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Abstract

We have proposed an incremental trans-
lation method in Transfer-Driven Ma-
chine Translation (TDMT). In this
method, constituent boundary patterns
are applied to an input in a bottom-up
fashion. Also, by dealing with best-only
substructures, the explosion of structural
ambiguity is constrained and an efficient
translation of a lengthy input can be
achieved. Through preliminary exper-
imentation our new TDMT has been
shown to be more efficient while main-
taining translation quality.

1 Introduction

A system dealing with spoken language requires a
quick response in order to provide smooth com-
munication between humans or between a hu-
man and a computer. Therefore, assuring effi-
ciency in spoken-language translation is one of
the most crucial tasks in devising such a system.
In spoken language, the translation of lengthy
utterances can yield a huge amount of struc-
tural ambiguity, which needs to be efficiently pro-
cessed by the system. As a solution for achiev-
ing an eflicient spoken-language system, several
techniques, such as incremental generation (Fin-
kler, 1992; Kempen, 1987) and marker-passing
memory-based translation (Kitano, 1994), have
been proposed. Many of these techniques adopt
a left-to-right strategy to handle an input incre-
mentally and a best-first strategy to avoid the ex-
plosion of structural ambiguity. These strategies
can be achieved with botlom-up processing,.

We have already proposed Transfer-Driven Ma-
chine Translation (TDMT) for efficient and ro-
bust spoken-language translation (Furuse, 1994a;
Fruruse, 1994b). However, the top-down and
breadth-first translation strategy in the earlier
versions of TDMT, which yields a quick response
for inputs with restricted lengths, may show poor
efficiency when processing a very lengthy input or
inputs having many competing structures.

In a top-down and breadth-first application, all
the possible structures are retained until the whole
iput string is parsed. This requires many compu-
tations and results in inefficient translation. For
instance, the sentence below has many competing
structures, mainly because of possible combina-
tions within noun sequences. If this expression is
combined with another expression, the structural
ambiguity will be further compounded.

With bacon chicken eggs lettuce and tomato on it.

In contrast, if structural ambiguities of sub-
strings are always settled and are never inherited
to the upper structures, the explosion of struc-
tural ambiguity could be constrained. Thus, an
incremental strategy that fixes partial results is
necessary for efficient processing and is achieved
by bottom-up processing in left-to-right order.

This paper proposes TDMT using an incremen-
tal strategy for achieving efficient translation of a
lengthy input or one having a lot of structural
ambiguity. In this method, several constituent
boundary patterns are applied to an input string
in a bottom-up fashion. This bottom-up applica-
tion, based on the concept of chart parsing, can
constrain the explosion of structural ambiguity by
dealing with best-only substructures using seman-
tic distance calculations.

In this paper, we will first outline our new trans-
lation strategy. We will then explain how con-
stituent boundary patterns can be used to de-
scribe the structure of an input string in TDMT.
Then we will describe the bottom-up pattern ap-
plication, based on chart parsing. Next, we will
show how the explosion of structural ambiguity
is constrained by dealing with the best-only sub-
structures, based on semantic distance calcula-
tions. By comparing the preliminary experimen-
tal results from the former top-down method and
those from our new method, we will demonstrate
the usefulness of our new method. A summary of
our approach will conclude the paper.

2 Translation strategy

In TDMT, translation i1s performed by applying
stored empirical transfer knowledge, which de-
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scribes the correspondence between source lan-
guage expressions and target language expressions
al various linguistic levels. The source and target
expressions of the transfer knowledge in TDMT
are expressed by constituent boundary patterns,
which represent meaningful units for linguistic
structure and transfer. An eflicient application of
transfer knowledge source parts to an input string
plays a key role in achieving quick translation,

The procedure for applying constituent, bound-
ary patterns is perfomed after the assignment of
morphological information to each word of an in-
put string, and is as follows:

(a) Inscrtion of constituent boundary marker;
(b) Derivation of possible structures;

(¢) Structural disambiguation by semantic dis-
tance calculation.

In the top-down and breadth-first pattern ap-
plication, the above procedurc is exccuted in the
described order. Because the selection of the best
structure might have to be postponed until all pos-
sible structurcs arc derived, the costs of transla-
tion could be high.

In contrast, the incremental method determines
the best structure locally and can constrain the
number of competing structures for the whole in-
put by performing (b) in parallel with (c); conse-
quently, translation costs are reduced.

