A Self-Learning Universal Concept Spotter

Tomek Strzalkowski and Jin Wang
GE Corporate Rescarch and Development

P.O. Box 8
Schenectady, NY 12301
USA

{strzalkowski,wangj}@crd.ge.com

Abstract

We describe the Universal Spotter, a
gystem for identifying in-text references
to entitics of an arbitrary, user-specified

type, such as people, organizations,
cquipment, products, materials, etc.

Starting with some initial seed examples,
and a training text corpus, the system
generates rules that will find further con-
cepts of the same type. The initial seed
information is provided by the user in
the form of a typical lexical context in
which the entities to be spotted occur,
¢.g., “the name ends with Co.”, or “to
the right of produced or made”, and so
forth, or by simply supplying examples
of the concept itself, c.g., Ford Taurus,
gas turbine, Big Mac. In addition, nega-
tive examples can be supplied, if known.
Given a sufficiently large training corpus,
an unsupervised learniug process is ini-
tiated in which the system will: (1) find
ingtances of the sought-after concept us-
ing the seed-context information while
maximizing recall and precision; (2) find
additional contexts in which these en-
tities occur; and (3) expand the initial
seed-context with selected new contexts
to find even more entities. Preliminary
results of creating spotters for organiza-
tions and products arce discussed.

1 Introduction

Identifying concepts in natural language text is
an important information extraction task. De-
pending upon the current information needs one
may be interested in finding all references to peo-
ple, locations, dates, organizations, companies,
products, equipment, and so on. These concepts,
along with their classification, can be used to in-
dex any given text for search or categorization
purposes, to generate summarics, or to popu-
late database records. However, automating the
process of concept identification in unformatted
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text has not been an casy task. Various single-
purpose spotters have been developed for specific
types of concepts, including people names, com-
pany names, location names, dates, cte. but those
were usually either hand crafted for particular
applications or domains, or were heavily relying
on apriori lexical clues, such as keywords (e.g.,
‘Co."), case (e.g., ‘Johu K. Big’), predicatable for-
mat (c.g., 123 Maple Street), or a combination
of thercof. This makes creation and extension
of such spotters an arduous manual job. Other,
less salient entities, such as products, cquipment,
foodstuff, or generic references of any kind (e.g.,
‘a Japancse automaker’) could only be identi-
fied if a sufficiently detailed domain model was
available. Domain-model driven extraction was
used in ARPA-sponsored Message Understanding
Conferences (MUC); a detailed overview of cur-
rent research can be found in the proceedings of
MUC-5 (much, 1993) and the recently concluded
MUGC-6, as well as Tipster Project meetings, or
ARPA’s Human Language Technology workshops
(tipsterl, 1993), (hltw, 1994).

We take a somewhat different approach to iden-
tify various types of text entitics, both generic and
specific, without a detailed understanding of the
text domain, and relying instead on a combination
of shallow linguistic processing (to identify candi-
date lexical entitics), statistical knowledge acqui-
sition, unsupervised learning techniques, and pos-
sibly broad (universal but often shallow) knowl-
edge sources, such as on-line dictionaries (e.g.,
WordNet, Comlex, OALD, etc.). Our method
moves beyond the traditional name spotters and
towards a universal spotter wherce the require-
ments on what to spot can be specified as in-
put parameters, and a specific-purpose spotter
could be generated automatically. In this pa-
per, we describe a method of creating spotters for
entities of a specified category given only initial
seed examples, and using an unsupervised learn-
ing process to discover rules for finding more in-
stances of the concept. At this time we place
no limit on what kind of things onc may want
to build a spotter for, although our experiments
thus far concentrated on entities customarily re-



