
A Simple Transformation for Oflqine-Parsable Grammars and its
Termination Properties

M a r c D y m e t m a n *

R a n k X e r o x R e s e a r c h C e n t r e

6, c h e m i n d e M a u p c r t u i s

M e y l a n , 38240 Fra ,nce

d y r a e t m a n O x e r o x , f r

A b s t r a c t We present, in easily reproducible terms,
a simple t ransformat ion for offline-parsable grammars
which results in a provably te rmina t ing parsing pro-
gram directly top-down interpretable in Prolog. The
t ransformat ion consists in two steps: (1) removal
of empty-product ions, followed by: (2) left-recursion
el imination. It is related bo th to left-corner parsing
(where the g rammar is compiled, ra ther than inter-
preted through a parsing program, and with the ad-
vantage of guaranteed te rmina t ion in the presence of
empty productions) and to the Generalized Greibach
Normal Form for I)CGs (with the advantage of imple-
menta t ion simplicity).

1 Motivat ion

Definite clause g rammars (DCGs) are one of the sim-
plest and most widely used unification g rammar for-
malisms. They represent a direct augmenta t ion of
context-free g rammars through the use of (term) uni-
fication (a fact tha t tends to be masked by their usual
presentat ion based on the programming language Pro-
log). It is obviously impor t an t to ask wether certain
usual methods and algori thms per ta ining to CFGs can
be adapted to DCGs, and this general question informs
much of the work concerning I)CGs, as well as more
complex unification g r am m ar formalisms (to cite only
a few areas: Earley parsing, LR parsing, left-corner
parsing, Greibach Norinal l,'orm).

One essential complicat ion when trying to generalize
CFG methods to the I)CG domain lies in the fact that ,
whereas the parsing problein for ClOGs is decidable,
the corresponding problem for DCGs is in general an-
decidable. This can be shown easily as a consequence
of the noteworthy fact tha t any definite clause pro-
gram can be viewed as a definite clause grammar "on
the empty str ing", tha t is, as a DCG where no termi-
nals other than [] are allowed on the r ight-hand sides
of rules. The ~Itlring-completeness of defn i te clanse
programs therefbre implies the undecidabil i ty of the
parsing problem for this snbclass of DCGs, and a for-
tiori for DCGs in general. 1 In order to guarantee good

*Thaalks to Pierre Isabelle and Frangols Perrault for their
comments, and to C,[TI (Montreal) for its support during the
preparation of this paper.

1 I)CGs on I, he empty string might be dismissed as extreme,

computat ionM properties for DCGs, it is then neces-
sary to impose certain restrictions on their form such
as o[fline-parsability (OP), a nomenclature introduced
by Pereira and Warren [11], who define an OP DCG
as a g rammar whose context-free skeleton CFG is not
infinitely ambiguous, and show tha t OP DCGs lead to
a decidable parsing problem. 2

Our aim in this paper is to propose a simple t rans-
format ion lbr an arbi t rary OP DCG put t ing it into
a form which leads to the completeness of the direct
top-down interpreta t ion by the s tandard Prolog inter-
preter: parsing is guaranteed to enumerate all solutions
to the parsing problem and terminate. The e.xistence
of such a t ransformat ion is kuown: in [1, 2], we have
recently introduced a "Generalized Greibach Normal
Form" (GGNF) for DCGs, which leads to te rminat ion
of top-down interpreta t ion in the OP case. lIowever,
the awdlable presentat ion of the GGNF transforma-
tion is ra ther complex (it involves an algebraic study
of the fixpoints of certain equational systems repre-
senting grammars .) . Our a im here is to present a re-
lated, but much simpler, t ransformat ion, which from a
theoretical viewpoint performs somewhat less than the
GGNF t ransformat ion (it; involves some encoding of
the initial DCG, which the (~GNF does not, and it only
handles oflline-parsable grammars , while the GGNF is
defined for arbi t rary DCGs), a but in practice is ex-
tremely easy to implement and displays a comparable
behavior when parsing with an OP grammar .

3'he t ransformat ion consists of two steps: (1) empty-
production el imination and (2) left-recursion elimina-
tion.

