956

THE CORRECT AND EIFFICIENT IMPLEMENTATION OF APPROPRIATENLESS
SPECIFICATIONS FOR TYPED FEATURIE STRUCTURISS

Dale Gerdemann and Paul John King*

Seminar fiir Sprachwissenschaft, Universitit Tiibingen!

ABSTRACT

In this paper, we argue that type inferenc-
ing incorrectly implements appropriate-
ness specifications for typed leature struc-
tures, promote a combination of type res-
olution and unfilling as a correet and ef-
ficient alternative, and consider the ex-
pressive limits of this alternative approach.
Throughout, we use [cature cooccurence
restrictions as illustration and linguistic
motivation.

1 INTRODUCTION

Unification formalisms may be cither un-
typed (pCGs, PATR-1, LFG) or typed
(ursa). A major reason for adding types
to a formalism is (o express restrictions
on feature cooccurences as in Gpsa [
in order to rule out nonexistant types
of objects. Tor example, there are no
verbs which have the feature +N. The
simplest way to express such restrictions
is by means of an appropriateness par-
tial function Approp: Type x Feat — Type.
With such an appropriatencss specilica-
tion many such restrictions may be ex-
pressed, though no restrictions involving
reentrancics may be expressed.

In this paper, we will first in §2 survey
the range of type constraints that may be
expressed with just a type hicrarchy and

*The rescarch presented in this paper was par-
tially sponsored by ‘Tcllprojekt B4 “Constraints on
Grammar for Efficient Generation” of the Sonder-
forschungsbereich 340 of the Deuntsche Forschungs-
gemeinschaft. We would also like to thank Thilo
Gotz for helpful comments on the ideas presented
herce. All mistakes arce of conrse our own.

KL, Wilhehmstr, 113, D-72074 Tiibingen, Cer-
many, {dg,King}@sfs.nphil.uni-tuehingen.de.

an appropriateness specification. Then in
83, we discuss how such type constraints
may be maintained under unification as
excmplified in the natural language pars-
ing/generation system Troll [7].! Unlike
previous systems such as ALp, Troll does
nol cmploy any type inferencing. Instead,
a limited amount of named disjunction
([11],[12], [6]) is introduced to record type
resolution possibilities. The amount of dis-
junction is also kept small by the technique
of unfilling described in [9]. This strategy
actually maintains appropriateness condi-
tions in some cases in which a type in-
ferencing strategy would lail. Finally, in
84, we discuss the possibilities for gener-
alizing this approach to handle a broader
range of constraints, including constraints
involving reentrancies.

2 APPROPRIATENESS
FORMALISMS

As discussed in Gerdemann & King (8],
one can view appropriatencss conditions as
delining Grsa style feature cooccurence re-
strictions (I"CRs). In [8], we divided 'CRs
into conjunctive and disjunctive classes. A
conjunctive FCR is a constraint of the fol-
lowing form:

if an object is of a certain kind
then it deserves certain features
with values of certain kinds

An FPCR stating that a verh must have v
and N features with values 4 and — re-
spectively is an example of a conjunctive
FCR. A disjunctive F'CR is of the form:

"The Troll System was implemented in Quintus
Prolog by Dale Gerdemann and Thilo Gotz.

il an object is of a certain kind
then it deserves certain features
with values of certain kinds,
or it deserves certain (perhaps
other) features with values of
certain (perhaps other) kinds,
or...
or it deserves certain (perhaps
other) features with values of
certain (perhaps other) kinds

TFor cxample, the following PCR stating
that inverted verbs must be auxiliaries is
disjunctive: a verb must have the features
INV and AUX with values + and 4, — and
+, or — and — respectively.

Both ol these forms of FCRs may be
expressed in a formalism employing finite
partial order (Type, 2} of lypes under sub-
sumption, a finite set Feat of features,
and an appropriateness partial function
Approp: Type % Feat -~ Type. Intuitively,

the types formalize the notion of kinds of

object, & C. ' ill cach objecl of Lype ' is
also of type 1, and Approp(t, /) = ' iff cach
object of type ¢ deserves feature [with o
value of type ¢/, We call such a formal-
ism an appropriateness formalism. Car-
peater’s ALE and Gerdemann and Goty’s

Troll are examples ol implementations of

appropriateness formalisms.