ferred to with noun phrases, e.g., equipment (e.g.,
“oas turbine assembly”), tools (c.g., “adjustable
wrench”), products {e.g., “canned soup”, “Arm
& Hammer baking soda”), organizations (e.g.,
American Medical Association), locations (c.g.,
Albany County Airport), people (e.g., Bill Clin-
ton), and so on. We view the semantic cate-
gorization problem as a case of disambiguation,
where for each lexical entity considered (words,
phrases, N-grams), a binary decision has to be
made whether or not it is an instance of the se-
mantic type we are interested in. The problem of
semantic tagging is thus reduced to the problem of
partitioning the space of lexical entities into those
that are used in the desired scnse, and those that
are not. We should note here that it is acceptable
for homonym entities to have different classifica-
tion depending upon the context in which they are
used. Just as the word “bank” can be assigned dif-
ferent senses in different contexts, so can “Boeing
777 jet” be once a product, and another time an
equipment and not a product, depending upon the
context. Other entities may be less context depen-
dent (e.g., company names) if their definitions are
based on internal context (c.g., “ends with Co.”)
as opposed to external context (e.g., “followed by
manufactures”), or if they lack negative contexts.

The user provides the initial information (seed)
about what kind of things he wishes to identify
in text. This information should be in a form of
a typical lexical context in which the entities to
be spotted occur, c.g., “the name ends with Co.”,
or “to the right of produced or made”, or “to the
right of maker of’, and so forth, or simply by list-
ing or highlighting a number of examples in text.
In addition, ncgative examples can be given, if
known, to eliminate certain ‘obvious’ exceptions,
c.g., “not to the right of made for”, “not tooth-
brushes”. Given a sufficiently large training cor-
pus, an unsupervised learning process is initiated
in which the system will: (1) generate initial con-
text rules from the seed examples; (2) find further
instances of the sought-after concept using the ini-
tial context while maximizing recall and precision;
(3) find additional contexts in which these entities
occur; and (4) expand the current context rules
based on sclected new contexts to find even more
entitics.

In the rest of the paper we discuss the specifics
of our system. We present and evaluate prelimi-
nary results of creating spotters for organizations
and products.

2 What do you want to find: seed
selection

If we want to identify some things in a stream
of text, we first need to learn how to distinguish
them from other items. For example, company
names are usually capitalized and often end with
‘Co.’, ‘Corp.’, ‘Inc.” and so forth. Place names,
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such as cities, are normally capitalized, sometimes
are followed by a state abbreviation (as in Albany,
NY), and may be preceded by locative preposi-
tions (e.g., mn, at, from, to). Products may have
no distinctive lexical appearance, but they tend to
be associated with verbs such as ‘produce’; ‘man-
ufacture’, ‘make’, ‘sell’, etc., which in turn may
involve a company name. Other concepts, such as
equipment or materials; have few if any obvious
associations with the surrounding text, and onc
may prefer just to point them out directly to the
learning programn. There are texts, e.g., techni-
cal manuals, where such specialized entitics occur
more often than elsewhere, and it may be advan-
tagous to use these texts to derive spotters.

The sced can be obtained cither by hand tag-
ging some text or using a naive spotter that has
high precision but presumably low recall. A naive
spotter may contain simple contextual rules such
as those mentioned above, e.g., for organizations:
a noun phrases ending with “Co.” or “Inc.”; for
products: a noun phrase following “manufacturer
of”, “producer of”, or “rctailer of”. When such
naive spotter is difficult to come by, one may re-
sort to hand tagging.

3 From seeds to spotters

The sced should identify the sought-after enti-
ties with a high precision (though not necessarily
100%), however its recall is assumed to be low, or
else we would already have a good spotter. Our
task is now to increase the recall while maintain-
ing (or even increase if possible) the precision.

We proceed by examining the lexical context in
which the seed entitics occur. In the simplest in-
stance of this process we consider a context to con-
sist of N words to the left of the sced and N words
to the right of the sced, as well as the words in the
seed itself. Each piece of significant contextual ev-
idence is then weighted against its distribution in
the balance of the training corpus. This in turn
leads to selection of some contexts to scrve as in-
dicators of relevant entities, in other words, they
become the initial rules of the emerging spotter.