The empty-product ion el iminat ion Mgorithm is in-
spired by the nsnal procedure for context-free gram-
mars. But there are some notable differences, due
to the fact tha t removal of empty-product ions is in
general impossible for non-OP I)CGs. The empty-

but they are in fact at the core of the oflline-parsability concept.
See note 3.

2'lThe concept of ofllineA~arsability (under a different name)
goes back to [8], where it is shown to be linguistically relevant.

aThe GGNF factorizes an arbitrary DCG into two compo-
nents: a "unit sub-DCG on the empty string", and another paa't
consisting of rules whose right-hand side starts with a tm'mi-
nal. The decidability of the DCG depends exclusively on certain
simple textual properties of the unit sub-DCG. This sub-l)CG
can be eliminated fl'om the GGNF if and only if the DCG is
of Illne-parsable.

1226

p r o d u c t i o n e l i m i n a t i o n a (g o r i t h m is g u a r a n t e e d to ter-
m i n a t e on ly in the O P ease. 't It p roduces a I)C(]
dec la ra t ive ly equ iva len t to the. or ig inal g r a m m a r .

T h e lef t - recurs ion e l i m i n a t i o n ~dgorithnt is a d a p t e d
f rom a t r a n s R) r m a t i o n p roposed in [4] in the con tex t

of a cer ta in f o r m a l i s m (" l ,exical G r a m m a r s ") which
we p resen ted as a poss ib le basis for bui(ding reversible
g r a m m a r s , a T h e key obse rva t ion (in s l ight ly different

t e r m s) was t h a t , in a I)CG, i f a n o n t e r m i u a l g is defined
(i tcrMly by the two rules (the first of which is left-
reeursive):

:+\ ') --+ g(Y), a(v, x).
, (x) --, ~ (x) .

t h e n t he r e p l a c e m e n t of t hese two rules by the th ree
rules (where d_tc is a new n o n t e r m i n a l symbo l , which
represen ts a k ind of " t r ans i t i ve c(osure" of d):

g (X) - , t (Y) , d_tc(r, X) .

,/_re(X, x) -+ [].

d_tc(X, Z) - , d(X, V), d_tc(r, Z).

l)reserves the dec la ra t ive s e m a n t i c s o1' t im g r a m m a r , s
We r e m a r k e d in [4] t h a t th is t r a n s f o r m a t i o n :'is

closely re(ated to le('t<.orner pa.rsing", bu t did not give
detai ls . In a recent pape r [7], M ark J o h n s o n in t roduces
"a lef t -corner p r o g r a m t r a n s R) r m a t i o n for n a t u r a l (an-
guage pa r s i ng" , which ha s s o m e s imi l a r i ty to the abow~
t r a n s f o r m a t i o n , b u t whic.h is appl ied to definite c lause
p r o g r a m s , r a the r t h a n to ()CGs . l ie proves t ha t th is
t r a n s f o r m a t i o n respec ts dee la ra t ive equivalcnee, and
also shows, u s ing a mode(q ;heore t ic approach , the close
connec t ion of his t r a n s f o r m a t i o n wi th (eft-corner pars-
ing [12, 9, 1()]. r

(t 1TlUSt be no ted t h a t the lef t - reeurs ion e l im ina t i on
p rocedure can 1)e a*pplied to any])C(~, whe the r O P or
not . Even in the case where the g r a m m a r is OP, h o w
ever, it wil(not (ead to a t e r m i n a t i n g pa r s ing a l g o r i t h m
unless e m p t y l) roduc t ions have been prea(ably el imi-
n a t e d f rom the g r a m m a r , a l) roblem wlfirh is sha red
by the usua l lef t -corner pa r se r - in te rp re te r .

4'Fhe fact that the standard (','FG emptyq)roduction elinfio
nation transformation is always possible is relal.ed to the fact
that this transformation does not preserve degrees of ambiguity.
For instance the infinitely ambiguous grammar S ~ [b] A, A
A, A -+ [] is simplified into the grammar S -+ [b]. This type
of simplification is generally impossible in a I)UG. Consider for
insl tim "g,' "' s(X) -~ [....... be,'] a(X), a(... (X)) --+
a(x) , ~40) -+ [].

572he xnethod goes back to a transh)rmation used to compile
oat. certain local cases of left-reeursionli'om I)CGs in the context
of the Machine Translation prototyl)e CItlTTER [3].

