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A b s t r a c t  We present, in easily reproducible terms, 
a simple t ransformat ion for offline-parsable grammars  
which results in a provably te rmina t ing  parsing pro- 
gram directly top-down interpretable  in Prolog. The 
t ransformat ion  consists in two steps: (1) removal 
of empty-product ions,  followed by: (2) left-recursion 
el imination.  It is related bo th  to left-corner parsing 
(where the g rammar  is compiled, ra ther  than  inter- 
preted through a parsing program, and with the ad- 
vantage of guaranteed te rmina t ion  in the presence of 
empty  productions) and to the Generalized Greibach 
Normal  Form for I)CGs (with the advantage of imple- 
menta t ion  simplicity). 

1 Motivat ion 

Definite clause g rammars  (DCGs) are one of the sim- 
plest and most widely used unification g rammar  for- 
malisms. They represent a direct augmenta t ion  of 
context-free g rammars  through the use of ( term) uni- 
fication (a fact tha t  tends to be masked by their usual 
presentat ion based on the programming language Pro- 
log). It is obviously impor t an t  to ask wether certain 
usual methods and algori thms per ta ining to CFGs can 
be adapted to DCGs, and this general question informs 
much of the work concerning I)CGs, as well as more 
complex unification g r am m ar  formalisms (to cite only 
a few areas: Earley parsing, LR parsing, left-corner 
parsing, Greibach Norinal l,'orm). 

One essential complicat ion when trying to generalize 
CFG methods to the I)CG domain lies in the fact that ,  
whereas the parsing problein for ClOGs is decidable, 
the corresponding problem for DCGs is in general an- 
decidable. This  can be shown easily as a consequence 
of the noteworthy fact tha t  any definite clause pro- 
gram can be viewed as a definite clause grammar "on 
the empty  str ing",  tha t  is, as a DCG where no termi- 
nals other  than  [ ] are allowed on the r ight-hand sides 
of rules. The ~Itlring-completeness of defn i te  clanse 
programs therefbre implies the undecidabil i ty of the 
parsing problem for this snbclass of DCGs, and a for- 
tiori for DCGs in general. 1 In order to guarantee good 

*Thaalks to Pierre Isabelle and Frangols Perrault for their 
comments, and to C,[TI (Montreal) for its support during the 
preparation of this paper. 

1 I)CGs on I, he empty string might be dismissed as extreme, 

computat ionM properties for DCGs, it is then neces- 
sary to impose certain restrictions on their  form such 
as o[fline-parsability (OP),  a nomenclature  introduced 
by Pereira and Warren [11], who define an OP DCG 
as a g rammar  whose context-free skeleton CFG is not  
infinitely ambiguous, and show tha t  OP DCGs lead to 
a decidable parsing problem. 2 

Our aim in this paper is to propose a simple t rans- 
format ion lbr an arbi t rary  OP DCG put t ing  it into 
a form which leads to the completeness of the direct 
top-down interpreta t ion by the s tandard  Prolog inter- 
preter: parsing is guaranteed to enumerate  all solutions 
to the parsing problem and terminate.  The e.xistence 
of such a t ransformat ion  is kuown: in [1, 2], we have 
recently introduced a "Generalized Greibach Normal 
Form" (GGNF)  for DCGs, which leads to te rminat ion  
of top-down interpreta t ion in the OP case. lIowever, 
the awdlable presentat ion of the GGNF transforma- 
tion is ra ther  complex (it involves an algebraic study 
of the fixpoints of certain equational  systems repre- 
senting grammars . ) .  Our a im here is to present a re- 
lated, but  much simpler, t ransformat ion,  which from a 
theoretical viewpoint performs somewhat  less than the 
GGNF t ransformat ion  (it; involves some encoding of 
the initial DCG, which the (~GNF does not, and it only 
handles oflline-parsable grammars ,  while the GGNF is 
defined for arbi t rary  DCGs),  a but  in practice is ex- 
tremely easy to implement  and displays a comparable  
behavior when parsing with an OP grammar .  

