
Spoken Dialogue Interpretation with the DOP Model 

Rens Bod 
Department of Computational Linguistics 

University of Amsterdam 
Spuistraat 134, 1012 VB Amsterdam 

rens.bod @ let.uva.nl 

Abstract 
We show how the DOP model can be used for fast and 
robust processing of spoken input in a practical spoken 
dialogue system called OVIS. OVIS, Openbaar  
Vervoer Informatie Systeem ("Public Transport Infor- 
mation System"), is a Dutch spoken language infor- 
mation system which operates over ordinary telephone 
lines. The prototype system is the immediate goal of 
the NWO 1 Priority Programme "Language and Speech 
Technology". In this paper, we extend the original 
DOP model to context-sensit ive interpretation of 
spoken input. The system we describe uses the OVIS 
corpus (10,000 trees enriched with compositional 
semantics) to compute from an input word-graph the 
best utterance together with its meaning. Dialogue 
context is taken into account by dividing up the OVIS 
corpus into context-dependent  subcorpora.  Each 
system question triggers a subcorpus by which the user 
answer is analyzed and interpreted. Our experiments 
indicate that the context-sensitive DOP model obtains 
better accuracy than the original model, allowing for 
fast and robust processing of spoken input. 

1. Introduction 
The Data-Oriented Parsing (DOP) model (cf. Bod 
1992, 1995; Bod & Kaplan 1998; Scha 1992; Sima'an 
1995, 1997; Rajman 1995) is a probabilistic parsing 
model which does not single out a narrowly predefined 
set of structures as the statistically significant ones. It 
accomplishes this by maintaining a large corpus of 
analyses of previously occurring utterances. New 
utterances are analyzed by combining subtrees from 
the corpus. The occurrence-frequencies of the subtrees 
are used to estimate the most probable analysis of an 
utterance. 

To date, DOP has mainly been applied to 
corpora of trees labeled with syntactic annotations. 
Let us illustrate this with a very simple example. 
Suppose that a corpus consists of only two trees: 
(1) 

S S 

NF' VP NP VP 

John V NP Peter V NP 

I I I I 
likes Mary hates Susan 
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To combine subtrees, a node-substitution operation 
indicated as o is used. Node-substitution identifies the 
leftmost nonterminal frontier node of one tree with the 
root node of a second tree (i.e., the second tree is 
substituted on the leftmost nonterminal frontier node 
of the first tree). A new input sentence such as Mar3' 
likes Susan can thus be parsed by combining subtrees 
from this corpus, as in (2): 
(2) 

S o NP o NP = S 

NP Vl' Mary Susan NP VP 

V NP Mary V NP 

I I I 
likes likes Susan 

Other derivations may yield the same parse tree; for 
instance: 
(3) 

S o NP o V = S 

NP VP Mary likes NP VP 

V NP Mary V NP 

I I I 
Susan likes Susan 

DOP computes the probability of substituting a subtree 
t on a specific node as the probability of selecting t 
among all subtrees in the corpus that could be 
substituted on that node. This probability is equal to 
the number of occurrences of t, divided by the total 
number of occurrences of subtrees t' with the same 
root label as t. Let rl(t) return the root label of t then: 
P(t) = #(t) / ~,t':rl(t')=rl(t)#(t'). The probability of a 
derivation is computed by the product of the 
probabilities of the subtrees is consists of. The 
probability of a parse tree is computed by the sum of 
the probabilities of all derivations that produce that 
parse tree. 

Bod (1992) demonstrated that DOP can be 
implemented using conventional context-free parsing 
techniques. However, the computation of the most 
probable parse of a sentence is NP-hard (Sima'an 
1996). The most probable parse can be estimated by 
iterative Monte Carlo sampling (Bod 1995), but 
efficient algori thms exist only for sub-opt imal  
solutions such as the most likely derivation of a 
sentence (Bod 1995, Sima'an 1995) or the "labelled 



recall parse" of a sentence (Goodman 1996). So far, 
the syntactic DOP model has been tested on the ATIS 
corpus and the Wall Street Journal corpus, obtaining 
significantly better test results than other stochastic 
parsers (Charniak 1996). For example,  Goodman 
(1998) compares the results of  his DOP parser to a 
replication of Pereira & Schabes (1992) on the same 
training and test data. While the Pereira & Schabes 
method achieves 79.2% zero-crossing brackets 
accuracy, DOP obtains 86.1% on the same data 
(Goodman 1998: p. 179, table 4.4). Thus the DOP 
method outperforms tile Pereira & Schabes method 
with an accuracy-increase of 6.9%, or an error- 
reduction of 33%. Goodman also performs a statistical 
analysis using t-test, showing that the differences are 
statistically significant beyond the 98th percentile. 

