
A GRAMMAR BASED APPROACH TO A GRAMMAR CHECKING 
OF FREE WORD ORDER LANGUAGES 

Vladislav Kubofi, Martin Pl~itek 

Faculty of Mathematics and Physics, Charles University 
Malostransk6 miln. 25, CZ - 118 00 Praha 1, Czech Republic 

1.INTRODUCTION 

This paper shows one of the methods 
used for grammar checking, as it is being 
developed in the frame of the EC funded project 
LATESLAV -Language  Technology li)r Slavic 
Languages (PECO 2824). 

The languages under consideration in the 
project - Czech and Bulgarian - are both free 
word order languages, therefore it is not 
sufficient to use only simple pattern based 
methods for error checking. The emphasis is on 
grammar-based methods, which are much closer 
to parsing than pattern-based methods. 

It is necessary to stress that we are 
dealing with a surface syntactic analysis. 
Therefore also the errors which are taken into 
consideration are surface syntactic errors. Our 
system for identification and localization of 
(surl:ace) syntactic errors consists of two basic 
modules - the module of lexical analysis and the 
module of surface syntax checking. In the 
present paper, we will describe the second 
module, which is more complicated and creates 
the core of the whole system. Although it is not 
crucial for our method, we would like to point 
out that our approach to the problems of 
grammar checking is based on dependency 
syntax. 

Let us illustrate the degree of licedom of 
the word order, which is provided by Czech, one 
of the languages under consideration in the 
project. If we take a sentence like 
"Oznaeen3~ (Adj. masc., Nom/Gen Sg.) soubor 
(N masc., Nom/Gen Sg.) se (Pron.) nepodafilo 
(V neutr., 3rd pers. Sg) tisp6~nE (Adv.) otev~ft 
(V inf.)" (The marked file failed to be opened 
sucessfully); word-tbr-word translation into 
English "Marked file itself failed succesfully to 
open", we may modify the word order for 
instance in the following way: 

Nepodai~ilo se fisp6~n6 otevfft oznaeen~ soubor. 
Ozna(:ens~ soubor se fisp6~n6 otev~ft nepodafilo. 

Ozna(cen~ soubor se nepodaiSlo otev?ft fisp6gn6. 
[)sp6gn6 otev~ft ozna~:ens~ soubor se nepodafilo. 
Nepodafilo se oznaeen~¢ soubor fisp6gn6 otevi~ft. 
Nepodafilo se oznaeens~ soubor otevi~ft fisp6~n6. 
etc. 

The only thing concerning the word 
order, which we can guarantee, is that the above 
introduced list of syntactically correct sentences 
does not exhaust all possibilities, which arc 
given by the combinations of those six Czech 
words 1. The example also shows, that although 
the word order is very free, there are certain 
limitations to that freedom, as e.g. the adjective 
- noun group ("oznaOcny soubor"), which is 
closely bound together in all of the sample 
sentences, but may not be bound together in 
some other context - cf. "...soubor Karlem veera 
veeer oznaeen~ jako ~patnsL..." (...file [by Karel[ 
yesterday evening marked as wrong...). 

The approach which we have chosen for 
the developlncnt of the grammar checker for 
free word order languages is based on the idea 
of reducing the complicated syntactic structure 
of the sentence into a more simple structure by 
means of deleting those words from the input 
sentence which do not cause any error. 

Let us take as an example lhe 
(ungrammatical) English sentence quoted in [31: 
"*77ze little boys I mentioned runs very quickly." 
The error may be extracted by a stepwise 
deletion of the correct parts which do not alTect 
the (non)correctness of the sentence. We will 
get successively the sentences "*The boys 
I mentioned runs very quickly", "*boys 
Imentioned runs very quickly', "*boys runs 
very quickly", "*boys runs quickly", "*boys 
f u r l s  ". 

1As mentioned above, we are concerned with 
surface syntactic shape of the Czech sentences and 
thus we leave aside the semantic relevance of the 
word order variations due to their different topic - 
focus articulation. For a detailed discussion of these 
phenomena, see esp. [1] and [7]. 