The structure sclected in (¢) contains its trans-
ferred result and head word information, which is
used for semantic distance calculation when com-
bining with other structures. The output sentence
is gencrated as a translation result from the struc-
ture for the whole input, which is composed of
best-first substructures.

In the three subsequent sections, we will explain
(a), (b), and (¢), focusing on the bottorm-up and
best-first translation strategy.

3 Constituent boundary pattern

In this scction we will briclly explain how cou-
stituent boundary patterns are used to describe
the structure of an input string in TDMT and
what procedures are applied before constituent
boundary pattern applications (Furuse, 1994h).

We will show bottom-up pattern application by
translating the following sample English sentence
into Japancse:

The bus goes to Chinatown at ten a.m.

First, all the words in this sequence are assigned

the following parts-of-specch.
article, noun, verb, preposition, proper-noun,

yreposition, nameral, postnominal
bl )

A constituent boundary pattern is defined as
a sequence that consists of variables and sym-
bols representing constituent boundaries. A vari-
able corresponds to some linguistic constituent

and is expressed as a capital letter (e.g. X).
A constituent boundary is expressed by cither
a functional word or a part-of-speech bigram
marker (c.g. noun-verb). Variables in the source
language expression must be separated by con-
stituent boundaries.

For instance, the cxpression “goes to China-
town” is divided into two constituents, 1.e. “goes”
and “Chinatown”. The preposition “t0” can be
identified as a constituent boundary. Therefore,
in parsing “goes to Chinatown”, we use the pat-
tern “X fo Y7, which has two variables X and Y
and a constituent boundary “to”.

"The expression “the bus goes” can be divided
into two constituents “the bus” and “goes”. How-
ever, there is no functional surface word that di-
vides the expression Into two constituents. In
such cases, we cmploy part-of-speech bigrams as
boundary wnarkers. “bus” and “goes” are a noun
and a verb, respectively. Thus the marker noun-
verh can be inserted as a boundary marker into the
input “the bus goes”, giving “The bus noun-verb
goes”. 'his sequence will now match the general
transfer knowledge pattern “X noun-verb Y.

Of the possible bigrams in the above part-of-
speech sequence, only “noun-verd” is an cligi-
ble constituent boundary marker (Furuse, 1994b).
‘I'his marker s mnserted into the above sentence:

The bus noun-verb gocs to Chinatown at ten a.m.

Indices to possible patterns are obtained from
scveral words and bigrams in the above marker-
inserted string (‘l'able 1).

Table 1: Retrieved patterns

word retrieved pattern (linguistic level)
the the X (compound nounj
noun-verb | X noun-verb Y (simple sentence)
to X to Y (verb phrase, noun phrase)
at X at Y (verb phrasc, noun phrase)
a.1m. X a.m. (compound noun)

"T'he procedure explained so far is the part that
the top-down and bottom-up pattern application
methods have in common.

4 Incremental pattern application

In this section, we will show the application of con-
stituent boundary patterns based on the concept
of bottom-up chart parsing.

4.1 Linguistic level

In order to limit the combinations of patterns
during pattern application, we distinguish pattern
levels and for cach linguistic level, we specify the
linguistic sublevels which are permitted to be used
in the assigned variables.

Table 2 shows examples of the relationships be-
tween linguistic levels. A variable on a given level
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is instantiated by a string on the lingustic levels
in the second column of Table 2. For instance, in
the noun phrase “X of Y, the variables X and Y
cannot be instantiated by a simple sentence, but
can be instatiated by a noun phrase, a compound
noun, and so on.

Table 2: Possible linguistic sublevels in variables

linguistic level sublevels of variables
simple sentence VP, NP, ...

verb phrase (VP) VP, NP, verb, ...

noun phrase (NP) NP, CN, proper-noun, ...
compound noun (CN) | CN, noun, ...

According to the regulation of the linguistic lev-
els’ relations shown in Table 2, a marker-inserted
string is parsed using the constituent boundary
patterns.

4.2 Active and passive arcs

A chart parsing method (Kay, 1980) can avoid re-
peatedly recomputing partial results and achieve
incremental processing by using a bottom-up and
left-to-right strategy. In chart parsing, an input
string is parsed by combining active and passive
arcs. These can be assigned to a substring of an
input string when a pattern is applied to it. If all
the variables of the applied pattern are instanti-
ated or a substring can be matched to a pattern
whose variables are all instantiated, a passive arc
is created for the substring. When a substring can
be matched to the left part of a pattern and the
right variables of the pattern are not instatiated,
an active arc is created for the substring.