3'he t ransformat ion consists of two steps: (1) empty- 
production el imination and (2) left-recursion elimina- 
tion. 

The empty-product ion el iminat ion Mgorithm is in- 
spired by the nsnal procedure for context-free gram- 
mars.  But there are some notable differences, due 
to the fact tha t  removal of empty-product ions  is in 
general impossible for non-OP I)CGs. The empty- 

but they are in fact at the core of the oflline-parsability concept. 
See note 3. 

2'lThe concept of ofllineA~arsability (under a different name) 
goes  back to [8], where it is shown to be linguistically relevant. 

aThe GGNF factorizes an arbitrary DCG into two compo- 
nents: a "unit sub-DCG on the empty string", and another paa't 
consisting of rules whose right-hand side starts with a tm'mi- 
nal. The decidability of the DCG depends exclusively on certain 
simple textual properties of the unit sub-DCG. This sub-l)CG 
can be eliminated fl'om the GGNF if and only if the DCG is 
of Illne-parsable. 
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p r o d u c t i o n  e l i m i n a t i o n  a ( g o r i t h m  is g u a r a n t e e d  to ter- 
m i n a t e  on ly  in the  O P  ease. 't It p roduces  a I )C(]  
dec la ra t ive ly  equ iva len t  to the. or ig inal  g r a m m a r .  

T h e  lef t - recurs ion  e l i m i n a t i o n  ~dgorithnt is a d a p t e d  
f rom a t r a n s R ) r m a t i o n  p roposed  in [4] in the  con tex t  

of  a cer ta in  f o r m a l i s m  (" l ,exical  G r a m m a r s " )  which  
we p resen ted  as a poss ib le  basis  for bui(ding reversible 
g r a m m a r s ,  a T h e  key obse rva t ion  (in s l ight ly  different 

t e r m s )  was t h a t ,  in a I )CG,  i f a  n o n t e r m i u a l  g is defined 
(i tcrMly by the  two rules ( the first of  which  is left- 
reeursive):  

:+\ ' )  --+ g(Y), a(v, x). 
, ( x )  --, ~ ( x ) .  

t h e n  t he  r e p l a c e m e n t  of  t hese  two rules by the  th ree  
rules  (where  d_tc is a new n o n t e r m i n a l  symbo l ,  which  
represen ts  a k ind  of " t r ans i t i ve  c(osure" of  d):  

g ( X )  - ,  t ( Y ) ,  d_tc(r,  X ) .  

,/_re(X, x) -+ []. 

d_tc(X, Z) - ,  d(X, V), d_tc(r, Z). 

l)reserves the  dec la ra t ive  s e m a n t i c s  o1' t im g r a m m a r ,  s 
We r e m a r k e d  in [4] t h a t  th is  t r a n s f o r m a t i o n  :'is 

closely re(ated to le('t<.orner pa.rsing",  bu t  did not  give 
detai ls .  In a recent  pape r  [7], M ark  J o h n s o n  in t roduces  
"a lef t -corner  p r o g r a m  t r a n s R ) r m a t i o n  for n a t u r a l  (an- 
guage  pa r s i ng" ,  which  ha s  s o m e  s imi l a r i ty  to the  abow~ 
t r a n s f o r m a t i o n ,  b u t  whic.h is appl ied  to definite c lause  
p r o g r a m s ,  r a the r  t h a n  to ( )CGs .  l ie  proves t ha t  th is  
t r a n s f o r m a t i o n  respec ts  dee la ra t ive  equivalcnee,  and  
also shows,  u s ing  a mode(q ;heore t ic  approach ,  the  close 
connec t ion  of his  t r a n s f o r m a t i o n  wi th  (eft-corner pars-  
ing [12, 9, 1()]. r 

(t  1TlUSt be no ted  t h a t  the  lef t - reeurs ion e l im ina t i on  
p rocedure  can 1)e a*pplied to any  ])C(~, whe the r  O P  or 
not .  Even  in the  case where  the  g r a m m a r  is OP, h o w  
ever, it wil( not  (ead to a t e r m i n a t i n g  pa r s ing  a l g o r i t h m  
unless e m p t y  l ) roduc t ions  have  been  prea(ably  el imi-  
n a t e d  f rom  the  g r a m m a r ,  a l ) roblem wlfirh is sha red  
by the  usua l  lef t -corner  pa r se r - in te rp re te r .  