In Bod ct al. (1996), it was shown how DOP 
can be generalized to semantic interpretation by using 
corpora annotated with compositional semantics. In 
the current paper, wc extend the DOP model to 
spoken dialogue understanding, and we show how it 
can bc used as an efficient and robust NLP component 
in a practical spoken dialogue system called OVIS. 
OVIS, Openbaar Vervoer informatic Systcem ("Public 
Transport Information System"), is a Dutch spoken 
hmguagc information system which operates over 
ordinary telephone lines. The prototype system is the 
immediate goal of the NWO Priority Programme 
"Language and Speech Technology". 

Tile backbone of any DOP model is an 
annotated language corpus. In the following section, 
we therefore start with a description of the corpus that 
was developed for the OVIS system, the "OVIS 
corpus". We then show how this corpus can be used by 
DOP to compute the most likely meaning M of a word 
string W: argmaxM P(M, W). Next we demonstrate how 
the dialogue context C can be integrated so as to 
compute argmaxM P(M, W I C). Finally, we interface 
1)OP with speech and show how the most likely 
meaning M of an acoustic utterance A given dialogue 
context C is computed: argmaxt~t P(M, A I C). The last 
section of this paper deals with the experimental 
evaluation of the model. 

2. The OVIS corpus: trees enriched with 
compositional frame semantics 

The OVIS corpus currently consists of 10,000 syntac- 
tically and semantically annotated user utterances 
that were collected on the basis of a pilot version of 
the OVIS system 2. The user utterances are answers to 
system questions such as From where to where do you 
want to travel?, At what time do you want to t,'avel from 
Utrecht to Leiden?, Could you please repeat 3'our 
destination ?. 

For the syntactic annotation of the OVIS user 
utterances, a tag set of 40 lexical/syntactic categories 

2 The pilot version is based on a Gernmn system developed 
by Philips l)ialoguc Systems in Aachen (Aust et al. 1995), 
adapted to l)utch. 

was developed. This tag set was deliberately kept 
small so as to improve the robustness of the DOP 
parser. A correlate of this robustness is that the parser 
will overgenerate, but as long as the probability model 
can accurately select the correct utterance-analysis 
from all possible analyses, this overgeneration is not 
problematic. Robustness is further achieved by a 
special category, called ERROR. This category is nsed 
for stutters, false starts, and repairs. No grammar is 
used to determine the correct syntactic annotation; 
there is a small set of guidelines, that has the degree 
of detail necessary to avoid an "anything goes" 
attitude in the annotator, but leaves room for the 
annotator's perception of the structure of the utterance 
(see Bonnema et al. 1997). 

The semantic annotations are based on the 
update language defined for the OVIS dialogue 
manager by Veldhuijzen van Zanten (1996). This 
language consists of a hierarchical fi'ame structure 
with slots and values for the origin and destination of 
a train connection, for the time at which the user 
wants to arrive or depart, etc. The distinction between 
slots and values can be regarded as a special case of 
ground and focus distinction (Vallduvi 1990). Updates 
specify the ground and locus of the user utterances. 
For example, the utterance lk wil niet vamlaag maar 
morgen naar Ahnere (literally: "I want not today but 
tomorrow to Almere") yields the following update: 

(4) user.wants. ( ([# today] ; [! tomorrow]) ; 

destination, place, town. almere) 

An important property of this update language is that 
it allows encoding of speech-act information (v. Noord 
et al. 1997). The "#" in the update means that the 
information between the square brackets (representing 
the focus of tim user-utterance) must be retracted, 
while the "!" denotes the corrected information. 

This update language is used to semantically 
enrich the syntactic nodes of the OVIS trees by means 
of the following annotation convention: 

• Every meaningful lexical node is annotated with a 
slot and/or value from the update language which 
represents the meaning of the lexical item. 