In conventional chart parsing, many arcs can
be created because every word can create ac-
tive and passive arcs based on its part-of-speech.
Also, many arcs can be chained via non-terminal
symbols such as a part-of-speech and NP (noun
phrase). Tor instance, the pronoun, “I” can create
many active arcs relevant to the rules “Pronoun
— I’, “NP — Pronoun” and “S — NP VP”, which
can be chained. Therefore, a lot of computation
is required in conventional chart parsing.

In contrast, chart parsing with constituent
boundary patterns can constrain the number of
arc creations because only an constituent bound-
ary creates active arcs while a variable (e.g. X)
never creates an arc. We obtain indices to pat-
terns from each word of the sentence. With these
indices, patterns are retrieved and checked to de-
termine whether each of them can create an arc.

4.3 Pattern application algorithm

Our algorithm for bottom-up application of pat-
terns is as follows. If the whole input string can
be covered with a passive arc, the parsing will suc-
ceed and the derivation of the passive arc will be
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the parsed result.

1. If the processed string is a content word (e.g.
noun, verb) create a passive arc.

2. If the processed string is a constituent bound-
ary “o”, create each kind of arc as follows,
according to the pattern! retrieved from the

constituent boundary.

2a. If the retrieved pattern is of the type “Xa Y”
and a left-neighboring passive arc can satisfy
the condition for X’s instantiation, create an
active arc for “X « Y”, in which Y has not
yet been instantiated.

2b. If the retrieved pattern is of the type “X o”
and a left-neighboring passive arc can satisfy
the condition for X’s instantiation, create a
passive arc for “X o”.

2¢. If the retrieved pattern is of the type “a X7,
create an active arc for “a X”.

3. If the created passive arc satisfies the leftmost
part of an uninstantiated variable in the pat-
tern of neighboring active arcs, the variable is
instantiated with the passive arc, and a new
passive or active arc is created. If a passive
arc is generated in this operation, repeat the
procedure until a new arc can no longer be
created.

Figure 1 shows how an input string is parsed
using our bottom-up chart method. A solid line
denotes a passive arc that covers a substring of
the input below, while a dotted line denotes an
active arc.

The content words “bus”, “goes”, “Chinatown”
and “ten” create passive arcs. 'The functional
word “the”, which is relevant to the pattern “a
X”, creates an active arc. The assignment of the
functional word “a.m.” to the pattern “X «” cre-
ates a passive arc by combining another passive
arc. The boundary markers “noun-verd”, “to” and
“qt”, which are relevant to the pattern “X a ¥”,
create active arcs by combining left-neighboring
passive arcs.

First “the” creates the active arc (1) relevant to
the pattern “the X”. “bus” creates the passive arc
(2). The passive arc (3) is created by combining
(1) and (2). “noun-verd” creates the active arc
(4), whereby the variable X of “X noun-verb Y”
is matched against (3). “bus” creates the passive
arc (5), and the passive arc (6) is created by com-
bining (4) and (5). “to” creates the active arc (7),
whereby the variable X of “X {0 Y” at verb phrase
is matched against (5).

!There, are other types of patterns, such as “X o

Y B 7, where o and 8 are constituent boundaries.
They can be easily processed by slightly extending the
algorithm.
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the  bus  noun-verb  goes to Chinatown at ten a.m.

Figure 1: Chart diagram

We  continue the procedure incrementally.
When the rightmost word has been processed, the
derivation of the passive arc of the whole input
gives the parsed result, in our example the de-
rived process of the passive arc (20), which is the
combination of (4) and (19).

5 Preference of substructure

The passive arc (19), which is relevant to “goes
to Chinatown al ten a.m.” | has two competing re-
sults. Onc is the combination of (7) and (18),
where “X at Y’ is a noun phrase. The other is
the combination of (12) and (17), where “X at
Y” is a verb phrase. Thus, (19) has two possible
structures by the application of “X at Y’. “X to
Y” at the verb phrase level and “X a.m.” at the
compound noun level are also applied.

The technique for obtaining substructure pref-
erence is the determination of the best substruc-
ture when a relative passive arc is created. Qunly
the best substructure can be retained and com-
bined with other arcs.