906 



The example shows that it is useflfl to 
use a model which is able to deal with deletions 
in a natural way. We use the nondeterministic 
list automata (NLA); a list automaton works 
with a (doubly linked) list of items rather than 
with a tape. The version of the NLA which is 
used in our project is described briefly in the 
tollowing sections. 

2 .ERR()R C H E C K I N G  A U T O M A T O N  

The core module of our system is the 
Error: Checking Module. It recognizes gram- 
matical correctness of a given portion of text, or, 
in other words, it distinguishes the 
grammatically correct and grammatically 
incorrect subsequences (not necessarily 
continuous) of lexical elements in the input text. 

The input of the Error Checking Module 
(ECM) consists el' tile results of the 
morphological and lexical analysis. The exact 
form of the inpnt elements is thoroughly 
described in [511. For the purpose of this paper it 
is only necessary to say that the data, 
representing one lexical element, are contained 
in one complex feature structure. The attributes 
are divided into two groups, input and output 
attributes. The ECM tries to reduce the input 
sequence by means of deleting some symbols. 
The deleted symbols are stored. They create the 
history of simplifications of the input text. 

The whole process is nondeterministic 
- i f  there are more variants how to delete the 
symbols, all of them are sooner or later taken 
into account. 

For the purpose of the grammar checker, 
we use a slightly modified version of NI,A, 
called Error Checking Automaton (ECA). ECA 
has a two-level storage, with a two-way linear" 
list on each level composed of data items 
(fields, cells). In tile list there are two 
distinguished items: one at the leflmost end and 
the other at the rightmost end of the list. These 
items are called sentinels. 

The first level represents the input and 
the working storage of ECA, the other one 
ECA's output. ECA has a finite state control 
unit with one head moving on a linear (doubly 
linked) list ot' items. In each moment the head is 
connected with one particular cell of the list 
("the head looks at the visited field"). The 
actions of the working head are delimited by the 

following four types of basic operations which 
the head may perform on the list: MOVE, 
DELETE, INSERT, and RESTART. The ope- 
rations of the type MOVE ensure the 
bi-directional motion of the head on the list. The 
I)ELETE operations delete the input field in the 
input level. The INSERT operations add a field 
with a symbol to the output level, more exactly: 
to the close neighborhood of the visited field. 
The RESTART operation transfers ECA from 
the current configuration to the (re)start 
configuration, i.e. to the configuration in which 
ECA is in the initial (unique) state. 

The processing of the ECA is controlled 
by rules, written in a formalism called DABG 
(Deletion Autolnata Based Grammar), which 
was developed especially for the project 
I,ATESLAV. It is described in detail in 151. The 
theoretical background for erasing automata of 
the above described kind can be found in [1611 and 
121. 

The ECM is logically composed of the 
following three components: 

(a) list automaton P of the type ECA; 
(b) list automaton N of the type ECA; 
(c) control module C. 

2.1. The automaton P 
The automaton works in cycles between 

(re)starts. The function of the autolnaton P is to 
apply one rule of the control grammar to the 
input during one cycle. That means to decide 
nondeterministically which finite subsequence 
of the text in the input level of the list is correct 
according to one rule of the control grammar, 
and to delete this part from the input level. After: 
that it continues the work in the next cycle. 

This means that if the input text is error 
free, the automaton P gradually repeats cycles 
and deletes (in at least one branch of its tree of 
computations) all the input elements (except for 
the sentinels). 

The automaton P accepts the input 
sequence, if the computation of P finishes by 
deleting all the items (except for the sentinels) 
from the input level of the list. 

Notation: 
L(I') is a set of strings accepted by 1'. 
rs(P,w) = {w I, where w I is a word, 

which is a result of one cycle performed on the 
word w by the automaton P } 

907 



We can see that the following two facts 
hold, due to the restarting nature of 
computations of P: 

Fact 1: Let w be a word fi'om L(P), then 
rs(P,w) c~ L(P) ve Q. 

Fact 2: If  w is not a word fi'om L(P), then 
rs(P,w) n L(P) = Q. 

