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A b s t r a c t  
We discuss some consequence relat ions in DRT 
useful to discourse semantics. We incorporate  
some consequence relat ions into DRT using se- 
quent calculi. We also show some connections 
of these consequence relations and existing par-  
t ial  logics. Our a t t empt  enables us to display 
several versions of DRT by employing different 
consequence relations. 

1. I n t r o d u c t i o n  
Discourse Representation Theory (DRT) due 
to Kamp (1981) provides a promising frame- 
work for discourse semantics. DRT is in fact 
successul in formalizing several challenging top- 
ics, e.g. anaphora ,  tense and belief; see Asher 
(1986, 1993) and Helm (1982). Due to its clear 
semantics with the construct ion algorithm, DRT 
is also used as a background theory in compu- 
ta t ional  lhtguistics; see Wada  and Asher (1986) 
and Ishikawa and Akama (1992). 

However, DRT lacks a deductive (proof- 
theoretic) formulat ion to serve as an abst ract  
interpreter  for discourse unders tanding,  since 
it is formalized by means of the notion of par- 
t ial  models.  This prevents us from utilizing 
DRT in various ways for na tu ra l  language un- 
derstanding systems. To make DR']' more flex- 
ible for computa t iona l  linguistics, we need to 
generalize a formal basis in a proof-theoret ic  
fashion. If this is successful, computa t iona l  lin- 

guists will be able to reconstruct  DRT for their 
own systems using programming languages like 
Prolog and LISP. There are perhaps several 
ways to give an opera t ional  semantics of DRT. 
One of the a t t rac t ive  approaches is to investi- 
gate consequence relations associated with DR'I?. 
It is thus very useful to s tudy some conse- 
quence relations in DRT to develop different 
versions of DRT. 

The purpose of this paper  is to explore con- 
sequence relations in DRT, one of which ex- 
actly produces Kamp ' s  original semantics. We 
incorporate  some consequence relat ions defined 
by par t ia l  semantics into DRT using sequent 
calculi. Our a t t empt  enables us to display sev- 
eral versions of DRT by employing different 
consequence relations. We also show some con- 
nections of the proposed consequence relations 
and par t ia l  logics in the l i terature.  

2. O v e r v i e w  o f  D R T  
In this section, we give a brief  in t roduct ion 
to DRT. For a detai led exposition, the reader 
should consult Asher (1993). The basic idea 
of DRT is to formalize a dynamic represen- 
ta t ion of par t ia l  in terpreta t ions  by means of 
classical models using a construct ion algori thm 
of discourse representat ion structures (DRSs).  
Observe that  DRSs can be regarded as such 
abst ract  objects as par t ia l  models, menta l  rep- 
resentations,  or (part ial)  possible worlds. But,  
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such identifications do not seem essential to the 
significance of DRT. 

']'he language of DRT is called Discourse 
Representation Language (DRL), which is like 
a s tandard  quantifier-free first-order language 
except discourse referents and conditions. The 
logical symbols of DRL include =: ( identity),  
--~ (comlitional),  V (disjunction) and ~ (nega- 
tion). A discourse representation (DR) K is 
expressed as a pair  (UK, ConE),  where UE is a 
set of discourse re]erents, and Conic is a set of 
conditions. Each condit ion is either atomic or 
complex. Complex conditions are of the form: 
K1 :~ K2, KI V K2 or ~K1,  where bo th  K1 
and K2 are Dl~s. 

A discourse representation structure (DRS) 
is a par t ia l ly  ordered set of DRs, which can 
be constructed by means of DRS construction 
rules whose appl icat ion reflects the syntact ic  
composit ion of the sentences in the discourse. 
When each DR of a DRS is maximal,  the DRS 
is called a complete DRS. Intuit ively speaking, 
each stage in the construct ion algori thm can 
be viewed as a par t ia l  possible worlds, in which 
more information resulting from the processing 
of a further bit  of the discourse changes it into 
a more precise descript ion of the world. 