6A proof of this fact, baaed on a comparison of prootktrees
for the original and the transformed grammar, is giwm in [2].

?His paper does not state termination conditions for the
transformed program. Such ternfination conditions w(mM prob-
ably involve some generalized notion of o[ttine-parsability [6, 5,
13]. By contrast, we prove termlnation only for I)CGs which arc
OP in the original sense of Pereira and Warren, but this ca.se
SeelllS t o llS tO r e p r e s e n t l l l t l ch of the c o r e issue, &lid Lo lead to
some direct exl.ensions.],'or instance, the I)CG transformation
proposed here can I)e directly applied to "guided" programs in
the sense of [4].

Dae to the space available, we do not give here c o l
rectncss proof~ Jbr the algori thms presented, but ez'peet
to publish them in a t id ier version of this paper. These
algori thms have actually been implemen ted in a slightly
extended version, where the*,/ are also used to decide
whe ther the g rammar proposed for" t rans format ion is
in fac t oJfline-parsable or not.

2 E m p t y - p r o d u c t i o n

e l i n l i n a t i o n

(t can be proven t ha t , if I) C G 0 is an O P ()CG, the
tb(lowing t r a n s f o r m a t i o n , which involves r epea t ed par-
t ial eva lua t i on of rules t h a t rewri te into the e m p t y

s t r ing , t e r m i n a t e s after a f ini te n u m b e r of s t eps and

p roduces a g r a m m m : I)CG w i t h o u t e m p t y - l) r o d u c t i o n s
which is equ iva len t to the ini t ia l g r a m m a r on non-
eml) ty s t r ings: s

i n i m t : an otllineq)ars~tble DC(-II.
o n t I m t : a DCG without empty rules equivalent to DC(I I
on non-empty strings.
alg, o r i t h m :

initialize I,IST1 to a l ist of the rules of D (X ; [, :;el I,IST2
to the empty fist.
w h i l e there exists ;m empty rule El/: / l (T | , . . . , T k) - , []
in LISTI do:

Inove F,R to I,IS'I'2.
ti)r each rule R: B(...) - + ~ in LIST1 such that (~
(:ontains an instance of A(...) (including
new such rules created inside this loop) d o :
t i lr each such instance A(SI , Sk) unifiable with
A(TI, ...,7'k) do:
~q)pend to 13S'l'l ;~ rule IU: ll(...) • ~ d obtained
from R by removing A(,ql, S'k)
lrom (~ (or by replacing it with [] if this was
the only nonterminal in or),
nnd by unifying the Ti ' s with the ,5'i's.

set I)C(I to LISTI.

For in s t ance the g r a m m a r cons i s t ing in the n ine rules
a p p e a r i n g above the s e p a r a t i o n in lig. 1 is t r a n s f o r m e d
in to the g r a m m a r (see figure):

~(,s(N P, v t,)) --÷ , ,v(NP) , vv(W') .

,,.p(',~v(~'~, c')) -+ ,,Up), c o , , p (c) .
, , (, , . (Vcovte)) - ~ [peovte].
vv(vv(~'(.~te~p), c)) ~ [,te~v], eo,~,v(c).
eo,,V(,'.(C, a)) • eo,,,~,(c), ad,~(A).
,dv(ad, , (l~e, 'e))- . [t ,e~4
a,tv(adv(todav)) - , [today],

~V('P04,~;o~O), C) - - co.,.V(C).
,~p(,~p(N, nil)) - ~ ,4N) .
e o , ~ v (c (, ' t , A)) -+ , , , t 4 A) .

vp(vp(v(* t~ ,~p) , ,,.it)) -~ N ~ V] .
.q.s("V('~V('4V"")), ,,.it), V t')) - . ~V(V V).

I~When DCG0 is not OP, the transl]~rlnatiott ~xlay produce
an infinite lllll[lh(!l" Of l'Lll(!8, b i l l a s i m p l e e x t e n s i o n o f t h e a id (>
rithm can detect this situation: the transformathm stops and
the dr;mimer is decl;~red not to be Ot).