How an appropriateness formalism en-
codes a conjunctive 1'CR is obvious, but
how it encodes a disjunctive FCR s less
so. An example illustrates best how it is
done. Suppose that FCR p states that ab-
jects of type ¢ deserve features [and g,
both with boolean values and furthermore
that the values ol [and ¢ must agree. p
is the disjunctive FCR

if an object is of type !

then il deserves [with value -
and g with value +,
or it deserves [with value -
and g with value —

To encode p, first introduce subtypes,
and " of ¢ (¢ &V, 1), one sublype for
each disjunct in the consequent of p. Then
encode the feature/value conditions in the
first disjunct by putting Approp(t’, [} =: +

and Approp(!’, g) = +, and encode the fea-
ture/value conditions in the sccond dis-
junct by putting Approp(t”, f) = — and
Approp(i”, g) = —.*

This approach makes two important
closed-world type assumptions about the
Lypes that subsume no other types (hence-
forth species). First, the partition condi-
tion states that for cach type ¢, if an ob-
ject is of type t then the object is of ex-
aclly one species subsumed by t. Second,
the all-or-nothing condition states that for
cach species s and feature f, cither every
or no object of species s deserves feature
2 An appropriateness formalism such as
ALk ([2], [3]) that does not meet both con-
ditions nay not properly encode a disjune-
tive I'CR. Tor example, consider disjunc-
tive FCR p. An appropriateness formal-
isim may not properly encode that # and ¢
represent all and ouly the disjuncts in the
consequent of p without the partition con-
dition. An appropriateness formalisin may
not properly encode the feature/value con-
ditions demanded by cach disjunct in the
consequent of p without the all-or-nothing

condition.

As indicated above, ALE i1s an example

ol a formalism that does not meet bhoth of

these closed world assumptions. In ALE a
[eature structure is well-typed iff for cach
arc in the feature structure, if the source
node is labelled with type ¢, the target
node is labelled with type ¢ and the are is
labelled with feature [then Approp(t, f) L
! PFurthermore, a feature structure is

2Ihis example FCR s, for expository purposes,
quite simple. The problem of expressing FOR’s,
however, is a real linguistic problem. As noted by
Copestake et al. [4], it was mpossible to express
cven the simplest forms of PCRs in their extended
version of ALE.

The basic principle of expressing FCRs also ex-
tends to PORs tuvolving longer paths. For exam-
ple, to cnsure that for the type ¢, the path {fg)
takes a value subsuined by s, one must first intro-
duce the chain Approp(t, f) == u, Approp(u, y) = s.
Suclt intermediate types could be introduced as
part of a compilation stage.

*Note that these closed world assumptions are
explicitly made in Pollard & Sag (forthcoming)

f14].

95

7

958

well-typable iff the feature structure sub-
sumes a well-typed feature structure. In
ALE, type inferencing is employed to en-
sure that all feature structures are well-
typable—in fact, all feature structures are
well typed. Unfortunately, well-typability
is not sufficient to ensure that disjunctive
I"CRs are satisfied. Consider, for exam-
ple, our encoding of the disjunctive FCR p
and suppose that ¢ is the feature structure
tf:+,9:—] ©is well-typed, and hence
trivially well-typable. Unfortunately, ¢ vi-
olates the encoded disjunctive FCR p. The
only way one could interpret ¢ as well-
formed

By contrast, the Troll system described
in this paper has an effective algorithm for
deciding well-formedness, which is based
on the idea of efliciently representing dis-
junctive possibilities within the feature
structure. Call a well-typed feature struc-
ture in which all nodes are labelled with
species a resolved feature structure and
call a set of resolved feature structures that
have the same underlying graph (that is,
they differ only in their node labellings)
a disjunctive resolved feature structure.
We write F8, RFS and DRFS for the
collections of feature structures, resolved
feature structures and disjunctive resolved
feature structures respectively. Say that

F' e RFS is a resolvant of I’ € FS§ il

F and I have the same underlying graph
and F subsumes #”. Let type resolution be
the total function R: 7§ — DRFS such
that R(£) is the set of all resolvants of I,

Guided by the partition and all-or-
nothing conditions, King [13] has formu-
lated a semantics of feature structures and
developed a notion of a satisfiable feature
structure such that /" € F§ is satisfiable
ifft R(#) # 0. Gerdemann & King [8] have
also shown that a feature structurc meets
all encoded I'CRs iff the feature structure
is satisfiable. The Troll systein, which is
based on this idea, effectively implements
type resolution.