A model for DRL is an ordered pair  (DM, 
FM), where DM is the domain of M and FM 
is an in terpre ta t ion  function of constants and 
predicates.  An embedding ]'unction for a DR 
K in a model  M is a mapping from discourse 
referents in UK into the domain of M. An ex- 
tension of an embedding flmction f for K in M 
to an embedding function g for K '  in M is de- 
fined as g: (Dora(f)  U UE, ) --~ DM. We write 
f C K g to mean that  g extends an embedding 
function f to an embedding of K' .  The notaion 
M ~-t,K C abbreviates  that  M satisfies C un- 
der f for  K. A proper embedding of K in M is an 
embeddhtg flmetion such that  f ~K g and for 
any condit ion C in K, M ~g,E C. The notions 
of proper  embedding and satisfaction can be 
extended to general cases by slmnltaneous re- 
cursion; see Asher (1993). A DR K is shown to 
be true in a model  M iff there is a proper  em- 
bedding of K in M. A DR K implies a DR K'  iff 

every model  in which K is true is also a model  
in which K'  is true. This definition induces a 
consequence relat ion in DRT, but  we have no 
reason to consider it as the only plausible for 
DRT. In fact, it is our job in tMs paper  to seek 
al ternate  definitions. 

3. C o n s e q u e n c e  R e l a t i o n s  a n d  S e q u e n t  
C a l cu l l  
A par t ia l  semantics for classical logic is implicit  
in the so-called Beth tableaux. This insight can 
be generalized to s tudy consequence relat ions 
in terms of Gentzen calculi. The first impor- 
tant  work in this direction has been done by 
van Benthem (1986, 1988). We here t ry  to ap- 
ply this technique to DRT. Since our approach 
can replace the base logic of DRT by other in- 
terest ing logics, we obtain al ternat ive versions 
of DttT. 

Recall the basic tenet of Beth tableaux.  
Namely, Beth tableaux (also semantic tableaux)  
prove X - - ~  Y by constructing a counterexam- 
pie of X K: ~Y.  In fact, Beth tab leaux induce 
par t ia l  semantics in the sense tha t  there may 
be counterexamples even if a branch remains 
open. Let X and Y be sets of formulas, and 
A and B be formulas. And  we write X b Y 
to mean that  Y is provable from X. Van Ben- 
there 's  par t ia l  semantics for classical logic can 
be axiomatized by the Gentzen calculus, which 
has the axiom of the form: 

X, A P A, Y 
and the following sequent rules: 

(Weakening) X b Y  ~ X, A F A, Y. 
(Cut)  X, A b  Y and X F  A , Y  

=--~ X F Y. 
(~R)  X, A b Y  ~ X b ~ A , Y .  
(~L)  X P A ,  Y ~=~ X , ~ A t - Y .  
(&R.) X P Y, h and X F Y , B  

=-.~ X t - Y ,  A & B. 
(&L) X , A , B  b Y  ---.s X , A  & B  P Y. 
(vR) X P A ,  B , Y  ~ X P A v B ,  Y. 
(vL) X , A  F Y and X, B t- Y 

==> X, A V B b Y .  

Van Benthem's  formulat ion can be extended 
for par t ia l  logics. Because such an extension 
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uses the notion of partial valuations, it is not 
difficult to recast the tzeatment for DRT. 

Let V be a partial valuation assigning 0, 1 
to some atomic formula p. Now, we set V(p) 
= 1 for p on the left-hand side and V(p) = 0 
for p on the right-hand side in an open branch 
of Beth tableaux. This construction can be 
easily accommodated to sequent calculi. Then, 
we can define the following two consequence 
relations: 

(C1) for all V, if V(Pre) = 1 
then V(Cons) = 1, 

(C2) for all V, if V(Pre) = 1 
then V(Cons) # 0, 

where Pre and Cons stand for premises (an- 
tecedent) and conclusion (succedent) of a se- 
qnent, respectively. In a classical setting, (C1) 
and (C2) coincide. It is not, however, the case 
for partial logics. 

The Gentzen calculus G1 for C1 is obtain- 
able from the above system without right (~)-  
rule by introducing the following rules: 

( ~ R )  X ~ - A , Y  ~ X P ~ A , Y .  
( ~ L )  X, A F - Y  ~ X , ~ - A ~ - Y .  

aR) x ~A, Y 
X ~- ~ (A & B), Y. 

(~  &L) X,,-~A F- Y and X, ~ B  ~- Y 
X, ~ (A  & B) ~- Y. 

(,-~VR) XF- ~ A , Y  and X~- NB, Y 
X P --~(A V B), Y. 

(~  VL) X, ,-~A, ~ B  t- Y 
x, ~(A v B) t- Y. 

