Morphological Analyzer as Syntactic Parser

Gabor Proészéky

Morphol.ogic
Németvolgyi ut 25, Budapest, H-1126 Hungary
h6109pro@elta.hu

Abstract. We describe how a simple parser can be built on
the basis of morphology and a morphological analyzer. Our
initial conditions have been the techniques and principles
ol Humor, a string-based  unification (ool
(Proszéky 1994). Parsing is performed by the same engine
as morphological analysis. It is useful when there is not
cnough space to add a new engine o an existing morphol-
ogy-based application (c.g. a spell-checker), but you would
like to handle sentence-level information, as well (c.g. a
grammar checker). The morphological analyzer breaks up
words into several parts, all of which stored in the main
fexicon. Lach part has a leature structure and the validity of
the input word is checked by unifying them. The mor-
phological analyzer rcturns various information about a

reversible,

word including its categorization. In a sentence, the cate-
gory of cach word (or morpheme) is considered a meta-
letter, and the sentence itself can be transformed into a
meta-word that essentially behaves like a real one. Thus the
set of sentences recognized by the parser called HumorESK
can form a lexicon of meta-words that are processed much
Lthe same way as lexicons of real words (morphology). This
means that algorithmic parsing step are substituted by lexi-
con look-up, which, by definition, is performed following,
the surface order of string clements. Both the finitizer that
transtorms formal grammars into finite lexicons and the
run-time parser of the proposed model have running im-

plementations.’

1 INTRODUCTION

Lexical entrics in a morphology-based system are words,
Because ol the similarity, syntactic constructions occurring,
as entrics in a meta-lexicon can be called meta-words.
Mcta-fetters, that is, letters of a meta-word arc morpho-
syntactic catcgorics having an internal structurc that de-
seribes syntactic behavior of the entry in higher [evel con-
structions. The system called HumorESK (Humer 1inhanced
with Syntactic Knowledge, where Humer stands for High-
speed Unification Morphology) to be shown here consists
ol numerous meta-lexicons. Each of them has a name: the
syntactic category it describes. Categories like S', S, NP,
VP, ete. are described in separate lexicons. Mcta-lexicons
form a hicrarchy, that is, letlers in a meta-lexicon can refer
to other (but only lower level) lexicons. Parsing on cach
level, therctore, can be realized as lexical look-up. Neither
backtracking, look-alicad, nor other time-consuming pars-
ing steps are needed in order to get the analysis of a sen-
tence. The only on-line operation is a unifiability check for
cach possible lexical entry that matches the sentence in
question.

' “This work was partially supported by the Hungarian National
Scientilic Fund (OTKA).

Grammars are cowmnpiled into a multi-level  pattern
structure. On a lower level, parsing a word results in a
meta-letter, that is, part of a meta-word on a higher level.
Such structures, for example, NP and VP, are meta-letters
coming from lower levels and form a meta-word that can
be parsed as a sentenee, because ol the existence of a rule S

> NP VP in the original grammar. A complex sentence
grammar can be broken up into non-rceursive grammars
describing smaller grammatical units on different levels.
These grammars are, of course, much simpler than the
original one. Recursive transition networks (R'TN) can also
be made according to similar principles, but their recursive
nature cannot be found in our method. In other words: the
output symbol of any level does not oceur in the actual or
lower level dictionaries.

The whole lexicon cascade can be generated from  arbi-
trary grammars written in any usual (for the time being,
CF, but in the near future any leature-based) formalisin.
We call this step grammar learning. T'he sollware tool we
have developed for this reason takes the grammar as input,
creates the largest regular subsct of the language it de-
seribes regarding the string-completion limit of Kornai
(1985), then forms a finite pattern structure by depth limit
and length limit from the above regular description.

2 PARSING WITH PATTERNS

Parsers arc (computational) tools that read and analyzc a
sentence, and return a wide range of information about it,
that is, they recognize
(1) if'the input is a valid sentence (according to the rules of

the object language),
(2) scgment the input sentence as many ways as possible,

and
(3) provide some custom information.
The latter custom information can be a simple 'OK' sign
indicating that the sentence is well-formed (grammar
checker), but it can also be the same sentenee in another
language (translation tool), or, in case ol a (grammatically)
incorrect sentence, it can be a list ol suggestions how it
may be corrected (grammar corrector). In the present im-
plementation we use morpho-syntactic categorics as output
information on every level (parser).

For the input sentence

The dog sings,
the English module of Humer returns the folfowing mor-
phological categorization:
The]DET] dogIN] sing[VI+[3SG] [END]
et us now strip off the actual words from the morphologi-
cal information (from now on we call them morphological
codes or morph-codes). Writing only the morph-codes, we
pet
DET NV 3S5G END.