• Every meaningful non-lexical node is annotated 
with a Jormula schema which indicates how its 
meaning representation can be put together out of 
the meaning representations assigned to its daughter 
nodes. 

In the examples below, these schemata use the 
variable dl  to indicate tile meaning of the leftmost 
daughter constituent, d2 to indicate the meaning of 
the second daughter node constituent,  etc. For 
instance, the full (syntactic and semantic) annotation 
for the above sentence lk wil niet vandaag maar 
morgen naar Almere is given in figure (5). 

Note that the top-node meaning of (5) is 
compositionally built up out of the meanings of its 
sub-constituents. Substituting the meaning represen- 
tations into the corresponding variables yields the 
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update expression (4). The OVIS annotations are in 
contrast with other corpora and systems (e.g. Miller et 
al. 1996), in that our annotation convention exploits 
the Principle of  Compositionality of  Meaning. 3 
(5) 

S 
dl.d2 

vp 
dl.d2 PER 

u s e r  

~ Me V 

ik wants 

I 
wil MP MP 

MP CON MP P NP 
/ ~  [ tomorrow destinati0n.place town.almere 

I I I I 
ADV MP maar morgen naar ahnere 

# today 

I I 
niet vandaag 

Figure (6) gives an example of  the ERROR ca tegory  
for the annotation of  the il l-formed sentence Van 
Voorburg naar van Venlo naar Voorburg ("From 
Voorburg to from Venlo to Voorburg"): 
(6) 

MP 

ERROR MP 

I (dI;d2) 

Mp 

(d l;d2) MP MP 
dl.d2 dl.d2 

dl .d2 destination.place p NP P NP 

] origi .place low venl0 destin ion.place t0wn.vo0rburg dlSd2 

0rigin.place town.voorburg van venlo nau, roorburg PER VP 

I / user d l.d2 

van ,'oorburg I 
ik V MP 

Note that the ERROR category  has no semantic  wants (dl;d2) 
annotation; in the top-node semantics of  Van Voorburg ] 

wil 

3 To maintain our annotation convention in the face of 
phenomena such as non-standard quantifier scope or 
discontinuous constituents may create complications in the 
syntactic or semantic analyses assigned to certain 
sentences and their constituents. It is therefore not clear yet 
whether onr current treatment ought to be viewed as 
completely general, or whether a more sophisticated 
treatment in the vein of van den Berg et al. (1994) should be 
worked out. 
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naar van Venlo naar Voorburg, the meaning of  the 
false start Van Voorburg naar is thus absent: 

(7) ( o r i g i n . p l a c e . t o w n . v e n l o  ; 
destination.place, town. voorburg) 

The manual annotation of  10,000 OVIS utterances 
may seem a laborious and error-prone process. In order 
to expedi te  this task, a f lexible and powerful  
annotation workbench (SEMTAGS) was developed by 
Bonnema (1996). SEMTAGS is a graphical interface, 
written in C using the X V I E W  toolkit. It offers all 
functionality needed for examining, evaluating, and 
editing syntactic and semantic analyses. SEMTAGS is 
mainly used for correcting the output of  the DOP 
parser. After  the first 100 OVIS  utterances were 
annotated and checked by hand, the parser used the 
subtrees of  these annotations to produce analyses for 
the next 100 OVIS utterances. These new analyses 
were checked and corrected by the annotator using 
SEMTAGS, and were added to the total set of  
annotations. This new set of  200 analyses was then 
used by the DOP parser to predict the analyses for a 
next subset of  OVIS utterances. In this incremental, 
boots t rapping way, 10,000 OVIS utterances were 
annotated in approximately 600 hours (supervision 
included). For further information on OVIS and how to 
obtain the corpus, see http://earth.let.uva.nl/-rens. 