As an example, let’s consider building a spotter
for company names, starting with seeds as illus-
trated in the following fragments (with seed con-
texts highlighted):

... HENRY KAUFMAN is president
of Henry Kaufman & Co., a ... Gabelli,
chairman of Gabelli Funds Inc.; Claude
N. Rosenberg ... is named president of
Skandinaviska Enskilda Banken ... be-
come vice chairman of the statc-owned
electronics giant Thomson S.A. ... bank-
ing group, said the formal merger of
Skanska Banken into water maker
Source Perrier S.A., according to French
stock ...
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Having “Co.” “Inc.” to pick out “Henry Kauf-
man & Co.” and “Gabelli Funds Inc.” as seeds,
we proceed to find new evidence in the training
corpus, using an unsupervised learning process,
and discover that “chairman of” and “president
of” are very likely to precede company names. We
expand our initial set of rules, which allows us to
spot more companies:

HENRY KAUFMAN is pres-
ident of Henry Koufmoen & Co., a
Gabelli, chairman of Gabelli Funds
Inc.; Claude N. Roscuberg ... is namexd
president of Skandinaviske Fnskiddo
Banken become vice chairman of
the state-owned clectronics giant Thom-
son S.A. ... banking group, said the for-
mal merger of Skanska Banken into
water maker Source Perrier S.A., accord-
ing to French stock ...

This cvidence discovery can be repeated in a
bootstrapping process by replacing the initial set
of seeds with the new set of entities obtained from
the last iteration. In the above example, we now
have “Skandinaviska Fnskilda Banken” and “the
state-owned electronics giant Thomson S.A.” in
addition to the initial two names. A further iter-
ation may add “S.A.” and “Banken” to the set of
contextual rules, and so forth. In general, entitics
can be both added aud deleted from the evolving
set, of examples, depending on how exactly the ev-
idence is weighted and combined. The details are
explained in the following sections.

4 Text preparation

In most cases the text needs to be preprocessed Lo
isolate basic lexical tokens (words, abbreviations,
symbols, annotations, ct¢), and structural units
(sections, paragraphs, sentences) whenever appli-
cable. In addition, part-of-specch tagging is usu-
ally desirable, in which case the tagger may need
to be re-trained on a text sample to optimize its
performance (Brill, 1993), (Meteer, Schwartz &
Weischedel, 1991). Finally, a limited amount of
lexical normalization, or stemming, may be per-
formed.

The entitics we arc looking for may he expressed
by certain types of phrases. For example, peo-
ple names arc usually sequences of proper nouns,
while equipment names are contained within noun
phrases, e.g., forward looking infrared radar’. We
usc part of speech information to delineate thosc
sequences of lexical tokens that arce likely to con-
tain ‘our’ entitics. From then on we restrict, any
further processing on these sequences, and their
contexts.

"These preparatory steps are desirable since they
reduce the amount of noise through which the
learning process needs to plow, but they are not,
strictly speaking, nccessary. Further experiments
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are required to determine the level of preprocess-
ing required to optimize the performance of the
Universal Spotter.

5  Evidence items

The semantic categorization problem described
here displays some parallels to the word sense dis-
ambiguation problem where homonym words need
to be agsigned to one of geveral possible senscs,
(Yarowsky, 1995), (Gale, Chwreh & Yarowsky,
1992), (Brown, Pietra, Pictra & Mercer, 1991).
There are two important differences, however.
IFirst, in the semantic categorization problem,
there is ab least one open-ended category serving
as a grab hag for all things non-relevant. This cat-
cgory may be hard, if not impossible, to describe
by any finite set of rules. Second, unlike the word
scense disambiguation where the items to be classi-
fied arc known apriori, we attempt to accommplish
two things at the same time:

1. discover the items to be considered for cate-
gorization;

2. actually decide if an item belongs to a given
category, or falls outside of it.

