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Abstract

We discuss some consequence relations in DRT
useful to discourse semantics. We incorporate
some consequence relations into DRT using se-
quent calculi. We also show some connections
of these consequence relations and existing par-
tial logics. Our attempt enables us to display
several versions of DRT by employing different
consequence relations.

1. Introduction

Discourse Representation Theory (DRT) due
to Kamp (1981) provides a promising frame-
work for discourse semantics. DRT is in fact
successul in formalizing several challenging top-
ics, e.g. anaphora, tense and belief; see Asher
(1986, 1993) and Heim (1982). Due to its clear
sermantics with the construction algorithm, DRT
is also used as a background theory in compu-~
tational linguistics; see Wada and Asher (1986)
and Ishikawa and Akama (1992).

However, DRT lacks a deductive (proof-
theoretic) formulation to serve as an abstract
interpreter for discourse understanding, since
it is formalized by means of the notion of par-
tial models. This prevents us from utilizing
DRT in various ways for natural language un-
derstanding systems. To make DRT more flex-
ible for computational linguistics, we need to
generalize a formal basis in a proof-theoretic
fashion. If this is suécessful, computational lin-
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guists will be able to reconstruct DRT for their
own systems using programming languages like
Prolog and LISP. There are perhaps several
ways to give an operational semantics of DRT.
One of the attractive approaches is to investi-
gate consequence relations associated with DRT.
It is thus very useful to study some conse-
quence relations in DRT to develop different
versions of DRT.

The purpose of this paper is to explore con-
sequence relations in DRT, one of which ex-
actly produces Kamp’s original semantics. We
incorporate some consequence relations defined
by partial sermantics into DRT using sequent
calculi. Our attempt enables us to display sev-
eral versions of DRT by employing different
consequence relations. We also show some con-
nections of the proposed consequence relations
and partial logics in the literature.

2. Overview of DRT

In this section, we give a brief introduction
to DRT. For a detailed exposition, the reader
should consult Asher (1993). The basic idea
of DRT is to formalize a dynamic represen-
tation of partial interpretations by means of
classical models using a construction algorithm
of discourse representation structures (DRSs).
Observe that DRSs can be regarded as such
abstract objects as partial models, mental rep-
resentations, or (partial) possible worlds. But,



such identifications do not seem essential to the
significance of DRT.

The language of DRT is called Discourse
Representation Language (DRL), which is like
a standard quantifier-free first-order language
except discourse referents and conditions. The
logical symbols of DRI include = (identity),
= (conditional), V (disjunction) and ~ (nega-
tion). A discourse representation (DR) K is
expressed as a pair (Ug, Conyg ), where Uk is a
set of discourse referents, and Cony is a set of
conditions. Fach condition is either atomic or
complex. Complex conditions are of the form:
Ky = K, Ky V K or ~K;, where both K,
and K2 are DRs.

A discourse representation structure (DRS)
is a partially ordered set of DRs, which can
be constructed by means of DRS coustruction
rules whose application reflects the syntactic
composition of the sentences in the discourse.
When each DR of a DRS is maximal, the DRS
is called a complete DRS. Intuitively speaking,
cach stage in the construction algorithm can
be vicwed as a partial possible worlds, in which
more information resulting from the processing
of a further bit of the discourse changes it into
a more precise description of the world.

A model for DRL is an ordered pair (Dpy,
Far), where Dpy is the domain of M and Far
is an interpretation function of constants and
predicates. An embedding function for a DR
K in a model M is a mapping from discourse
referents in Uy imto the downain of M. An ex-
tension of an embedding function f for K in M
to an embedding function g for K’ in M is de-
fined as g: (Dom(f) U Ugi) — Dps. We write
f Cg g to mean that g extends an embedding
function f to an embedding of K’. The notaion
M =4k C abbreviates that M satisfies C un-
der ffor K. A proper embedding of K in M is an
embedding function such that f Cx g and for
any condition Cin K, M =, x C. The notions
of proper embedding and satisfaction can be
extended to general cases by simultaneous re-
cursion; see Asher (1993). A DR X is shown to
be true in a model M iff there is a proper em-
bedding of K in M. A DR K implies a DR X iff

every model in which K is true is also a model
in which K’ is true. 'This definition induces a
consequence relation in DRT, but we have no
reason to consider it as the only plausible for
DRT. In fact, it is our job in this paper to seck
alternate definitions.

3. Consequence Relations and Sequent
Calculi

A partial semantics for classical logic is implicit
in the so-called Beth tableaux. This insight can
be generalized to study consequence relations
in terms of Gentzen calculi. The first impor-
tant work in this direction has been done by
van Benthem (1986, 1988). We here try to ap-
ply this technique to DRT. Since our approach
can replace the base logic of DRT by other in-
teresting logics, we obtain alternative versions
of DRT.

Recall the basic tenet of Beth tableaux.
Namely, Beth tableaux (also semantic tableanx)
prove X — Y by constructing a counterexam-
ple of X & ~Y. In fact, Beth tableanx induce
partial semantics in the sense that there may
be counterexamples even if a branch remains
open. Let X and Y be sets of formulas, and
A and B be formulas. And we write X + Y
to mean that Y is provable from X. Van Ben-
thern’s partial semantics for classical logic can
be axiomatized by the Gentzen calculus, which
has the axiom of the form:

XK,AFAY
and the following sequent rules:

(Weakening) X +Y — X, AFA,Y.

(Cut) X, A+Y and XFHA)Y

= XFY.

(~R)X,AFY = Xk ~AY.

(~)XFAY = X,~AFY.