3. Using the OVIS corpus for data-oriented 
semantic analysis 

An important  advantage  o f  a corpus  annotated 
according to the Principle of  Composi t ional i ty  of  
Meaning is that the subtrees can directly he used by 
DOP for computing syntactic/semantic representations 
for new utterances. The only difference is that we now 
have composi te  labels which do not only contain 
syntactic but also semantic information. By way of  
illustration, we show how a representation for the 
input utterance lk wil van Venlo naar Ahnere ('7 want 
from Venlo to Almere") can be constructed out of  
subtrees from the trees in figures (5) and (6): 

MP 
o o 

(dt ;d2) 

MP 
dl.d2 

P NP 
origin.place town.venlo 

I I 
van ven]o 

MP 
d I .d2 

MP 
d I.d2 

P NP 
destination.place town.ahnere 

I I 
naar  a lmere  



s 
dl.d2 

.(12 

I'F,R 
user p 

(dl ;(12) 
V 

ik wants 

i IV1 P M I' 
d I.d2 d Id2 

P NP l' NP 
origin.place town.venlo deslillalion.place town.ahBere 

I I I I 
van venlo naar almere 

which yiekls the following top-node update semantics: 

(9) usez  .want.~. 
( o r i c t i n . p l a c e .  t o w n . v e n l o ;  

destination, place, town.almere) 

The probability calculations for the semantic DOP 
model are simihu to the original DOP model. That is, 
the probability of a subtree t is equal to the number of 
occurrences of t in the corpus divided by the number 
of occurrences of all subtrees t' that can be substituted 
on the same node as t. The probability of a derivation 
D = tl o ... o t,~ is tim product elf the probabilities ell" its 
subt,'ees ti. The probability of a parse tree T is the sum 
of tile probabilities of all derivations D that produce T. 
And the probability of a meaning M and a word string 
W is the sum of the probabilities of all parse trees T of 
W whose tol)-node meaning is logically equivalent to 
M (see Bod et al. 1996). 

As with the most probable parse, the most 
probable meaning M of a word string W cannot be 
computed in deterministic polynomial time. Although 
tile most probable meaning can be estimated by 
iterative Monte Carl() saml)ling (see Bod 1995), the 
computation of a sulTiciently large number of random 
derivations is currently not efficient enough for a 
practical application. To date, only the m o s t  l ikely  
der iva t ion  can be computed in near to real-time (by a 
best-first Viterbi optimization algorithm). We there- 
fore assume that most of the probability mass for each 
top-node meaning is focussed on a single derivation. 
Under this assmnl)tion, the most likely meaning of a 
string is the top-node lneaning generated by the most 
likely derivation of that string (see also section 5). 

4. Extending  D O P  t o  d i a l o g u e  context:  
c o n t e x t - d e p e n d e n t  subcorpora  

We now extend the semantic DOP model to compute 
the most likely meaning of a sentence given the 
previous dialogue. In general, the probability of a top- 
node meaning M and a particular word string W i given 
a dialogue-context C i = W i - l ,  Wi-2 ... WI  is given by 
P(M, W i I Wi - l ,  Wi-2 ... WI). 

Since the OVIS user utterances are typically answers 
to previous system questions, we assume that the 
meaning of a word string W i does not depend on the 
full dialogue context but only on the previous 
(system) question W i_l. Under this assumption, 

P(M, W i I Ci )  = P(M, W i I Wi_l)  

For DOP, this formula means that the update 
semantics of a user utterance W i is computed on the 
basis of the subcorpus which contains all OVlS 
utterances (with their annotations) that are answers to 
the system question Wi_ 1. This gives rise to the 
following interesting model for dialogue processing: 
each system question triggers a context-dependent 
domain (a subcorpus) by which the user answer is 
analyzed and interpreted. Sittce the number of 
different system questions is a small closed set (see 
Veldhuijzen van Zanten 1996), we can create offdine 
for each subcorpus the conesponding DOP parser. 

In OVIS, the following context-dependent 
subcorpora can be distinguished: 

(1) place subcorpus: utterances following questions 
like Front where  to where  do you wan t  to travel? 
What  is your  destination ?, etc. 

(2) date subcorpus: utterances following questions 
like When do you want  to travel?, When do you want  
to leave f r o m  X?, When do you want  to arrive in Y?, 
etc. 

(3) time subcorpus: utterances following questions 
like At  what  time do you want  to travel? At  what  time 
do you want  to leave f r o m  X?, A t  what  time do you 
want  to arrive in Y?, etc. 

(4) yes/no subcorpus: utterances following y/n_ 
questions like Did you say that ... ? Thus you want  to 
arrive at ... ? 

