,:, on ~,<,,:.o";b. [;"]
"" ~ s ~ l string 2 L - J

Sk!pon\ r,~l - - - - - - - - - - - - -
string,, ',[-] ~ i

Situations where only
one move is possible

string 2 o

,,,pon
string 1

Analogous
to above

Figure 1: Part of a 3-way-branching search tree for generating potential alignments (Covington
1996, ignoring no-alternating-skips rule).

Start

Accept j r e l]

Accept ~ c l ,

Aooop, . . r o] ~ [' J ~<,~., ro-1.__ ['-] =,<,,:, ~]
~ ~ ~ ,~,~--~~[.~}___ ,, j

Processing P r o c e s s i n g P r o c e s s i n g P r o c e s s i n g Processing
string 1 string 2 string 1 string 2 string 1...

I I I I I

Step 1 Step 2 Step 3...

Figure 2: Search tree factored into 2-way branchings with a disallowed state at each step. This tree
generalizes to handle more than 2 strings.

278

Also, the no-alternating-skips rule does not
generalize easily to multiple strings. I therefore
replace it with a different restriction:

ORDERED-ALTERNATING-SKIPS RULE: A
skip can be taken in strings i and j in suc-
cessive s t e p s only if i < j.

That lets us generate

- e (String 1)
1 - (String 2)

but not

e -

- 1

which is undeniably equivalent. It also ensures
that there is only one way of skipping several
consecutive segments; we get

- - - a b c
d e f - - -

but not

- a - b - c a b c - - -
d - e - f d e f

or numerous other equivalent combinations of
skips.

7 P r u n i n g t h e s e a r c h

The goal of the algorithm is, of course, to gen-
erate not the whole search tree, but only the
parts of it likely to contain the best alignments,
thereby narrowing the intractably large search
space into something manageable.

Following Covington (1996), I implemented
a very simple pruning strategy. The program
keeps track of the badness of the best complete
alignment found so far. Every branch in the
search tree is abandoned as soon as its total bad-
ness exceeds that value. Thus, bad alignments
are abandoned when they have only partly been
generated.

A second part of the strategy is that the com-
puter always tries matches before it tries skips.
As a result, if not much material needs to bc
skipped, a good alignment is tbund very quickly.
For example, three four-character strings have
10,536 alignments (generated my way), but
when comparing Spanish tres, French trois, and

Table 2: Some alignments found by the proto-
type program.

Spanish/Italian/French 'three':

t r - e s
t r - e -
t r w a -

Spanish/Italian/French 'four':

k w a - t r o
k w a t t r o
k - a - t r -

Spanish/Italian/French 'five':

O i t] k - o
c i 13 k w e
s ~ - k - -

Koasat i /Cree/Choctaw 'squirrel':

i p - ! u
i - - l u
- f a n i

English three, 2 the algorithm finds its "best"
alignment,

t r - e s
t r w a -
0 r - i y

after completing only ten other alignments, al-
though it also pursues several hundred branches
of the tree part of the way. (Here the match of Is 1
with [y] is problematic, but tile computer can't
know that; it also finds a number of alternative
alignments.)

8 R e s u l t s a n d e v a l u a t i o n

The algorithm has been prototyped in LPA Pro-
log, and Table 2 shows some of the alignments
it found. None of these took nlore than five sec-
onds on a 133-MHz Pentium, and the Prolog
program was written for versatility, not speed.

As comparative linguists know, the alignment
that gives the best phonetic fit (by any crite-
rion) is not always the etymologically correct
one. This is evident with my algorithm. For

2Admittedly an odd set to compare because of the
different depth of branching, but they are cognates and
each has four segments.

279

instance, comparing the Sanskrit, Greek, and
Latin words for 'field,' the algorithm finds the
correct alignment,

a g e r - -
a g - r o s
a] - r a s (badness = 365)

but then discards it in favor of a seemingly bet-
ter alignment:

a g e r - -
a g - r o s
a -]ras (badness = 345)

It doesn't know, of course, that [g]:[]] is a pho-
netically probable correspondence.

Worse, occasionally the present algorithm
doesn't consider the etymologically correct
alignment at all because something that looks
better has already been found. For example,
taking the Avestan, Greek, and Latin words for
'100', the algorithm settles on

- - s a t o m
h e k a t o n
k e n - t u m (badness 610)

without ever considering the etymologically cor-
rect alignment:

- - s a - t 3 m
h e k a - t o n
- - k e n t u m (badness 690)

The penalties for skips may still be too high
here, but the real problem is, of course, that the
algorithm is looking for the one best alignment,
and that's not what comparative reconstruction
needs. Instead, the computer should prune the
search tree less eagerly, pursuing any alignment
whose badness is, say, no more than 120% of
the lowest found so far, and delivering all solu-
tions that are reasonably close to the best one
found during the entire procedure. Indeed, the
availability of multiple potential alignments is
the keystone of Kay's (1964) proposal to imple-
ment the Comparative Method, which could not
be implemented at the time Kay proposed it be-
cause of the lack of an efficient search algorithm.
The requisite modification is easily made and I
plan to pursue it in subsequent work.

R e f e r e n c e s

Covington, Michael A. (1996) An algorithm to
align words for historical comparison. Com-
putational linguistics 22:481-496.

Covington, Michael A., and Canfield, E. Rodney
(1996) The number of distinct alignments of
two strings. Unpublished manuscript, Univer-
sity of Georgia.

Fox, Anthony (1995) Linguistic reconstruction:
an introduction to theory and method. Oxford:
Oxford University Press.

Frantz, Donald G. (1970) A PL/1 program to
assist the comparative linguist. Communica-
tions of the ACM 13:353-356.

Haas, Mary R. (1969) The prehistory of lan-
guages. The Hague: Mouton.

Hewson, John (1974) Comparative reconstruc-
tion on the computer. John M. Anderson and
Charles Jones, eds., Historical linguistics I:
syntax, morphology, internal and comparative
reconstruction, 191-197. Amsterdam: North
Holland.

Hoenigswald, Henry (1950) The principal step
in comparative grammar. Language 26:357-
364. Reprinted in Martin Joos, ed., Readings
in Linguistics I, 4th ed., 298-302. Chicago:
University of Chicago Press, 1966.

Kay, Martin (1964) The logic of cognate rcog-
nition in historical linguistics. (Memorandum
RM-4224-PR.) Santa Monica: The RAND
Corporation.

Kececioglu, John (1993) The maximum weight
trace problem in multiple sequence alignment.
Combinatorial pattern matching: 4th annual
symposium, ed. A. Apostolieo et al., 106-119.
Berlin: Springer.

Lowe, John B., and Mazaudon, Martine (1994)
The Reconstruction Engine: a computer im-
plementation of the comparative method.
Computational Linguistics 20:381-417.

Ukkonen, Esko (1985) Algorithms for approxi-
mate string matching. Information and Con-
trol 64:100-118.

Waterman, Michael S. (1995) Introduction to
computational biology: maps, sequences and
genomes. London: Chapman & Hall.

Wimbish, John S. (1989) WORDSURV: a pro-
gram for analyzing language survey word lists.
Dallas: Summer Institute of Linguistics.

280