1227

3 L e f t - r e c u r s i o n e l i m i n a t i o n

The t r a n s fo rma t ion can be logically divided into two
steps: (1) an encoding of DCG into a "generic" form
D C G ' , and (2) a s imple rep lacement of a certain group
of left-recursive rules in D C G ' by a cer tain equivalent
non left-recursive group of rules, yielding a top-down
in te rp re tab le D C G " . An example of the t r ans fo rma t ion
DCG ----+ D C G ' ----+ DCG" is given in fig. 2.

The encoding is pe r fo rmed by the following algo-
r i thm:

input: an oittine-parsable DCG without empty rules.
o u t p u t : an equivalent "encoding" DCG'.
a l g o r i t h m :

initialize LIST to a list of the rules of DCG.
initialize DCG' to the list of rules (literally):

g(X) --~ g(Y), d(Y, X).
g(x) - , t (x) .

w h i l e there exists a rule R of the form
A(T1 Tk) --, B(S1 Sl) a in LIST do:

remove R from LIST.
add to DCG' a rule R':
d(B(£'l Sl), A(T1 Tk)) --+ ~',
where c~ ~ is obtained by replacing any C(V1, ..., Vm)
in a by g(C(V1, ..., Vm)),
or is set to [] in the case where oe is empty.

w h i l e there exists a rule R of the form
A(TI Tk) -+ [terminal] ~ in LIST do:

remove R from LIST.
add to DCG' a rule R':
t(A(T1 TI~)) - . [terminal] # ,
where cJ is obtained by replacing any C(V1, ..., Vm)
in ~ by g(6'(V1 Vm)),
or is set to [] in the ease where c~ is empty.

~fhe procedure is very simple. I t involves the cre-
a t ion of a generic non te rmina l g(X), of ari ty one,
which pe r fo rms a task equivalent to the original nonter -
mina ls s (X 1 , . . . , X n) , v p (X 1 , . . . , X r a) , The goal
g (s (X 1 , . . . , X n)) , for ins tance, plays the same role for
pars ing a sentenee as did the goal s (X 1 , . . . , X n) in
the original g r a m m a r .

Two fu r the r generic non te rmina l s are in t roduced:
f iX) accounts for rules whose r igh t -hand side begins
wi th a t e rmina l , while d(Y, X) accounts for rules whose
r igh t -hand side begins wi th a non te rmina l . The ratio-
nale beh ind the encod ing is bes t unde r s tood fi 'mn the
following examples , where ~ represents rule rewrit-
ing:

vp(vp(v(sleep), C)) - , [sleep], comp(C)
g(vp(vp(v(sleep), C))) ~ [sleep], g(comp(C))
g(X) -~ [sleep],

({ x : ~p(~p(~(sleep), c))}, g(co.~p(c')) !.

s(s(NP, VP)) --+ np(NP) , vp (VP)
g(s(s(NP, VP))) ---* g(np(NP)) , g(vp(VP))
g(X) ~ g(y) ,

({X = s(s(NP, VP)) , Y = np(NP)} , g(vp(VP)) ;

The second example i l lus t ra tes the role played by
d(Y, X) in the encoding. This non te rmina l has the fol-
lowing in te rpre ta t ion : X is a n " i m m e d i a t e " ex tens ion
of Y using the given rule. In o ther words, Y corre-
sponds to an " immed ia t e lef t -corner" of X .

The lef t-recnrsion e l imina t ion is now pe r fo rmed by
the following "a lgor i thm" :9

i n t m t : a DCG' encoded as above.
o u t p u t : an equivalent non left-recursive DCG".
a l g o r i t h m :

initialize DCG" to DCG'.
in DCG", replace literally the rules:

g(X) -~ .q(g), d(Y, X).
g(X) -~ t(X).

by the rules:
g(X) ---+ t(Y), d_tc(Y; X).
d_tc(X, X) --~ [].
d_tc(X, Z) --+ d(X, Y), d_tc(Y, Z).