Why does type resolution succeed where
type inferencing fails? Consider again the
encoding of p and the feature structure

w. Loosely speaking, the appropriate-
ness specifications for type t encode the
part of p that states that an object of
type t deserves features f and g, both
with boolecan values. However, the ap-
propriateness specifications f{or the speci-
ate subtypes t' and ¢’ of type ¢ encode
the part of p that states that these val-
ues must agree. Well-typability only con-
siders species if forced to. In the case
of ¢, well-typability can be established
by considering type t alone, without the
partition condition forcing one to find a
well-typed species subsumed by t. Conse-
quently, well-typability overlooks the part
of p exclusively encoded by the appropri-
ateness specifications for ¢ and #'. Type
resolution, on the other hand, always con-
siders species. Thus, type resolving ¢
cannot overlook the part of p exclusively
encoded by the appropriateness specifica-

tions for ¢ and t”.

3 MAINTAINING
APPROPRIATENESS
CONDITIONS

How may these DRFS be used in an im-
plementation? A very important prop-
crty of the class of DRFS is that they
are closed under unification, i.e., if ' and
F' ¢ DRFS then F U ¢ DRFSA
Given this property, it would in princi-
ple be possible to use the disjunctive re-
solved feature structures in an hmplemen-
tation without any additional type infer-
cncing procedure to maintain satisfiabil-
ity. It would, of course, not be very effi-
cient to work with such large disjunctions
of feature structures. These disjunctions
of feature structures, however, have a sin-
gular property: all of the disjuncts have
the same shape. The disjuncts differ only
in the types labeling the nodes. This prop-

*In fact, it can be shown that if 2 and IV €
FS then R(SYUR') = R(FUF'Y. Unification
of scts of feature structures is defined here in the
standard way: SUS' = {F|F'¢ S and I € S’
and I = 0P}

erty allows a disjunctive resolved feature
structure Lo be represeated more efliciently
as a single untyped feature structure plus
a set of dependent node labelings, which
can be further compacted using naned dis-
junction as in Gerdemann [6], Dorre &
sisele [12] or Maxwell & Kaplan [t1].

For example, suppose we type resolve
the feature structure i{f : bool, g : bool] us-
ing our encoding of p. One can easily see
that this feature structure has only two re-
solvants, which can be collapsed into one
feature structure with named disjunction
as shown below:

[// t// <1 /,(///>
Jor | 1o D
g1 Lo g (0)

We now have a rcasonably compact rep-
resentation in which the I'CR has beew
translated into anamed digjunction. How-
ever, one should note that this disjunc-
tion is only preseut because the features
[and g happen to be present. These [ea-
tures would need to be present if we were
enforcing Carpenter’s [2] total well typing
requircinent, which says that features that
arc allowed must be present. But total well
typing is, in fact, incompatible with type
resolution, since there may well be an infi-
nite set ol totally well typed resolvants of o
[eature structure. For example; an under-
gpecified list structure could be resolved to
a list of length 0, a list of length 1, cle.

Since total well typing is not required,
we mnay as well actively unlil redundant
features.® In this example, if the [and g
[catures are removed, we are left with the
simple disjunction {¢/,1"}, which is equiv-
alent Lo the ordinary type L9 Thus, in this
case, no disjunction at all is required to en-
force the IFCR. All that is required is the

*Tutuitively, features ave redundant if their val-
nes are centirely predictable from the appropriate
ness specification. See Gotz (9], Gerdemaun [7] for
e formulation.

A 1more prec

S1n this case, it would alse have been possible
to unfill the original feature structure before rve
solving. Unfortunately, however, this is not always
the case, as can be seen i the following example:

4= (Y=

assumption that £ will only be extended
by unifying it with another (compacted)
member of DRFS.

This, however, was a simple case in
which all of the named disjunction could
be removed. [t would not have been pos-

sible to remove the features f and g if

these features had been involved o reen-
trancies or if these features had had com-
plex values. Tn general, however, our expe-
riecnce has been that even with very com-
plex type hicrarchies and feature struc-
tures for upesc, very few named disjunc-
tions are introduced.” Thus, unilication is
generally no more expensive than unifica-
tion with untyped feature structures.