Note that a subcorpus can contain utterances whose 
topic goes beyond the previous system question. For 
example, if the system asks Front where  to where  do 
y o u  w a n t  t o  t r a v e l ? ,  a n d  the user answers with: F r o n t  

A m s t e r d a m  to Groningen  t o m o r r o w  morning ,  then the 
date-expression t o m o r r o w  m o r n i n g  ends up in the 
place-subcorpus. 

It is interesting to note that this context- 
sensitive DOP model can easily be generalizcd to 
donmin-dependent interpretation: a corpus is clustered 
into subcorpora, where each subcorpus corresponds to 
a topic-dependent  domain. A new utterance is 
interpreted by the domain in which it gets highest 
probability. Since snmll subcorpora tend to assign 
higher probabi l i t ies  to ut terances  than large 
subcorpora (because relative frequencies of subtrees 
in small corpora tend to be highe,'), it follows that a 
language user strives for the smallest, most specific 
domain in which the perceived utterance can be 
analyzed, thus establishing a most specific common 
ground. 
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5. Interfacing DOP with speech 
So far, we have dealt with the estimation of the 
probability P(M, W I C) of a meaning M and a word 
string W given a dialogue context C. However, in 
spoken dialogue processing, the word string W is not 
given. The input for DOP in the OVIS system are 
word-graphs produced by the speech recognizer (these 
word-graphs are generated by our project partners from 
the University of Nijmegen). 

A word-graph is a compact representation for 
all sequences of words that the speech recognizer 
hypothesizes for an acoustic utterance A (see e.g. 
figure 10). The nodes of the graph represent points in 
time, and a transition between two nodes i and j, 
represents a word w that may have been uttered 
between the corresponding points in time. For 
convenience we refer to transitions in the word-graph 
using the notation <i, j,  w>. The word-graphs are 
optimized to eliminate epsilon transitions. Such 
transitions represent periods of time when the speech 
recognizer hypothesizes that no words are uttered. 
Each transition is associated with an acoustic score. 
This is the negative logarithm (of base 10) of the 
acoustic probability P(a I w) for a hypothesized word 
w normalized by the length of w. Reconverting these 
acoustic scores into their corresponding probabilities, 
the acoustic probability P ( A I W )  for a hypothesized 
word string W can be computed by the product of the 
probabilities associated to each transition in the 
corresponding word-graph path. Figure (10) shows an 
example of a simplified word-graph for the uttered 
sentence Ik wil graag vamnorgen naar Leiden ("I'd like 
to go this morning to Leiden"): 

(lO) 
ik wil graag ran Maam naar Leiden 

(46.31/ (64.86) (95.42) (96.97) (12133) [54.75/ (11565) 

~'amnorgen 

[258.80) 

The probabilistic interface between DOP and speech 
word-graphs thus consists of the interface between the 
DOP probabilities P(M, W IC) and the word-graph 
probabilities P(A I W) so as to compute the probability 
P(M, A I C) and argmax M P(M, A I C). We start by 
rewriting P(M, A I C) as: 

P(M,A IC)  = ) - "wP(M,W,A IC)  
= Y'w P(M, W I C) • P(A I M, W, C) 

The probabil i ty P(M, W IC)  is computed by the 
dialogue-sensitive DOP model as explained in the 
previous section. To es t imate  the probabi l i ty  
P(A I M, W, C) on the basis of the information 
available in the word-graphs, we must make the 
following independence assumption: the acoustic 
utterance A depends only on the word string W, and 
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not on its context C and meaning M (cf. Bod & Scha 
1994). Under this assumption: 

P ( m , a  fC)  = ~ ' w P ( M , W [ C ) '  P(a IW) 

To make fast computation feasible, we furthermore 
assume that most of the probability mass for each 
meaning and acoustic utterance is focused on a single 
word string W (this will allow for efficient Viterbi best 
first search): 

P(M,A IC)  = P(M, W r C ) .  P(A IW) 

Thus, the probability of a meaning M for an acoustic 
utterance A given a context C is computed by the 
product of the DOP probability P(M, W I C) and the 
word-graph probability P(A I W). 