In this t r ans fo rmat ion , the new non te rmina l d_tc
plays the role of a k ind of t rans i t ive closure of d. It can
be seen tha t , relative to D C G " , for any s t r ing w and
for any ground t e rm z, the fact tha t .q(z) rewri tes
in to w - - o r , equivalently, t h a t there exists a g round
t e r m x such tha t t(x) d_tc(x,z) rewrites into w - -
is equivalent to the existence of a sequence of g round
t e rms x = x l , . . . , xa = z and a s e q u e n c e of s t r ings
wl , . . . , wk such tha t t (xl) rewri tes into wi, d(xl, x2)
rewri tes into w;, ..., d(xk-1, xk) rewrites into we, and
such tha t w is the s t r ing conca tena t ion w = wl " " w k .
From our previous r emark on the mean ing of d(Y, X) ,
this can be in te rpre ted as saying tha t "consi tuent x is
a lef t -corner of cons t i tuen t z" , relat ively to s t r ing w.

The g r a m m a r DCG" can now be compi led in the
s t a n d a r d way---via the ad june t ion of two "differential
list" a rguments - - - in to a Prolog p rog ram which can bc
executed directly. If we s ta r ted f rom an ofl l ine-parsable
g r a m m a r DCGO, this p rog ram will enumera te all so-
lu t ions to the pars ing p rob lem and t e rmina te af ter a
finite number of s teps. 1°

R e f e r e n c e s

[1] Marc D y m e t m a n . A General ized Greibach Nor-
mal Form for Definite Clause G r a m m a r s . In Pro-
ceedings of the 15th International Conference on

9In practice, this and the preceding algorithm, which are dis-
sociated here for exposition reasons, are lumped together.

1°There exist of course DCGs which do not contain empty
productions and which are not OP. :['hey are characterizedby the
existence of cycles of "chain-rules" of the form: al (...) -+ a2 (...).
. am-l(. . .) -+ am(...). , with am = al. But, if we start
with an OP DCG0, the empty-production elimination algorithm
cannot produce such a situation.

1228

I,ISTI delete LIST2

s(s(NP, V P)) --~ np(N P), vp(V P).
np(np(N, C)) -+ n(N), comp(C).

,,(,,.(wopl~)) - . [v~ovu,].
n(,~(,jo~)) -~ [].
~V(~V(,,(~t~.e~), c)) -+ [~v] , eo.~V(C').
comp(c(C, A)) -~ cornp(C), adv(A).

adv(adv(herc)) -+ [h,.re].
adv(adv(today)) --+ [today].

np(nV(,4you)), C) ~ corny(C).

rip(rip(N, nil)) -+ n(N).
comp(c(nil, a)) -+ adv(A).

'oV(,,p(~(~l~V), hi0) -~ [.~mV].
, ,p(,~(,(yo~)), ,~i~) --, [].

~(,(,~p(,w(,~(vo,O), ,~iO, v t,)) ~ v~,(w,),

n(,4,,o,,)) --+ [].

comv(niO -~ [].

,~v(,,p(,,(vo,*)), ~il) -. [].

Figure 1: Empty-production elimination.

Computational Linguistics, volume 1, pages 366
372, Nantes, l,'rance, .]uly 1992.

[21[Marc l)ymetman. Transformatkms de grammaires
logiques et rdversibilitd en Traduction Autom~,-
tique. Th#~se d'Etat , 1992. Universitd Joseph
Fourier (Grenoble 1), Grenoble, France.

[3] Marc Dymetman and Pien'e }sabelle. Reversible
logic grarnmars for machine translation. [n Pro-
ceedings of the ,5'econd International Uo'l@rence
on 7'heorelical and Methodological Issues in Ma-
chine Translation of Natural Languages, Pitts-
burgh, PA, June 1988. Carnegie Mellon Univer-
sity.

[4:] Marc l)ymetman, Pierre Isabelle, and Frangois
Perrault. A symmetrical approach to parsing and
generation. In Proceedings of the 13lh Interna-
tional Conference on Computational Liuguislics,
volume 3, pages 90-96, Itelsinki, August 1!)90.

[5] Andrew tlaas. A generalization of the o[}tine-
parsable grammars. In Proceedings of the 27lh
Annual Meeting of the Association for Computa-
tional Linguislics, pages 237 42, Vancouw~r, BC,
Canada, June 1989.

[6] Mark Johnson. Attribute-Value Logic and the
Theory of Grammar. CSL} lecture note No. 16.
Center for the. Study of I,anguagc and Informw
tion, Stanford, CA, 1(.)88.