Van Benthem (1986) showed that G1 is a Gentzen 
type axiomatization of C1. To guarantee a cut- 
.free formulation, we need to modify van Ben- 
them's original system. We denote by GC1 the 
sequent calculus for GC1, which contains the 
axioms of the form: (A1) A }- A and (A2) A, 
--~A ~-, with the right and left rules for (&), 
(V), ( ~ ) ,  (~  &) and (~ V) together with 
(Weakening) and (Cut). It is shown that GC1 
is equivalent to G1 without any difficulty. As 
a consequence, we have: 
T h e o r e m  1 
C1 can be axiomatized by GC1. 

The Gentzen system GC2 for C2 can be ob- 
tained from (GC1) by adding the next axiom: 

(A3) A, ~A. 
T h e o r e m  2 
C2 can be axiomatized by GC2. 

There are alternative ways to define con- 
sequence relations by means of sequent calculi. 
For example, it is possible to give the following 
alternate definitions. 

(C3) for aH V, if V(Pre) -- 1 
then V(Cons) = 1 

and if V(Cons) = 0 
then V(Pre) = 0. 

The new definition obviously induces inconsis- 
tent valuations. The Gentzen system GC3 is 
obtainable from GC1 by replacing (A2) by the 
following new axiom: 

(A4) A, - A  ~ B, ~B.  
T h e o r e m  $ 
C3 can be axiomatized by GC3. 

4. R e l a t i o n  to  P a r t i a l  Logics  
In this section, we compare the proposed Gentzen 
systems with some existing partial logics, in 
particular, three-valued and four-valued log- 
ics in the literature; see Urquhart (1986). To 
make connections to partial logics clear, we ex- 
tend DRL with weak negation "--" to express 
the lack of t ruth  rather than verification of fal- 
sity in discourses. We denote the extended lan- 
guage by EDRL. In the presence of two kinds 
of negation, we can also define two kinds of 
implication as material implications. We need 
the next rules for weak negation: 

( - R )  X, A ~- V ~ X ~- -~A, Y. 
X A, X, Y. 

In fact, these rules provide a new consequence 
reation of EDRL denoted by ~EDRL. Our 
first result is concerned with the relationship of 
GC1 and Kleene's (1952) strong three-valued 
logic KL, namely 
T h e o r e m  4 
The consequence relations of GC1 and KL are 
equivalent. 

From this theorem, EDRL can be identified 
with the extended Kleene logic EKL. Let A 
-~,, B be an abbreviation of ~A V B. Then, we 
can also interpret Lukasiewicz's three-valued 
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logic L3. In fact, the Lukasiewicz hupl icat ion 
D can be defined as follows: 

A D B =a~t (A -~0 B) & ( ~ B - * , ~  ~A)  
which implies 

t=EKL h D B iff A ~:EKL B and ~ B  ~EKL 
~ i .  
This is closely re la ted  to the consequence rela- 
t ion C3. 
T h e o r e m  5 

A F c ,  a B iff ~EKL A D B. 
If  we drop (A2) from GC1, we have the sequent 
calculus G C I - ,  which is shown to be equiva- 
lent to Belnap 's  (1977) four-valued logic BEL. 
T h e o r e m  6 

~-BEL = ~GC1-"  
The four-valued logic BEL can handle bo th  

incomplete and inconsistent information.  We 
believe tha t  four-vaNed semantics is plausible 
as a basis for representa t ional  semantics like 
DRT, which should torelate  inconsistent infor- 
mat ion  in discourses. In view of these results,  
we can develop some versions of DRT which 
may correspond to current three-valued and 
four -vahed  logics; see Akama (1994). 

5. C o n c l u s i o n s  
We have s tudied a proof-theoret ic  foundat ion 
for DRT based on consequence relations de- 
fined by par t i a l  semantics.  These consequence 
relations yield al ternat ive versions of DRT to 
be used for different applications.  We have 
noted some connections between these relations 
and par t i a l  logics, in par t icular  three-valued 
and four-valued logics. We believe that  the 
significance of our work lies in reformulat ing 
DRT in sequent calculi to be easily applied to 
computa t iona l  linguistics. 

There are several topics that  can be further 
developed. Firs t ,  we should give a more de- 
tailed discussion of what  sort of completeness 
proof  is involved, a l though we have established 
some correspondence results. Second, it is very 
interest ing to show how the proposed conse- 
quence relations affect DRT in mo~e detai led 
ways. Third,  we need to extend the present 
work for the predicate  case to take care to cap- 

ture the dynamic effect of the quantif icat ional  
s tructure of DRT. 
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