4'Fhe fact that the standard (','FG emptyq)roduction elinfio 
nation transformation is always possible is relal.ed to the fact 
that this transformation does not preserve degrees of ambiguity. 
For instance the infinitely ambiguous grammar S ~ [b] A, A 
A, A -+ [ ] is simplified into the grammar S -+ [b]. This type 
of simplification is generally impossible in a I)UG. Consider for 
insl ....... tim "g,' . . . . . . . . . . .  "' s(  X ) -~ [ ....... be,'] a( X ), a(  ... . . . .  ( X ) ) --+ 
a(x ) ,  ~40) -+ []. 

572he xnethod goes back to a transh)rmation used to compile 
oat. certain local cases of left-reeursionli'om I)CGs in the context 
of the Machine Translation prototyl)e CItlTTER [3]. 

6A proof of this fact, baaed on a comparison of prootktrees 
for the original and the transformed grammar, is giwm in [2]. 

?His paper does not state termination conditions for the 
transformed program. Such ternfination conditions w(mM prob- 
ably involve some generalized notion of o[ttine-parsability [6, 5, 
13]. By contrast, we prove termlnation only for I)CGs which arc 
OP in the original sense of Pereira and Warren, but this ca.se 
SeelllS t o  llS tO r e p r e s e n t  l l l t l ch  of the c o r e  issue, &lid Lo lead to 
some direct exl.ensions. ],'or instance, the I)CG transformation 
proposed here can I)e directly applied to "guided" programs in 
the sense of [4]. 

Dae to the space available, we do not give here c o l  
rectncss proof~ Jbr the algori thms presented, but ez'peet 
to publish them in a t id ier  version of  this paper. These 
algori thms have actually been implemen ted  in a slightly 
extended version,  where the*,/ are also used to decide 
whe ther  the g rammar  proposed for" t rans format ion  is 
in fac t  oJfline-parsable or not. 

2 E m p t y - p r o d u c t i o n  

e l i n l i n a t i o n  

(t can  be proven t ha t ,  if I ) C G 0  is an  O P  ( )CG,  the  
tb(lowing t r a n s f o r m a t i o n ,  which  involves r epea t ed  par-  
t ial  eva lua t i on  of  rules t h a t  rewri te  into the  e m p t y  

s t r ing ,  t e r m i n a t e s  after  a f ini te n u m b e r  of  s t eps  and  

p roduces  a g r a m m m :  I )CG w i t h o u t  e m p t y - l ) r o d u c t i o n s  
which  is equ iva len t  to the  ini t ia l  g r a m m a r  on non-  
eml) ty  s t r ings:  s 

i n i m t :  an otllineq)ars~tble DC(-II. 
o n t I m t :  a DCG without empty rules equivalent to DC(I I 
on non-empty strings. 
alg, o r i t h m :  

initialize I,IST1 to a l ist  of  the rules of D ( X ; [ ,  :;el I,IST2 
to the empty fist. 
w h i l e  there exists ;m empty rule El/: / l ( T | , . . . , T k ) - , [ ]  
in LISTI do:  

Inove F,R to I,IS'I'2. 
ti)r each rule R: B(...) - + ~ in LIST1 such that  (~ 
(:ontains an instance of A(...) (including 
new such rules created inside this loop) d o :  
t i lr  each such instance A(SI  .... , Sk)  unifiable with 
A(TI,  ...,7'k) do:  
~q)pend to 13S'l'l ;~ rule IU: ll(...) • ~ d obtained 
from R by removing A(,ql, .... S'k) 
lrom (~ (or by replacing it with [] if this was 
the only nonterminal in or), 
nnd by unifying the Ti ' s  with the ,5'i's. 

set I)C(I to LISTI. 