The categorization of a lexical token as belong-
ing 1o a given scinantic class is based upon the
information provided by the words occurring in
the token itself, as well as the words that pre-
cede and follow it in text. In addition, positional
relationships among these words may be of im-
portance. To capture this information, we define
the notion of an evidence set for a lexical unit
W\ W,...W,, (a phrase, or an N-gram) as follows,
Let W W W W, W W W,,... be a
string of subsequent tokens (e.g., words) in text,
such that Wi W, Wy, is a unit of interest (e.g.,
a noun phrase) and n is the maximum size of the
context window on cither side of the unit. The ac-
tual window size may be limited by boundaries of
structural units such as sentences or paragraphs.
Tor cach unit Wi Wy..W,,,, a set of evidence items
is collected as a sct uniou of the following four
sets:

1. Pairs of (word, position), where position €
{p,s,f} indicates whether word is found in the
context preceding (p) the central unit, following;
(1) it, or whether it comes from the central unit

itself (s). By =

(W ., p) e (W.a,p) (Woi,p)
(Wi,s), (Wa,s) .. (W, s)
(I/V’H)f)v (WF'Z)f) """ (W1 7L>f)

2. Pairs of (bi-gram, position) to capture word
sequence information. By =

(W, W), P)
1, W2)7 B

(W1, W), £)

((_W'»—z,W».l),p)
((Wm.——l y Wnl), S)
((W+(1L—1)y W+n), f)



3. 3-tuples (word, position, distance), where
distance indicates how far word is located rela-
tive to W1 or W,,,. Eg =

(W—ﬂ)p’n) (W~17p,1)
(W17sam) (Wm,S,l)
(Wi, £,1) (Win, f,m)

4. 3-tuples (bi-gram, position, distance).E4 =

((W~n> W*(n~1))vp>n - 1)"-(W—2a W~1)7 P, 1)
((WI)WZ):Sy"n‘"l) """" ((Wm~1,Wﬂl)7syl)
((W+17 W+2)7f7 1)*“((W+(n~1)7 W+ﬂ)1 f; n-— 1)

For example, in the fragment below, the central
phrase the door has the context window of size 2:

... boys kicked the door with rage ...

The set of evidence items gencrated for this frag-
ment, i.e., £y UFE;UE3UE,, contains the following
elements:

( (boys, p), (kicked, p), (the, s), )
(door, s), (with, ), (rage,f),
((boys, kicked), p), ((the, door)), s),
(with, rage), D), (boys, p, 2,
(kicked, p, 1), (the, s, 2), (door, s, 1),
(with, £,1), (rage, £, 2),
((boys, kicked), p, 1), ((the,door)),s, 1),
\ ((with,rage),f, 1) )

Items in evidence sets are assigned significance
weights (SW) to indicate how strongly they point
towards or against the hyphothesis that the cen-
tral unit belongs to the semantic category of in-
terest to the spotter. The significance weights are
acquired through corpus-based training.

6 Training

Evidence items for all candidate phrases in the
training corpus, for those sclected by the initial
used-supplicd seed, as well as for those added by
a training iteration, are divided into two groups.
Group A items arc collected from the candidate
phrases that are accepted by the spotter; group
R items come from the candidate phrascs that are
rejected. Note that A and R may contain repeated
elements.

For cach evidence item t, its significance weight
is computed as:

1(t,A)—f(t,R)

F(t,A)+F(t,R) f, A+ ft,R) > s
0

otherwise
(1)

where f(t, X) is the frequency of t in group X,
and s is a constant used to filter the noisc of very
low frequency items.