‘The problem is now how we recoguize this as a sentence.
This sequence must somehow be stored in another lexicon



describing phrases and phrase structures. It is quite clear
that in the above string, DET, N, and V are simple symbols
that can easily be encoded as single letters like d, n, v, x
and e. Transforming the sequence of morph-codes we get
the word dnvxe. Larlier we said that the Humor engine is
lexicon-independent, so if we have another lexicon, we can
easily switch to it and instruct Humer to analyze the actual
word. Humor returns somcthing like dnvxe[S] where 'S' is
now the category of the input word indicating that it is a
sentence.

The meta-level, of course, can be split up to further lev-
els. Let us use, for the sake of simplicity, a simple toy
grammar of two levels for the nominal phrase and the sen-
tence:

(Level2) S—>NPS,S—>SNP,S—-»V(@3SG)

(I.evel 1) NP — DET NG, NG - ADJ NG, NG - N
Now we feel a need for a tool that generates a set of finite
patterns out of this grammar description. We, therefore,
developed a tool that finds the largest regular subset of a
context free language (regarding a special parametcr set)
and then uses a recursive generator to produce the finite
patterns. |{For the above toy grammar a possible lexicon can
be the following:

(Level 2): V END, V 3SG END, NP V END. NP V 3SG END, NP
V NP END, NP V 3SG NP END, VNP END, V3SG NP END, ...
(Level 1): DET N, DET ADI N, DET ADJ ADIN, ..

If we use letters v, m, x, n, a and d for V, NP, 35G, N,
ADJ and DET, respectively, we get the following lexicons:
(Level S)  ve, vxe, mve, mvxe, mvme, mvxme, vme, vxme, ...

(Level NP) dn, dan, daan, ...

If the appropriate lexicons are built from the pattern lists
for grammars of both levels, the parser is ready to run, The
parsing algorithm can be outlined as follows. The parser
runs a morphological analysis on each word in the input
sentence and encodes the morph-codes into meta-letters.
Using our examplc, The dog sings (DET N V 38G
END) the parser will find that the string '"DET N' forms a
noun phrase, because dr can be found in the NP lexicon.
The meta-morphological analysis (a search in the lexicon
of the patterns of Level 1) returns dn/m], that is, DET N
[NP]. For level 2, the parser exchanges the substring 'DET
N' with the meta-letter 'NP'. So the new meta-word is mve,
that is, NP V END' which is accepted by the Level 2
gramrhar (sentences). In fact, we have another meta-word
here, namely, a single » (='N") that can also be catcgorized
as a noun phrase (m); and this yields dmve, that is, 'DET
NP V END' which is not accepted by the Level 2 grammar,
Giving these two as input to the Level 2 meta-
morphological analysis, the system will reject dmve 'DET
NP V END' but will accept mve NP V END' by returning
mve[S], that is, NP V END [S].

It is clear that no backtracking is possible in our run-
time system, that is, a meta~word cannot be categorized by
a symbol that is a meta-letter of meta-words on the same or
lower level. It is an important restriction: category symbols
must be meta-letters used only on higher levels. This con-
straint provides us with another advantage: any set of cate-
gory symbols (higher level meta-letters or meta-morph-
codes) is disjoint from the set of lower level meta-letters
(or meta-letters used on the level of morphology), there-
fore, parsing lexicons can be unified: meta-words

1124

(morphological or any set of phrase structure patterns) for
all levels can be stored in a single lexicon.

In the explanation of the parsing techniques we have cx-
cluded one aspect until this point, and this is unification.
Without feature structures and unification, however, nu-
merous incorrectly formed sentences are accepted by the
parser. If a meta-word is not found, it is rejected and the
process goes on to the next meta-word. If the meta-word is
found, then it may still be incorrect. This is checked
through the unifiability-checking of the featurc structurcs
of its meta-letters. For instance, in a noun phrase 'DET N,
the unifiability of the feature structurcs assigned to DET
and N is checked. If they are not unifiable, the meta-word
is rejected and the process goes on to the next meta-word.
If they are unifiable, the output is passed on to the next
level. The last level is responsible for providing the user
with the proper analysis, that is, all the information col-
lected so far.

3  FROM GRAMMARS TO LEXICAL
PATTERNS

All infinite structures generated by recursion can be re-
stricted by limiting the recursion depth. This means a con-
straint of the depth of the derivation tree of a sentence in a
language. We can also restrict the direction of branching in
the derivation trec. This means that we could genecrate
(finite) patterns directly from the original (context-free)
language imposing various limits on embedding; but these
methods can be too weak or too strong and, most of all, ir-
relevant to the object language. There is, howecver, a
slighter constraint that helps transforming context-free
grammars. According to Kornai's hypothesis (Kornai
1985), any string that can be the beginning of a grammati-
cal string can be completed with & or less terminal symbols,
where k is a small integer. This & is called the string com-
pletion limit (SCL). A grammar transformation device can
be instructed to discard sentence beginnings that have a
minimal SCL larger than specified (by the user). SCL lim-
its center-embedding but allows arbitrary deep right-
branching structures (easily defined by right regular gram-
mars). Left branching is also limited, but this limitation is
less pronounced than that of center-cmbedding.