As to the parsing of word-graphs, it is well- 
known that parsing algorithms for word strings can 
easily be generalized to word-graphs (e.g. van Noord 
1995). For word strings, the initialization of the chart 
usually consists of entering each word w i into chart 
entry <i, i+1>. For word-graphs, a transition <i,j, w> 
corresponds to a word w between positions i and j 
where j is not necessarily equal to i+1 as is the case 
for word strings (see figure I0). It is thus easy to see 
that for word-graphs the initialization of the chart 
consists of entering each word w from transition 
<i, j ,  w> into chart entry <i, j>. Next, parsing 
proceeds with the subtrees that are triggered by the 
dialogue context C (provided that all subtrees are 
converted into equivalent rewrite rules -- see Bod 
1992, Sima'an 1995). The most likely derivation is 
computed by a bot tom-up best-first CKY parser 
adapted to DOP (Sima'an 1995, 1997). This parser has 
a time complexity which is cubic in the number of 
word-graph nodes and linear in the grammar size. The 
top-node meaning of the tree resulting from the most 
likely derivation is taken as the best meaning M for 
an utterance A given context C. 

6. Evaluation 
In our experimental evaluation of DOP we were 
interested in the following questions: 

(1) Is DOP fast enough for practical spoken 
dialogue understanding? 
(2) Can we constrain the OVIS subtrees without 
loosing accuracy? 
(3) What is the impact of dialogue context on the 
accuracy? 

For all experiments, we used a random split of the 
10,000 OVIS trees into a 90% training set and a 10% 
test set. The training set was divided up into the four 
subcorpora described in section 4, which served to 
create the corresponding DOP parsers. The 1000 word- 
graphs for the test set utterances were used as input. 
For each word-graph, the previous system question 
was known to determine the particular DOP parser, 
while the user utterances were kept apart. As to the 
complexity of the word-graphs: the average number of 
transitions per word is 4.2, and the average number of 



words per word-graph path is 4.6. All experiments were 
run on an SGI Indigo with a MIPS R10000 processor 
and 640 Mbyte of core memory. 

To establish the semantic accuracy of the 
sy,;tem, the best meanings produced by the DOP 
parser were compared with the meanings in the test 
set. Besides an exact match metric, we also used a 
more fine-grained evaluation for the semantic 
accuracy. Following the proposals in Boros et al. 
(1!)96) and van Noord et al. (1997), we translated 
each update meaning into a set of semantic units, 
wllere a uni t  is triple < C o m m u n i c a t i v e F u n c t i o n ,  

S l o t ,  va lue> .  For instance, tile next example 

user.wants, travel, destination. 

([# place.town.almere] ; 

[! p]ace.town.alkmaar]) 

t rans la tes  as: 

<denia], destination town, almere> 

<correc. tJon, destination town, alkmaar> 

Both the updates m the OVIS test set and the updates 
produced by the DOP parser were translated into 
semantic units of tile form given above. The semantic 
accuracy was then evaluated in three different ways: 
(1) match,  the percentage of updates which were 
exactly correct (i.e. which exactly matched the 
updates m the test set); (2) precision, the number of 
correct semantic units divided by the number of 
semantic units which were produced; (3) recall, the 
number of correct semantic units divided by the 
number of semantic units in tile test set. 

As to question (1), we already suspect that it is not 
efficient to use all OVIS subtrees. We therefore 
performed experiments with versions of DOP where 
the subtree collection is restricted to subtrees with a 
certain maximum depth. The following table shows for 
four dilTerent maximum depths (where the maximum 
number of frontier words is limited to 3), the number 
of subtrec types in the training set, the semantic 
accuracy in terms of match, precision and recall (as 
percentages), and the average CPU time per word- 
graph m seconds. 

subtree- semantic accuracy 
#subtrees CPU time 

depth match precision recall 

1 3191 76.2 79.4 82.1 0.21 

2 10545 78.5 83.0 84.3 0.86 

3 32140 79.8 84.7 86.2 2.76 

4 64486 80.6 85.8 86.9 6.03 

'Fable 1: Experimental results on OVIS word-graphs 

The experiments show that at subtree-depth 4 the 
highest accuracy is achieved, but that only for 
subtree-depths 1 and 2 are the processing times fast 
enough for practical applications. Thus there is a 

trade-off between efficiency and accuracy: the 
efficiency deteriorates if the accuracy improves. We 
believe that a match of 78.5% and a corresponding 
precision and recall of resp. 83.0% and 84.3% (for the 
fast processing times at depth 2) is promising enough 
for further research. Moreover, by testing DOP directly 
on the word strings (without the word-graphs), a match 
of 97.8% was achieved. This shows that linguistic 
ambiguities do not play a significant role in this 
domain. The actual problem are the ambiguities in the 
word-graphs (i.e. the multiple paths). 