As defined SW(t) takes values from -1 to 1
interval. SW(#) close to 1.0 means that ¢ ap-
pears nearly exclusively with the candidates that
have been accepted by the spotter, and thus pro-
vides the strongest positive evidence. Conversely,

SW(t) = {
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}

SW(t) close to -1.0 means that t is a strong neg-
ative indicator since it occurs nearly always with
the rejected candidates. SW(t) close to 0 indi-
cates neutral evidence, which is of little or no
consequence to the spotter. In general, we take
SW(t) > ¢ > 0 as a picce of positive evidence,
and SW{t) < —¢ as a piece of negative evidence,
as provided by item t. Weights of evidence items
within an evidence set are then combined to arrive
at the compound context weight which is used to
accept or reject candidate phrase.

At this time, we make no claim as to whether
(1) is an optimal formula for calculating cvidence
weights.  An alternative method we considered
was to estimate certain conditional probabilitics,
simnilarly to the formula used in (Yarowsky, 1995):

Plpe Aty
PlpeR/t)

op 1A
16 B F(10)

Here f(A) is (an estimate of) the probability
that any given candidate phrase will be accepted
by the spotter, and f(R) is the probability that
this phrase is rejected, ie., f(R) = 1— f(A4). Thus
far our experiments show that (1) produces better
results than (2). We continue investigating other
weighting schemes as well.

SW(t) = log (2)

7 Combining evidence weights to
classify phrases

In order to classify a candidate phrase, all ev-
idence items need to be collected from its con-
text and their SW weights are combined. When
the combined weight exceeds a threshold value,
the candidate is accepted and the phrase becomes
available for tagging by the spotter. Otherwise,
the candidate is rcjected, although it may be
reevaluated in a future iteration.

There are many ways to combine evidence
weights. In our experiments we tried the following
two options:

z+y—xzy ifz>0andy >0
z@y=9 zH+yt+ey fa<Oandy <0 (3)
x4y otherwise
and

(4)

_ |z if abs(z) > abs(y)
xby= { y otherwise

In (3), x (b y is greater than either x or y when
both x and y are positive, and it is less than both
x and y for negative x and y. In all cases, z ¢y
remains within [—1, +1] interval.

In (4) only the dominating evidence is consid-
ered. This formula is more noise resistant than
(3), but produces generally less recall.



8 Bootstrapping

The evidence training and candidate selection cy-
cle forms a bootstrapping process, as follows:
Procedure Bootstrapping
Collect seeds
loop
Training phase
Tagging phasc
until Satisfied.

The bootstrapping process allows for collect-
ing morc and new contextual evidence and in-
creasc recall of the spotter. This is possible thanks
to overall redundancy and repetitivencss of infor-
mation, particularly local context information, in
large bodies of text. For example, in our three-
sectional contexi representation (preceding, self,
following), if one section contains strong evidence
that the candidate phrase is sclectable, evidence
found in other scctions will be considered in the
next training cycle, in order to sclect additional
randidates.

An important consideration here is to main-
tain an overall precision level throughout the en-
tire process. Although, it may be possible to
recover from some misclassification crrors (c.g.,
(Yarowsky, 1995)), care should be taken when ad-
justing the process parameters so that precision
does not deteriorate too rapidly. For instance, ac-
ceptance thresholds of evidence weights, initially
set high, can be gradually decreased to allow more
recall while keeping precision at a reasonable level.

In addition, (Yarowsky, 1995), (Gale, Church &
Yarowsky, 1992) point out that there is a strong
tendency for words to occur in one sense within
any given discourse (“one sense per discourse” ).
The same scems to apply to concept sclection,
thal, is, multiple occurrences of a candidate phrasc
within a discourse should all be either aceepted or
rejected by the spotter. This in turn allows for
bootstrapping process to gather more contextual
evidence more quickly, and thus to converge faster
producing. better results.