Two basic principles how to formulate 
rules for the automaton P for a given natural 
language L lk~llow from the above mentioned 
facts: 

1) P contains only those (deleting) rules, for 
which there exists a sentence in L which will 
remain syntactically correct after the application 
of the rule. 

2) There may not be a syntactically incorrect 
scqucnce of words l'ronl L which would be 
changed to a syntactically correct sentence of L 
by means of the application of a rule fl:om P. 

Strong rules (S-rules) are the rules 
which meet the following requirement: 

3) Any application of a rule will keep both 
correctness and incorrectness of the input 
sequence. 

Clearly the S-rules meet also the 
requirements 1) and 2). 

The subautomaton of P, which uses 
S-rules only, is called Ps. 

One cycle (one compound step) of an 
automaton P (or Ps) can be described from the 
technical point of view as follows: 

First, the automaton searches through the 
input level for the place where there is a 
possibility to apply one of the deleting rules to 
the input level of the automaton. In the positive 
case the deleting rule is applied and P (or Ps) 
returns to the initial configuration (restarts). 

2.2. The automaton N 
The task of the automaton N is to find in 

the input text a minimal limited error, to make a 
correction of it (cf. the following del'inition). In 

one compound step the automaton N perfl)rms 
(nondeterministically) the following actions: 

First, similarly as the automaton P, N 
locates the place where to apply a rule of its 
control grammar to the input level. Then it 
checks whether there is an error in the close 
neighborhood of that place. In the positive case 
it marks the occurrence of the error at the output 
level of the list and corrects the input level of 
the list by deleting some items from the 
environment of the current position of the head. 

Definition: The limited error is a string 
z, fl)r which there are no y, w such that the 
string yzw is a (grammatically) correct sentence 
(of a given language L). If z can be written in 
the form of 

z = v0u I VlU2V 2 ... UkV k 

and there are also strings s,r such that 
SUlU2... ukr is a grammatically correct 
sentence, u = UlU2 ... Uk is called a correction 
of Z. 

A minimal limited error is a st6ng z, 
which is a limited error and there is no 
possibility how to shorten z from either side 
preserving the property of being a limited error 
for z. 

2.3. Tile control module  C 
The C module is a control submodule of 

the entire ECM module. At the beginning of the 
operation of ECM, the C module calls the 
automaton P, which works as long as it is 
possible to shorten the input level list by 
deleting its items. As soon as the automaton P 
cannot shorten the list in the input level any 
more and the input level does not contain only 
the sentinels, C calls the module N. This 
automaton removes one error fi'om the input 
level, makes an error mark and transfers the 
control back to the C module, which invokes the 
automaton P again. Thus, the submodule C 
repeatedly invokes the automata P and N 
(switching between them) as long as they are 
able to shorten the sequence of input elements. 
ff there are more possibilities at a certain 
moment of computation, the automaton P 
chooses only one of them, C stores the other 
into the stack and it tries to apply another rule to 
the modified input. That means that C is 
searching the tree of possible computations 
depth-first. 

908 



In any stage of selection of rules h)r P 
and N there may be some input sentences, which 
contain either syntactically correct subsequences 
of words which cannot be handled by the rules 
of P, or syntactic errors which are not covered 
by the rules of N. In this case both atttomata 
stop and thc input level still contains a 
subsequence of input elements. Its contingent 
final emptying is ensured by lhe C module, 
which marks this fact at the output level. Then 
the C module transfers control to the next phase 
of the whole system. 

At this point it is ncccssary to clarify, 
what kind of output structure is built by ECM. 
As we have already mentioned, our approach to 
the probleln is oriented towards dependency 
syntax 2. 

All the rules ()f control grammar for P 
and N delete the depending word from lhc input 
and put it into the output atlribute of the 
governing word. At the end of the process there 
is a tree, which contains the information ahout 
all the words front the input, about the order of 
deletions and also all error marks made by the 
automaton N. 

The switching between ! ), N and C 
guarantees that any possible path in the tree of 
computation will result in a complete structure 
of a deletion tree. 

The current best deletion tree is then 
compared to any new deletion tree. If the new 
tree is better (e.g. it contains a smaller number 
of errors or contains errors with a smaller 
weight), it is then stored for further use as the 
new current best result. 