5.1 Semantic distance

The most appropriate structure is selected by
computing the total sum of all possible combi-
nations of partial semantic distance values. 'The
structure with the least total distance is judged
most consistent with empirical knowledge and is
chosen as the most plausible structure.

The semantic distance between words is calcu-
lated according to the relationship of the positions
of words’ semantic attributes in the thesaurus.
The distance between expressions is the sum of
the distance between the words comprising the
expressions, multiplied by some weights (Sumita,
1992).

5.2 Head word mformation

'The head words within variable bindings serve as
input for distance calculations. An input for dis-
tance calculation consists of head words in vari-
able parts. The head part is designated in each
pattern. Table 3 shows the head parts of the pos-
sible substructures for “goes to Chinatown at ten
a.m.”, which corresponds to the passive arc (19).

Table 3: Head words for (19)’s substructures

passive | matched designated head
arc pattern head word

(9),(19) | Xto Y X goes
(17) X a.m. a.m. a.m.
(18) XatyY X Chinatown
(19) XatyY X goes

In “X at Y” for the substring “goes to China-
town at ten a.m” combined with (12) and (17),
the variables X and Y are substituted for the com-
pound expressions “goes to Chinatown” and “len
a.m.”, respectively. Thus, in “X at Y” for the
structure in (19), the input for distance calcula-
tion is “goes” for “X” and “a.m.” for “Y”. Since
the head of “X at Y” is designated as “X”, “goes”
becomes the head word for (19). This informa-
tion is used when (19) is combined with another
substring,.

5.3 Structure selection

The difference in total distance value between the
two possible structures is due only to the distance
value of “X at Y”. Table 4 shows the results of the
distance calculation in “X at Y” for the combina-
tion of (7) and (18), and for that of (12) and (17).
(goes, a.m.) expresses the bindings for variables X
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and Y, where X =“goes”, and Y =“a.m.”. “X"”
is the target expression corresponding to “X”.

Table 4: Distance calculation in “X atf Y’

QR (T27I7)
level noun phrase verb phrase
input ( Chinatown, a.m.) (goes, a.m.)
closcst example (morning, a.m.) (depart, a.m.)
target Y no X' Y ni X'
distance 0.50 0.21

According to the distance calculation in the
combination of (7) and (18), “Y" no X’ with the
distance value 0.50, is selected as a target expres-
sion. In the combination of (12) and (17), “Y’ ni
X" with the distance value 0.21 is selected as a
target expression. Thus, the combination of (12)
and (17) is selected as the structure of the passive
arc (19). Based on the results of distance cal-
culations, other partial source patterns for (19),
“X 1o Y and “X a.m”, are transferred to “Y ni
X7 with the distance value 0.12, and “gozen X'
g with the distance value 0.00. Thus, the pas-
sive arc (19) has its source and target structure
through the combination of (12) and (17), the to-
tal distance value 0.33, and the head word “goes”.

Then, the structure of the whole input string,
which corresponds to (20), is constructed by com-
bining (19) with (4). In this combination, “X
noun-verb Y” matches the input string and is
transferred to “X’ wa Y"” based on the result of
distance calulation. From the combined structure
for (20), the sentence below is generated after ad-
Justment necessary for Japanese grammar. The
words “bus”, “goes”, and “Chinalown” are trans-
ferred to “basu”, “iku”, and “Chainalaun’?, re-
spectively.

Basu wa gozen 10 ji ni Chainataun ni tki masu

“3k?” is the conjugated form of “iku” followed
by masu, a polite sentential-final form.

6 Preliminary Experiment

In this section, we perform kEnglish-to-Japanese
translation to compare the efficiency of the top-
down pattern application with that of our new
method, based on the bottom-up application and
substructure preference in the TDMT prototype
system.

6.1 TDMT prototype system

The TDMT prototype system, whose domain

is travel conversations, is designed to achieve

2The prototype system assigns a default target ex-
presston to a surface source expression. Another tar-
get expression is selected when a specific example in
the transfer knowledge is closest to the input.
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multi-lingual spoken-language translation (Fu-
ruse, 1995). While language-oriented modules,
such as morphological analysis and generation,
are provided to treat multi-lingual translation, the
transfer module, which is a central component, is
a common part of the translation system for ev-
ery language pair. The system is written in LISP
and runs on a UNIX machine. Presently, the pro-
totype system can translate bilingually between
Japanese and English and between Japanese and
Korean. In English-to-Japanese translation, the
present vocabulary size is about 3,000 words 3 and
the number of training sentences is about 2,000.