9 Experiments and Results

We used the Universal Spotter to find organiza-
tions and products in a 7 MBytes corpus consist-
ing of articles from the Wall Street Journal. First,
we pre-processed the text with a part-of-specch
tagger and identified all simple noun groups to
be used as candidate phrases. 10 articles were
set aside and hand tagged as key for evaluation.
Subsequently, seeds were constructed manually
in form of coutextual rules. For organizations,
these initial rules had a 98% precision and 49%
recall; for products, the corresponding numbers
were 97% and 42%. (4) is used to combine cvi-
dences. No lexicon verification (sce later) has been
used in order to show more clearly the behavior
the learning method itself ( the performance can
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Figure 1: Organization spotter results.

be enhanced by lexicon verification).  Also note
that the quality of the seeds affects the perfor-
mance of the final spotter since they define what
type of concept the system is supposed to look
for. The sceds that we used in our experiments
are quite simple, perhaps too simple. Better seeds
may be needed (possibly developed through an in-
teraction with the nser) to obtain strong results
for some categories of concepts.

For organization tagging, the recall and preci-
sion results obtained after the first and the fourth
bootstrapping cycle are given in Figure 1.

The point with the maximum precision*recall
in the fourth run is 95% precision and 90% re-
call.  Examples of extracted organizations in-
clude:  “the Stale Slatistical Instilutc Istal”,
“Wertheim Schroder € Co”, “Skandinaviska En-
skilda Banken”, “Statistics Canada”.

The results for products tagging are given in
TYigure 2 on the next page.  Examples of ex-
tracted products include:  “the Mercury Grand
Marquis and Ford Crown Victoria cars”, “Chevro-
let Prizm”, “Pump shoe”, “AS/100”.

The cffect of bootstrapping is clearly visible in
both charts: it improves the recall while main-
talning or even improving the precision. We may
also notice that some misclassifications due to an
imperfect seed (e.g., sce the first dip in precision
on the products chart) can in fact be corrected in
further bootstrapping loops. The generally lower
performance levels for the product spotter is prob-
ably due to the fact that the concept of product
is harder to circumscribe.

10 Further options
10.1
The items identified in the second step can be fur-

ther validated for their broad semantic clagsifica-
tion using on-line lexical databases such as Com-

Lexicon verification
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Figure 2: Product spotter results.

lex or Longman Dictionary, or Princeton’s Word-
Net; (Miller, 1990) For example, "gas turbine” is
an acceptable equipment/machinery name since
‘turbine’ is listed as ”machine” or ”device” in
WordNet hierarchy. More complex validation may
involve other words in the phrase (e.g., ”circuit
breaker”) or words in the immediate context.

10.2 Conjunctions

The current program cannot deal with conjunc-
tion. The difficulty with conjunction is not with
classification of the conjoined noun phrases (it is
easier, as a matter of fact, because they carry more
evidences) but with identification of the phrase it-
self because of the structural ambiguities it typi-
cally involves that cannot be dealt with casily on
lexical or even syntactic level.

11 Conclusions

In this paper we presented the Universal Spotter,
a system that learns to spot in-text references to
instances of a given semantic class: people, organi-
zations, products, equipment, tools, to name just
a few. A specific class spotter is created through
an unsupervised learning process on a text corpus
given only an initial user-supplied seed: either a
number of examples of the concept, or a typical
context in which they can be found. The exper-
iment shows that this method indeed can pro-
duce useful spotters based on easy-to-construct
seeds. The results shown here are promising, can
be further improved by using lexicon verification.
Different methods of computing SWs, combining
SWs, and parameter adjustmenting for the boot-
strapping process need to be explored as we be-
lieve there is still room for improvement. The
method is being continuously rcfined as we gain
more feedback from empirical tests across several
different applications.
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We believe that the Universal Spotter can re-
place much of the need to create hand-crafted
concept spotters commonly used in text extrac-
tion operations. In can also be applied to build-
ing other than the most common spotters such
as those for people names, place names, or com-
pany names. In fact, is can be used to create
more-or-less on-demand spotters, depending upon
the applications and its subject domain. In par-
ticular, we believe such spotters will be required
to gain further advance in intelligent text index-
ing and retrieval applications, text summariza-
tion, and database applications, e.g., (Harman,
1995), (Strzalkowski, 1995).
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