For in s t ance  the  g r a m m a r  cons i s t ing  in the  n ine  rules 
a p p e a r i n g  above  the  s e p a r a t i o n  in lig. 1 is t r a n s f o r m e d  
in to  the  g r a m m a r  (see figure): 

~(,s(N P, v t,)) --÷ , ,v(NP) ,  vv(W' ) .  

,,.p(',~v(~'~, c')) -+ ,,Up), c o , , p ( c ) .  
, , ( , , . (Vcovte)  ) - ~ [peovte]. 
vv(vv(~'( .~te~p),  c ) )  ~ [,te~v], eo,~,v(c). 
eo,,V(,'.(C, a))  • eo,,,~,(c), ad,~(A). 
,dv(ad, , ( l~e, 'e))- .  [t ,e~4 
a,tv(adv(todav)) - ,  [today], 

~V('P04,~;o~O), C) - -  co.,.V(C). 
,~p(,~p(N, nil)) - ~ ,4N) .  
e o , ~ v ( c ( , ' t ,  A ) )  -+ , , , t 4 A ) .  

vp(vp(v(* t~ ,~p) ,  ,,.it)) -~ N ~ V ] .  
.q.s("V('~V('4V"")), ,,.it), V t')) - .  ~V(V V). 

I~When DCG0 is not OP, the transl]~rlnatiott ~xlay produce 
an infinite lllll[lh(!l" Of l'Lll(!8, b i l l  a s i m p l e  e x t e n s i o n  o f  t h e  a id (>  
rithm can detect this situation: the transformathm stops and 
the dr;mimer is decl;~red not to be Ot ). 
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3 L e f t - r e c u r s i o n  e l i m i n a t i o n  

The  t r a n s fo rma t ion  can be logically divided into two 
steps: (1) an encoding of  DCG into a "generic" form 
D C G ' ,  and (2) a s imple  rep lacement  of  a certain group 
of  left-recursive rules in D C G '  by a cer tain equivalent  
non left-recursive group  of  rules, yielding a top-down 
in te rp re tab le  D C G " .  An  example  of the  t r ans fo rma t ion  
DCG ----+ D C G '  ----+ DCG"  is given in fig. 2. 

The  encoding is pe r fo rmed  by the  following algo- 
r i thm:  

input: an oittine-parsable DCG without empty rules. 
o u t p u t :  an equivalent "encoding" DCG'. 
a l g o r i t h m :  

initialize LIST to a list of the rules of DCG. 
initialize DCG' to the list of rules (literally): 

g(X) --~ g(Y), d(Y, X). 
g(x)  - ,  t (x) .  

w h i l e  there exists a rule R of the form 
A(T1 ..... Tk) --, B(S1 ..... Sl) a in LIST do: 

remove R from LIST. 
add to DCG' a rule R': 
d(B(£'l  ..... Sl), A(T1 ..... Tk)) --+ ~', 
where c~ ~ is obtained by replacing any C(V1, ..., Vm) 
in a by g(C(V1, ..., Vm)), 
or is set to [ ] in the case where oe is empty. 

w h i l e  there exists a rule R of the form 
A(TI ..... Tk) -+ [terminal] ~ in LIST do:  

remove R from LIST. 
add to DCG' a rule R': 
t(A(T1 ..... TI~)) - .  [terminal] # ,  
where cJ is obtained by replacing any C(V1, ..., Vm) 
in ~ by g(6'(V1 ..... Vm)), 
or is set to [ ] in the ease where c~ is empty. 

~fhe procedure  is very simple.  I t  involves the  cre- 
a t ion  of  a generic non te rmina l  g(X),  of  ari ty one, 
which pe r fo rms  a task equivalent  to the  original  nonter -  
mina ls  s ( X 1 , . . . , X n ) , v p ( X 1 , . . . , X r a ) , . . . .  The  goal 
g ( s ( X 1 , . . . ,  X n ) ) ,  for ins tance,  plays the  same role for 
pars ing a sentenee as did the goal s ( X 1 , . . . , X n )  in 
the  original  g r a m m a r .  