6.2 Experimental results

We have compared translation times in the TDMT
prototype system for two cases. One case utilizes
top-down application; the other case utilizes the
new application method presented in this paper,
which adopts bottom-up pattern application and
retains only one substructure using semantic dis-
tance calculation. The translation times are mea-
sured using a Sparcl0 workstation.

We have experimented with the translation
times of some linglish sentences into Japanese.
The following sentences cause only minor struc-
tural ambiguity. Note that a comma is not used
in the input sentence, because it is assumed to
be a spoken-language input such as the output of
speech recognition.

(1) 1 have a reservation for tomorrow.
(2) Will my laundry be ready by tomorrow?
(3) You can walk there in about three minules.

(4) Then may I have your credit card number please?

T'able 5 shows the translation time of the above
sentences. lor these translations, not much dif-
ference could be seen between the new bottom-up
method and the top-down method. For such in-
puts TDMT can quickly produce the same trans-
lation results with either method.

‘Table 5: Translation time for short sentences

input # of translation time (sec)
sentence | structures | top-down new method
6] 2 0.18 0.17
(2) 4 0.17 0.20
(3) 4 0.38 0.35
(4) 11 0.85 0.70

The following sentences cause much structural
ambiguity because of PP-attachment, relative
clauses, conjunctions, etc.

%In the Japancse-to-English translation system,

the present vocabulary size is about 5,000 words.



(5) This sales clerk docsn’t understand anything | say
and 'm wondering if you would help me caplain
what [ want.

(6) Could I please have your nume the date of arrival
and the number of persons in your party?

(1) Tell someone at the front desk what game you
want to sce and what type of seal you want and
theyll get the tickets for you.

(8) I left some laundry lo be cleaned but I can’t re-

member where the cleancrs is and I was wonder-
ing if you could help me.

Table 6 shows the translation time of the above
sentences.  In the above translations the same
translation results could again be obtained for
both methods. However the new method can
achicve a far more efficient translation than the
top-down method.

Table 6: 'Cranslation time for long sentences

mput | Fof translation fime (so(ﬁg_«]
scutence | structares | top-down  new niethod
(5) 312 6.12 122
(6) 442 4.03 0.92
(7) 544 13.22 2.37
(8) 696 12.10 2.17

Average translation times in the top-down
method were 1.15 seconds for a 10-word mmput and
10.87 seconds for a 20-word input. Average trans-
lation times in the bottorm-up method were 0.55
seconds for a 10-word input and 2.04 seconds for
a 20-word inpub. The translation time in the top-
down method is considered to be closely related
to the number of possible structures, while the
translation time in our new method is not dircctly
reflected by this number. The increase in the nam-
ber of substructures retained with the new method
is much smaller than that of the number of possi-
ble structures in the top-down method. Therefore,
our new method can efficiently translate a longer
input string having many competing structures.

Also, we have performed a small translation-
quality experiment on the two pattern application
methods with the 95 unirained sentences within
the systemn’s vocabulary.  Both the top-down
method and the proposed bottom-up method gave
the correct translation for the same 60 sentences
with a success rate of 63.2%. For only two sen-
tences, different structures were produced by the
two methods; however, all of themn were incorrect
translations. This experimental result shows that
our new translation strategy maintains translation
quality.

Similar results, which show the uscfulness of
the new TDM'T' for spoken-language translation,
were obtained in other types of translation such
as Japanese-to-Fnglish (or, -Korcan) translation.
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7 Conclusion

We have proposced an incremental translation
method in Transfer-Driven Machine Translation
(TDMT). In this method, constituent boundary
patterns are applied to an input in a bottom-up
and left-to-right fashion. Additionally, by deal-
ing with best-only substructures, the explosion of
structural ambiguity is constrained and efficient
translation of a lengthy input can be achicved.
Through prehminary experimentation, our new
T'DM'T has been shown to be efficient and partic-
ularly promising for spoken-language translation.

One 1mmportant future research goal is the in-
corporation ol incremental morphological analy-
sis and generation into the proposed translation
strategy, which would provide a simultancous in-
terpretation mechanisin for application to a prac-
tical spoken-language {ranslation systemn. Also
unportant is the introduction of a repair mech-
anistn to correct the best-first results.
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