4 CONCLUSIONS

We have shown in this paper that the kind
of constraints expressible by appropriate-
ness conditions can be inplemented in a
practical system employing typed feature
striuctures and unification as the primary
operation on feature structures. But wlat
of more complex type constraints involv-

g reentrancies? Introducing reentrancies

into constraints allows for the possibility of

defining recursive types, such as the defi-
nition of append in {1]. Clearly the re-
solvants of such a recursive type could not
be precompiled as required in Troll,

One might, nevertheless, consider al-
fowing reentrancy-constraints on non-
recursively defined types. A problem still
arises; natnely, il the resolvants ol a feature
stracture included some with a particu-
lar reentrancy and some without, then the
condition that all resolvants lave the same
shape would no longer hold. One would
therefore need to employ a more complex
version of named disjunction (L1}, 12,
[T0]). 1L s questionable whether such ad-
ditional complexity would be justified to

TOur experience is derived primarily from test-
ing the Troll system on a rather large gramnar
for Gierman partial verb phrases, whiclt was writ-
ten by Prliard Hincvichs and Tsuncko Nakazawa,
and implemented by Detimar Meurers.

59

960

handle this linited class of reentrancy-
constraints.

It seems then, that the class of con-
straints that can be expressed by appro-
priateness conditions corresponds closely
to the class of constraints that can he effi-
ciently precompiled. We take this as a jus-
tification for appropriateness formalisims
in general. It makes sense to abstract out
the efficiently processable constraints and
then allow another mechanism, such as at-
tachments of definite clauses, to express
more complex constraints.

References
(1] Masam Ait-Kaci.

Type Subsumption. PhD) thesis, Uni-
versity of Pennsylvania, 1985.

Bob Carpenter. ihe Logic of Typed
Feature Structures. Cambridge Tracts
in Theoretical Computer Science 32.
Cambridge University Press, 1992.

S

[3] Bob Carpenter. ALY The Atiribute
Logic I'ngine, User’s Guide, 1993,

[4] Ann Copestake, Antonio Sanfilippo,
Ted Briscoe, and Valeria De Paiva.
The ACQUILEX LKB: An introduc-

In Ted Briscoe, Valeria De

Paiva, and Ann Copestake, cditors,

Inheritance, Defaults, and the Lexi-

con, pages 148-163. Cambridge UP,

1993.

tion.

[5] Jochen Dérre and Andreas Eiscle.
Feature logic with disjunctive anifi-
cation. In COLING-90 vol. 2, pages
100105, 1990.

(6] Gerald Gazdar, Fwan Klein, Geoflrey
Pullum, and Ivan Sag. Generalized
Phrase Structure Grammar. Harvard
University Press, Cambridge, Mass,
1985.

[7] Dale Gerdemann. Parsing and Gen-
eration of Unification Grammars.
PhD thesis, University of lllinois,

A New Model of
Computation Based on o Caleulus of

[9]

[12]

[13]

1991. Published as Beckman Insti-
tute Cognitive Science Technical Re-
port CS-91-06.

Dale Gerdemann. Troll: Type resolu-
tion system, user’s guide, 1994, Man-
ual for the Troll system implemented
by Dale Gerdemann & Thilo Gétz.

Dale
King.
cxpressing and computationally im-
plementing feature cooccurence re-
strictions. In Proceedings of 4. Fach-
tagung der Sektion Computer-

Gerdemann and Paul John
Typed feature structures for

linguistik der Deutschen Gesell-
schaft fiir Sprachwissenschaft, pages

33-39, 1993.

Thilo Gétz. A normal form for typed
feature structures. Master’s thesis,
Universitdt Tiibingen, 1993.

John Griffith.
Processing of Feature De-
seriptions, PhD thesis, Universitiit
Tiibingen, 1994. Tentative Title.

Disjunction and If-
Jicient

Paul John King. Typed feature struc-
tures as descriptions, 1994. In these
proceedings.

John T. Maxwell TIT and Ronald M
Kaplan. An overview of disjunctive
constraint satisfaction. In Proceedings
of International Workshop on Pars-

ing Technologics, pages 18-27, 1989.

Carl Pollard and Ivan Sap. Head
Driven Phrase Structure Grammar.
CSLI Lecture Notes. Chicago Univer-
sity Press, Chicago, forthcoming.