Our special tool, GRAM2LEX, takes a CF grammar as
input. As a first step, it rcads the grammar and creates the
appropriate RTNs from it. Goldberg and Kalman (1992)
describe an algorithm unifying recursive transition net-
works. We have improved their algorithm. [ts implementa-
tion is incorporated into the GRAM2LEX tool as a sccond
processing phase. The algorithm creates the largest regular
subset of a context-free language that respects the SCLL. In
terms of finite state automata, SCL is the number of
branches in the longest path from a non-accepting state to
an accepting one (regarding all such paths). The process re-
sults a finite state automaton. In order to get a finite de-
scription, from the FSA we introduced two independent pa-
rameters. The length of the output string (in terms of ter-
minal symbols) If the current string reaches the maximum
length, the recursion is cut and the process immediately
tracks back a level. The maximum number of passing the
same branch during the generation of an output string can
also be specified. In the current implementation, this



maximum is global to a whole output string. There is, how-
ever, another approach: this number can be related to the
current recursion level, so if a certain iteration occurs at
more than one position in a sentence, the maximum length
of the iteration is the same at both positions and the actual
lengths arc independent.

The GRAM2LEX tool takes all the three parameters (the
SCI., the maximum string length and the maximum itera-
tion length) as user-defined ones. The sct of finite patterns
can be compiled into a compressed lexicon with Morphol.-
ogic's lexicon compiler. ‘The GRAM2LEX tool produces a
file in the input format required by this compiler.

Levels of the parser are individual processes that com-
municate with cach other. The most important medium is
the internal parsing table that represents the parsing graph
described below. Based on that graph, the process of a par-

ticular level is able to e¢xecute its main functional modules,
namely
+ o create the appropriate input to call the morphology
cngine,
¢ switch to the phrase pattern lexicon of the current
level,

¢ run the morphology engine and process the output of
the morphology engine, and
+ if possible, inscrt new branches into the parsing graph
for the next level.
Lach level is an independent process communicating
with the others (including level 0, the morphological analy-
sis). The medium of communication is the parsing graph of
which there is only one copy and is generally accessed by
all levels. The parsing process on each level can be decom-
posed into three layers. All levels have the same function-
ality; it is only the internal operation of the first layer that
differs in the case of the lowest level (morphology) and the
highest one (sentences):
¢ pre-process that bascd on the current structure of the
parsing graph (if it exists), produces the set of the pos-
sible phrase structures,

¢ search that checks all the clements of the set generated
by Layer 1 if they are acceptable by the current level
using the Humor cngine equipped with the current level's
parsing lexicon,

¢ post-process that based on the patierns accepted by
Layer 2, inserts new nodes and branches into the pars-
ing graph.

The different levels are connected to cach other like the

layers of a single level. The structure of our present

(demonstrational) 0-1-2-level parser for Hungarian is the

following:

¢ Morphology (Preprocess Words, Search Morphology

Lexicon, Create/Modity Parsing Graph),

¢ Noun Phrases (Create Patierns, Search Level 1 Pattern
[.exicon, Modify Parsing CGraph),

¢ Sentences (Create Patterns, Scarch Level 2 Pattern
Lexicon, Modify Parsing Graph).

4 IMPLEMENTING THE RUN-TIME
PARSER

In the current implementation, the parsing levels are exe-
cuted sequentially, but they can be made concurrent: dur-
ing onc session, level 0 reads a word from the input sen-

1125

tence, analyzes it and inserts the appropriate nodes and
branches into the parsing graph. Further on, the system has
a sclf=driving structure: the level that made changes to the
parsing graph sends an indication to the next level which
then starls the same processing phase. The changes in the
parsing graph are thus spread upwards in the level strue-
turc. When the last level (usually the highest) finished up-
dating the graph, it sends a 'ready for next' signal to level 0
which starts the next session.