(&R) X+ Y, A and X+ Y, B

=> X+FY, A&B.

(& L)X, A,BFY = X, A&BHY.

(VR)XFA,B Y = X+FAVBE,Y.

(VI)X,A+Y and X,B+Y

— X, AVBFY.
Van Benthem’s formulation can be extended
for partial logics. Because such an extension
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uses the notion of partial valuations, it is not
difficult to recast the treatment for DRT.

Let V be a partial valuation assigning 0, 1
to some atomic formula p. Now, we set V(p)
= 1 for p on the left-hand side and V(p) = 0
for p on the right-hand side in an open branch
of Beth tableaux. This construction can be
easily accommodated to sequent calculi. Then,
we can define the following two consequence
relations:

(C1) for all V, if V(Pre) = 1

then V(Cons) = 1,

(C2) for all V, if V(Pre) = 1

then V(Cons) # 0,
where Pre and Cons stand for premises (an-
tecedent) and conclusion (succedent) of a se-
quent, respectively. In a classical setting, (C1)
and (C2) coincide. It is not, however, the case
for partial logics.

The Gentzen calculus G1 for C1 is obtain-
able from the above system without right (~)-
rule by introducing the following rules:

(~~RYXFA Y = XF~~AY.

(~~L)X,AFY = X, ~~ALY.

(~&R) X+ ~A, ~B, Y

= XF~(A&B)Y.

(~&L) X, ~A+ Y and X,~BFY

= X, ~(A&B)FY.

(~VR) X+ ~A,Y and X+ ~B,Y

= XF ~(AVB)Y.

(~VvL) X, ~A, ~BFY

= X,~(AVvB)rY.

Van Benthem (1986) showed that G1is a Gentzen

type axiomatization of C1. To guarantee a cut-
free formulation, we need to modify van Ben-
them’s original system. We denote by GC1 the
sequent calculus for GC1, which contains the
axioms of the form: (A1) A+ A and (A2) A,
~A F, with the right and left rules for (&),
(v), (~~), (~ &) and (~ V) together with
(Weakening) and (Cut). It is shown that GC1
is equivalent to G1 without any difficulty. As
a consequence, we have:
Theorem 1
C1 can be axiomatized by GC1.

The Gentzen system GC2 for C2 can be ob-
tained from (GC1) by adding the next axiom:
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(A3) F A, ~A.
Theorem 2
C2 can be axiomatized by GC2.

There are alternative ways to define con-
sequence relations by means of sequent calculi.
For example, it is possible to give the following
alternate definitions.

(C3) for all V, if V(Pre) =1

then V(Cons) = 1
and if V(Cons) = 0
then V(Pre) = 0.
The new definition obviously induces inconsis-
tent valuations. The Gentzen system GC3 is
obtainable from GC1 by replacing (A2) by the
following new axiom:
(A4) A, ~A + B, ~B.
Theorem 3
C3 can be axiomatived by GC3.

4. Relation to Partial Logics
In this section, we compare the proposed Gentzen
systems with some existing partial logics, in
particular, three-valued and four-valued log-
ics in the literature; see Urquhart (1986). To
make connections to partial logics clear, we ex-
tend DRI with weak negation ”—” to express
the lack of truth rather than verification of fal-
sity in discourses. We denote the extended lan-
guage by EDRL. In the presence of two kinds
of negation, we can also define two kinds of
implication as material implications. We need
the next rules for weak negation:

(-R)X,AFY=XF-AY.

(FL)XFAY=X,-A LY.

In fact, these rules provide a new consequence
reation of EDRL denoted by Fgrprr. Owr
first result is concerned with the relationship of
GC1 and Kleene’s (1952) strong three-valued
logic KL, namely

Theorem 4

The consequence relations of GC1 and K1, are
equivalent.

From this theorem, EDRL can be identified
with the extended Kleene logic EKL. Let A
— B be an abbreviation of =A v B. Then, we
can also interpret Lukasiewicz’s three-valued



logic Lz. In fact, the Lukasiewicz implication
D can be defined as follows:

ADB Zdef (A —r B) & (NB ~ty NA)
which implies

t:EKL ADBiff A }’:EKL B and ~B *:EKL
~A.

This is closely related to the consequence rela-
tion C3.

Theorem 5

AtcsBiff Fgrgr A D B.

If we drop (A2) from GC1, we have the sequent
calculus GC17, which is shown to be equiva-
lent to Belnap’s (1977} four-valued logic BEL.
Theorem &

Frer = Fae1--

The four-valued logic BEL can handle both
incomplete and inconsistent information. We
believe that four-valued semantics is plausible
as a basis for representational semantics like
DRT, which should torelate inconsistent infor-
mation in discourses. In view of these results,
we can develop some versions of DRT which
may correspond to current three-valued and
four-valued logics; see Akama (1994).

5. Conclusions

We have studied a proof-theoretic foundation
for DRT based on consequence relations de-
fined by partial semantics. These consequence
relations yield alternative versions of DRT to
be used for different applications. We have
noted some connections between these relations
and partial logics, in particular three-valued
and four-valued logics. We believe that the
significance of our work lies in reformulating
DRT in sequent calculi to be easily applied to
computational linguistics.

There are several topics that can be further
developed. Yirst, we should give a more de-
tailed discussion of what sort of completeness
proof is involved, although we have established
some correspondence results. Second, it is very
interesting to show how the proposed conse-
quence relations affect DRT in more detailed
ways. Third, we need to extend the present
work for the predicate case to take care to cap-

ture the dynamic effect of the quantificational
structure of DRT.
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