[7] Mark Johnson. A left-corner program transforn,a-
tion for natural language parsing, (forthcoming).

[8] R. Kaplan and J. lh:esnan. Lexica] flmctional
grammar: a R)rmal system for grammatical rep-
resentation. In Bresnan, editor, The Men*al]{cp-
resenialion of Grammatical ltelations, pages 173 -
281. MIT Press, Cambridge, MA, 1982.

[9] Y. Matsumoto, II. Tanaka, lI.]firikawa,
H. Miyoshi, and I[. Yasukawa. BUP: a bottom-
up pm:ser embedded in Pro[og. New Generalion
Computing, 1(2):145-158, 1983,

[10] Fermmdo C. N. Pereira and Stuart M. Shieber.
Ibvlog and Natural Language Analysis. CSI,I lec-
tm:e note No. 10. Center for tim Study of Language
and Information, Stan}'ord, CA, 1987.

l i l t I:'ernando C. N. l 'ercira and])avid }}. 71). War-
ren. Parsing as deduction. In Proceedil~gs of the
211h Annual Meeling of the Association for Com-
pulalional Linguistics, pages 137-144, MIT, Cam-
bridge, MA, June 1983.

[12] D. ,I. l{osencrantz and P. M. Lewis. Deterministic
left-corner parsing. In Eleventh Annual Sym.po-
sium on Switching and Automata Theor?/, pages
139 }53. IEEE, 1970. F, xtended Abstract.

[13] Stuart M. Shieber. Constraint-Based Grammar
Formalisms. MI'I' Press, Cambridge, MA, 1992.

7229

I)CG

s(s(N P, V P)) ---, np(N P), vp(V P).
np(np(N, C)) ~ n(N), comp(C).
,~(,~(people)) -~ [p~ople].
vp(vp(v(sleep), C)) ~ [sleep], eomp(C).
cornp(c(C, A)) -~ comp(C), adv(d).
ad~(~dv(here)) -~ [here].
adv(adv(today)) ~ [today].

np(np(n(you)), C) --~ comp(C).
np(,~p(N, ,~il)) -~ ,~(N).
comp(e(nil, A)) --+ adv(A).
vp(vp(v(sleep), nil)) ~ [,sleep].
s(s(np(np(n(you)), nil), V P)) --+ vp(Y P).

DCG'

g(X) -~ g(Y), d(Y, X).
g(X) - - t (X).
d(np(NP), s(s(NP, VP))) --~ g(vp(VP)).
d(n(N), np(np(N, C))) -+ g(comp(C)).
t(n(n(people))) -+ [people].
t(vp(vp(~(steep), C))) ~ [sleep], g(eomp(C)).
d(comp(C), comp(c(C, A))) ~ g(adv(A)).
t(adv(adv(here))) ~ [here].
t(adv(adv(today))) --~ [today].
d(eomp(C), np(np(~(yo,,)), C)) -~ [].
d(,,(N), ,~p(~p(N, nil))) --+ [].
d(adv(A), corap(e(nil, A))) -~ [].

d (~ p (W) , s(s(,~p(np(~(yo~)), nil), VP))) -~ [],

DCG"

g(x) -~ t(y), d_te(Y,X).
d_te(X, X) ~ [].
d_te(X, Z) -~ d(X, Y), d_tc(Y, Z).
d(np(N P), s (s (N P, V P))) -~ g(vp(V P)).
d (n(g) , np(np(g, C))) --+ g(comp(C)).
t(,(n(people))) -~ [peopZe].
t(vp(vp(v(sleep), C))) ~ [sleep], g(comp(C)).
d(comp(C), comp(e(C, A))) ~ a(adv(A)).
t(adv(adv(here))) -+ [here].
t(adv(adv(today))) --* [today].
d(comp(C), np(np(n(you)), C)) --+ [].
d(n(N), np(np(N, nil))) -+ [].
d(adv(A), comp(c(nil. A))) --+ [].
t(vp(vp(v(sleep), nil))) --* [~leep].
d(vp(V P), s(s(np(np(n(you)), nil), V P))) --~ [] .

Figure 2: Encoding (DCG') of a grammar (DCG) and left-reeursion elimination (I)CG").

1230