Termination is controlled by level 0: if it finished ana-
lyzing the last word (morpheme) of the sentence, it sends a
"terminate’ signal to the next level. Receiving this signal,
intermediate levels pass it to the next level after finishing
the processing the changes that were made 1o the parsing
graph. The last level (usually the highest) then terminates

all levels and passes the parsing graph to the output gen-
crator.
Let us see an example:
Patterns: S NP VP END
NI N|INN|DETN|DET ADIN|
DET ADJ AIDJI N
VP V[V 3SG| VNP | BIE VING | BE VING
ADV |V NP
KND: | !
Input: Professor Smith is coming home.
Output: S-» |NP VP END]

NP - [N N|
N --> Professor|N|
N - > Smith[PROP]
VP —> [BE VING ADV]
BE - » is| BE]
VING -> come[V|+ing|ING]
ADV -> home|ADV]
END —> .
This is the inherent tagging of the sentence built from the
information stored directly in the phrasc structure patterns.
We have begun, however, the development of another type
of tagging where phrases correspond to the source gram-
mars' non-lerminal symbols, like this:
s
(NP
(N professor)
(N Smith))
r
(BE is)
(VG
(VING
(V come)
(ING ing))
(ADV home))))

The current average speed of this multi-level system
(cven for dictionaries with 100.000 entries) is around 50
input/sec for cach module on a Pentium/75 machine, where
input can mean cither sentence or phrase or word to be
analyzed.

5 USER INTERFACE

The current implementation of the HumorESK parser allows
the run-lime cxpansion of the user-defined lexicon file.

performs the following functions:



e Works in both batch and interactive mode.

e Users can review all the different taggings of a sentence.

o Users can view the internal parsing table from which the
parser output was generated. This means the review of
the analysis of each morpheme and the meta-words gen-
crated from them.

e Uscrs can view both the morpho-lexical and the syntacti-
cal part of the user-defined lexicons.

e The user can add new entries to the user-defined lexicon
file on any level. The changes take effect suddenly, that
is, when processing the next sentence or re-parsing the
last onc.

6 CONCLUSION

We have developed a parser called HumorESK that is quite

powerful (even in its present format, without [eature struc-

tures) and has several important features:

. unified processing mcthod of every linguistic level

2. possible parallel processing of the levels (morphology,
phrase levels, sentence level, etc.)

3. morphotogical, phrasal and syntactic lexicons can be en-
hanced, cven in run-time

4. easy handling of unknown elements (with re-analysis)

. easy cotrection of grammatical errors

.reversible (generation with the 'synthesis by analysis' )

7. the same system can be used both for corpus tagging and
fine-grained parsing
Feature | scems important if there is not cnough space

to add a new enginc to an cxisting morphology-ascd

[ R

application (e.g. a spell-checker), but you must handle
sentence-level information, as well (e.g. a grammar
checker). Real parallelism indicated in 2 has not yet been
implemented. Usefulness of atributes 3—6 are going to be
proven in practicc, because we have just finished the first
version of the first [ungarian grammar checker called Hely-
esebb. It uscs the spelling corrector and morphological ana-
lyzer/generator modules relying on the Humer morphologi-
cal system - the basis of HumorESK — that are widely used by
tens of thousands of both professional and non-
professional end-users (Prészéky 1994, Prészéky et al.
1994). We have results in proving the first part of feature 7,
namely corpus tagging. I'ine-grained parsing would need
the extended use of features. ‘This systcm -~ as we men-
tioned carlier - is under development.

7 REFERENCES

[1] Goldberg, J. and I.. Kalman, ‘The First BUG Report’,
Proceedings of COLING-92, Nantes (1992).

i2] Kis, B. ‘Parsing Based on Morphology’, Unpublished
Master's Thesis, Budapest Technical University, 19935.

|13] Kornai, A. ‘Natural I.anguages and the Chomsky Hier-
archy’, Proceedings of the 2nd Conf. of the FACL, Ge-
neva, 1-7. (1985).

|4] Proszéky, G. ‘Industrial Applications of Unification
Morphology’, of ANLP-94, Stuttgart
(1994).

[5] Proszéky, G., M. Pal and 1.. Tihanyi, ‘Humor-bascd Ap-
plications’, Proceedings of COLING-94, Kyoto (1994).

Proceedings

[12]

A Duna utan a Tisza a legnagyobb folydnk.

[1/1]

0:00:02.91

HumorESK 2.0 REVIFW

SS -> [DP Cas DP DP End]
DP -> [Det NJ

Det -> al[Articlel=A
N -> Duna{ProperNoun]

Cas —-> utan[PostPosition]

DP -> [Det N]
Det -> al[Article]
N -> Tisza[Noun]
DP -> [Det Adj\ Adj \Adj N PSrx])

Det -> a[Article]

Adj\ —> leg[Superlative]
Adj -> +nagy([Adjective]
\Ad7 -> +obb[Comparative]

N -> folyé([Noun])

PSfx -> +nk[PersSuffPlurFirst]

rnd ->
First [~ HOME] Last ["END] [Glo to Syntax exceptions[Alt+S]
[Plarse again Accept ["ENTER] {R]leject Word exceptions [ALt+W]

Exit [ESC}

Internal parsing table[F10]

Figure 1. HumorESK-analysis of the sentence
“A Duna utdn a Tisza a legnagyobb folyonk.”
(After the Danube, our biggest river is Tisza.)

1126