At the end of the whole process we have 
the "best" result (or a set of best results, c.g, 
when there arc more possibilities how to parse 
the sentence), which contains all relevant 
inlormation about errors present in the input 
sentence. 

At the current stage of the work we have 
decided to distinguish as considerable only the 
folh)wing two types of errors: 
a) Only one call of N was used and the whole 
process o1' deletions is completed by P and N 
only. 

2However, the use of DABG for creating the control 
grammars for P and N is not limited to dependency 
based approach only. Both the data structures 
(feature-structure based) and the DABG formalism 
allow to formulate rules which create the constituent 
structure of the sentence at the output level. 

b) If there wcrc only the rules of l 's  and N 
applied to a particular path in a tree of 
computation. 

Clearly the tree with error marks of thc 
lype a) will be among the best results of the C 
for any reasonable comparison of results. We 
have to assign a slightly smaller weight to the 
errors of the type b). 

3. C O N C L U S I O N  

In the previous paragraphs we have 
sketched tile specifications li)r a grammar based 
grammar checker lk)r a free word order 
language, as it is viewed from the perspective o1' 
our approach to the project I,ATESI,AV. The 
main goal of the project is to develop a 
methodology of solving tire problem of 
"grammar based" grammar checking of relevant 
languages. We hope that the ideas presented in 
the paper nmy hell ) us to achieve this goal 
successfully. 

The paper shows that it is possible to 
make a clear distinction between two parts of 
the grammar checker, namely line part 
(automaton P) which is based on rnJcs which 
describe correct subparts of a given inpul 
sentence and therefore is very close to a 
standard dependency syntactic parsing, and 
between the part (automaton N) which is based 
on rules which are to a great extent similar to 
the rules used in standard "pattern based" 
approach to grammar checking. The 
combination of these two parts provides a tool 
more powerful (in the formal sense) than if both 
approaches are applied m isolation. 

The architecture of the system also 
makes it possible to re-use the existing linguistic 
knowledge about the computational grammar of 
Czech. 11 also allows to divide the enormous 
task of ilnplementalion of a grammar checker in 
smaller specialized subparts (c.g. rules for 1 ) and 
N), which may be deveh)ped independently. 

As shown in [41, similar specifications, 
based on the slune principle, can also be used in 
the area of robust syntactic i)arsing. 

909 



References 

[1] Hajieovfi E.: "Free" word order described 
without unnecessary complexity. Theoretical 
Linguistics 17, 1991, pp. 99-106. 
[2] Jan6ar P., Mreiz F., Pl~itek M.: A taxonomy 
of forgetting automata. In: Proceedings of 
MFCS'93, Gdansk, Poland, August 1993, 
LNCS 711, Springer 1993, pp. 527-536. 
[3] Jan~ar P., Mr~iz F., Plfitek M.,Vogel J.: 
Deleting automata with a restart operation, 
submitted for MFCS'94. 
[4] Kubofi V., Pl~itek M.: Robust parsing and 
grammar checking of free word order languages, 
In: Proceedings of the 6th Twente Workshop on 
Language Technology, Universiteit Twente, 
Enschede, December 1993, pp. 157-161. 
[51] Kubofi V., Petkevi6 V., Pl~itek M.: 
Formalism for shallow error checking; JRP 
PECO 2824, In: Final Research Report of the 
Task: Adaptation and Transfer of Description 
Formalisms, Saarbruecken, 1993 
1611 Oliva K., Plfitek M., Seznamov6 automaty a 
typy popisu povrchov6 syntaxe (List Automata 
and the Types of Description of Surface 
Syntax). In: SOFSEM'90, Jansk6 L,'izn6 1990, 
pp.61-64, Vol.II. 
[7] Sgall P., Haji6ovfi E. and Panevovfi J.: The 
meaning of the sentence in the semantic and 
pragmatic aspect, Reidel: Dordrecht and 
Academia: Prague, 1986. 

The work described in this paper was performed 
in the frame of the Joint Research Project PECO 
2824. 

910 