Two fu r the r  generic non te rmina l s  are in t roduced:  
f iX )  accounts  for rules whose r igh t -hand  side begins  
wi th  a t e rmina l ,  while d(Y, X)  accounts  for rules whose 
r igh t -hand  side begins  wi th  a non te rmina l .  The  ratio- 
nale beh ind  the  encod ing  is bes t  unde r s tood  fi 'mn the  
following examples ,  where  ~ represents  rule rewrit-  
ing: 

vp(vp(v(sleep), C)) - ,  [sleep], comp(C) 
g(vp(vp( v( sleep), C) ) ) ~ [sleep], g(comp( C) ) 
g(X) -~ [sleep], 

( { x  : ~p(~p(~(sleep), c))}, g(co.~p(c')) !. 

s(s(NP,  VP))  --+ np(NP) ,  vp (VP)  
g(s(s(NP, VP)) )  ---* g(np(NP)) ,  g(vp(VP))  
g(X) ~ g(y ) ,  

( {X  = s(s(NP,  VP)) ,  Y = np(NP)} ,  g(vp(VP))  ; 

The  second example  i l lus t ra tes  the role played by 
d(Y, X )  in the  encoding.  This  non te rmina l  has  the  fol- 
lowing in te rpre ta t ion :  X is a n " i m m e d i a t e "  ex tens ion  
of  Y using the  given rule. In o ther  words, Y corre- 
sponds  to an " immed ia t e  lef t -corner"  of  X .  

The  lef t-recnrsion e l imina t ion  is now pe r fo rmed  by 
the  following "a lgor i thm"  :9 

i n t m t :  a DCG' encoded as above. 
o u t p u t :  an equivalent non left-recursive DCG". 
a l g o r i t h m :  

initialize DCG" to DCG'. 
in DCG", replace literally the rules: 

g(X) -~ .q(g), d(Y, X).  
g(X) -~ t(X). 

by the rules: 
g(X) ---+ t(Y), d_tc(Y; X). 
d_tc(X, X) --~ [ ]. 
d_tc(X, Z) --+ d(X, Y), d_tc(Y, Z). 

In this  t r ans fo rmat ion ,  the  new non te rmina l  d_tc 
plays the  role of  a k ind of  t rans i t ive  closure of d. It can 
be seen tha t ,  relative to D C G " ,  for any s t r ing w and 
for any ground t e rm z, the  fact  tha t  .q(z) rewri tes  
in to  w - - o r ,  equivalently,  t h a t  there  exists a g round  
t e r m  x such tha t  t(x) d_tc(x,z) rewrites into w - -  
is equivalent  to the  existence of  a sequence of  g round  
t e rms  x = x l ,  . . . ,  xa = z and a s e q u e n c e  of s t r ings  
wl ,  . . . ,  wk such tha t  t (xl)  rewri tes  into wi, d(xl,  x2) 
rewri tes  into w;, ..., d(xk-1, xk) rewrites into we, and 
such tha t  w is the  s t r ing  conca tena t ion  w = wl " " w k .  
From our previous r emark  on the mean ing  of  d(Y, X) ,  
this can be in te rpre ted  as saying tha t  "consi tuent  x is 
a lef t -corner  of cons t i tuen t  z" ,  relat ively to s t r ing  w. 

The  g r a m m a r  DCG"  can now be compi led  in the  
s t a n d a r d  way---via  the  ad june t ion  of two "differential  
list" a rguments - - - in to  a Prolog p rog ram which can bc 
executed  directly. If  we s ta r ted  f rom an ofl l ine-parsable  
g r a m m a r  DCGO, this  p rog ram will enumera te  all so- 
lu t ions  to the pars ing p rob lem and t e rmina te  af ter  a 
finite number  of s teps.  1° 
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I,ISTI delete LIST2 

s(s(NP, V P) ) --~ np( N P), vp(V P). 
np(np(N, C)) -+ n(N), comp(C). 