Secondly, we are concerned with the question as to 
whether we can impose constraints on tile subtrees 
other than their depth, in such a way that the accuracy 
does not deteriorate and perhaps even improves. To 
answer this question, we kept tile maximal subtree- 
depth constant at 3, and employed the following 
constraints: 

• Eliminating once-occurring subtrees: this led to a 
considerable decrease for all metrics; e.g. match 
decreased from 79.8% to 75.5%. 

• Restricting subtree lexicalization: restricting the 
maximum number of words in the subtree frontiers 
to resp. 3, 2 and 1, showed a consistent decrease in 
semantic accuracy similar to the restriction of the 
subtree depth in table 1. Tile match dropped from 
79.8% to 76.9% if each subtree was lexicalizcd 
with only one word. 

• Eliminating subtrees with only non-head words: 
this led also to a decrease in accuracy; tile most 
stringent metric decreased from 79.8% to 77.1%. 
Evidently, there can be important relations in OVIS 
that involve non-head words. 

Finally, we arc interested in the impact of dialogue 
context on semantic accuracy. To test this, we 
neglected the previous system questions and created 
one DOP parser for tile whole training set. The 
semantic accuracy metric match dropped froin 79.8% 
to 77.4% (for depth 3). Moreover, the CPU time per 
sentence deteriorated by a factor of 4 (which is 
mainly due to the fact thai larger training sets yield 
slower DOP parsers). 

The following result nicely illustrates how the 
dialogue context can contribute to better predictions 
for the correct meaning of an utterance. In parsing the 
word-graph corresponding to the acoustic utterance 
Donderdag acht februari ("Thursday eight February"), 
the DOP model without dialogue context assigned 
highest probability to a derivation yielding the word 
string Dordrecht acht februari and its ineaning. Tile 
uttered word Donderdag was thus interpreted as the 
town Dordrecht which was indeed among the other 
hypothesized words in the word-graph. If the DOP 
model took into account the dialogue context, the 
previous system question When do you want to leave? 
was known and thus triggered the subtrees from the 
date-subcorpus only, which now correctly assigned the 
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highest probability to Donderdag acht februari and its 
meaning, rather than to Dordrecht acht februari. 

7. Conclusions 
We showed how the DOP model can be used for 
efficient and robust processing of spoken input in the 
OVIS spoken dialogue system. The system we 
described uses syntact ical ly and semantically 
analyzed subtrees from the OVIS corpus to compute 
from an input word-graph the best utterance together 
with its meaning. We showed how dialogue context is 
integrated by dividing up the OVIS corpus into 
context-dependent subcorpora. Each system question 
triggers a suhcorpus by which the user utterance is 
analyzed and interpreted. 

Efficiency was achieved by computing the 
most probable derivation rather than the most probable 
parse, and by restricting the depth and lexicalization 
of the OVIS subtrees. Robustness was achieved by the 
shallow syntactic/semantic annotations, including the 
use of the productive ERROR label for repairs and 
false starts. The experimental evaluation showed that 
DOP's blending of lexical relations with syntactic- 
semantic structure yields promising results. The 
experiments also indicated that elimination of 
subtrees diminishes the semantic accuracy, even 
when intuitively unimportant subtrees with only non- 
head words are discarded. Neglecting dialogue context 
also diminished the accuracy. 

As future research, we want to investigate 
further optimization techniques for DOP, including 
finite-state approximations. We want to enrich the 
OVIS utterances with discourse annotations, such as 
co-reference links, in order to cope with anaphora 
resolution. We will also extend the annotations with 
feature structures and/or functional structures 
associated with the surface structures so as to deal 
with more complex linguistic phenomena (see Bod & 
Kaplan 1998). 
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