,,(,,.(wopl~) ) - .  [v~ovu,]. 
n(,~(,jo~)) -~ []. 
~V(~V(,,(~t~.e~), c)) -+ [~v ] ,  eo.~V(C'). 
comp(c(C, A)) -~ cornp(C), adv(A). 

adv(adv(herc)) -+ [h,.re]. 
adv(adv(today)) --+ [today]. 

np(nV(,4you) ), C) ~ corny(C). 

rip(rip(N, nil)) -+ n( N). 
comp(c(nil, a))  -+ adv(A). 

'oV(,,p(~(~l~V), hi0) -~ [.~mV]. 
, ,p(,~(,(yo~)), ,~i~) --, []. 

~(,(,~p(,w(,~(vo,O ), ,~iO, v t,) ) ~ v~,(w,), 

n(,4,,o,,)) --+ []. 

comv(niO -~ []. 

,~v(,,p(,,(vo,*) ), ~il) -. []. 

Figure 1: Empty-production elimination. 
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I)CG 

s(s( N P, V P) ) ---, np( N P), vp(V P). 
np(np(N, C)) ~ n(N), comp(C). 
,~(,~(people)) -~ [p~ople]. 
vp(vp(v(sleep), C) ) ~ [sleep], eomp( C). 
cornp(c(C, A)) -~ comp(C), adv(d). 
ad~(~dv(here)) -~ [here]. 
adv(adv(today)) ~ [today]. 

np(np(n(you) ), C) --~ comp( C). 
np(,~p(N, ,~il)) -~ ,~(N). 
comp(e(nil, A)) --+ adv(A). 
vp(vp(v(sleep), nil)) ~ [,sleep]. 
s(s(np(np(n(you) ), nil), V P)) --+ vp(Y P). 

DCG' 

g(X) -~ g(Y), d(Y, X). 
g(X) - -  t (X).  
d(np(NP), s(s(NP, VP))) --~ g(vp(VP)). 
d(n(N), np(np(N, C))) -+ g(comp(C)). 
t(n(n(people) ) ) -+ [people]. 
t(vp(vp(~(steep), C) ) ) ~ [sleep], g(eomp( C) ). 
d(comp(C), comp(c(C, A))) ~ g(adv(A)). 
t(adv(adv(here))) ~ [here]. 
t(adv(adv(today))) --~ [today]. 
d(eomp(C), np(np(~(yo,,) ), C) ) -~ []. 
d(,,(N), ,~p(~p(N, nil))) --+ [].  
d(adv(A), corap(e(nil, A))) -~ []. 

d ( ~ p ( W ) ,  s(s(,~p(np(~(yo~)), nil), VP))) -~ [ ], 

DCG" 

g(x)  -~ t(y),  d_te(Y,X). 
d_te(X, X)  ~ [ ]. 
d_te(X, Z) -~ d(X, Y), d_tc(Y, Z). 
d(np(N P), s (s (N P, V P))) -~ g(vp(V P)). 
d (n(g) ,  np(np(g,  C))) --+ g(comp(C)). 
t(,(n(people))) -~ [peopZe]. 
t(vp(vp(v(sleep), C) ) ) ~ [sleep], g(comp( C) ). 
d(comp(C), comp(e(C, A))) ~ a(adv(A)). 
t(adv(adv(here))) -+ [here]. 
t(adv(adv(today))) --* [today]. 
d(comp(C), np(np(n(you) ), C) ) --+ []. 
d(n(N), np(np(N, nil))) -+ [ ]. 
d(adv(A), comp(c(nil. A))) --+ [].  
t(vp(vp(v(sleep), nil))) --* [~leep]. 
d(vp(V P), s(s(np(np(n(you) ), nil), V P) ) ) --~ [] .  

Figure 2: Encoding (DCG') of a grammar (DCG) and left-reeursion elimination (I)CG"). 
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