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1 Introduction

Recent years have seen the appearance of a number of
grammar formalisms! sharing a strong family resem-
blance, which we have characterised elsewhere [Rupp
el al., 1994) as the property of being constraint-based.
As well as having in common many (ormal proper-
tics, these formalisms also support, often by explicit
design, descriptions from a similarly convergent range
ol linguistic theories, which we might reasonably label
“HPSG-like”.

Given the considerable common ground between
such formalisis, it is reasonable to begin to ask ques-
tions about their intertranslatability, or, in program-
ming language terms, the relative ease with which it
is possible to “port” a grammar from one such formal-
ism to another. Such questions are clearly of interest
for the enterprise of recovering as much as possible of
the existing stock of already encoded linguistic knowl-
cdge, perhaps for reuse in a more modern theoretical
framework. ‘They are also of relevance for any attempts
to build in portability from the start in ongoing new
grammar writing.

At present, the criteria for determining whether a
particular translation is successful arc extremely fuzzy.
Apart {rom anything else, they will presumably de-
pend to some extent on external goals, such as, for
example, whether the results will be used in a prac-
tical, running system or just in a laboratory experi-
ment to show the feasibility of a particular theoretical
approach. In our work, we have assumed that, if the
translation is intended as more than a sterile exercise,
then the information in the source description must be
worth conserving and hence worth translating. More-
over, we suppose that the resulting target grammar
will need to be maintained and extended, and hence
should be well-understood and well-behaved. Given
these assumptions, we can begin to impose some con-
ditions on what constitutes a “good” translation; in
effect, in a translation from grammar A to grammar
B:
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!n the interests of brevity, we shall often use the term gram-
mar to vefer to the collection of formal devices which comprise
all aspects of a linguistic description, encompassing both gram-
matical and lexical information. This is purely a notational con-
venience and in no way implies a commitment to the primacy
of syntax.
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» B and A should have the same input-output be-
haviour.

e B should conserve as much as possible of the con-
ceptual shape of A.

¢ B should have comparable or better run-time per-
formance with respect to A.

The first condition is a consequence, if somewhat
oversimplified, of the assumptions we made above,
that the main purpose of the excrcise is to preserve
useful information.

The second condition has to do with the relative
expressivity of the two formalisms involved. In ef-
fect, how much of the conceptual and organisational
structure of a linguistic description can pass over un-
changed, and to what extent do conceptual changes
that may have to be made obscure our subsequent un-
derstanding of the description as a whole?

The question of performance is not limited to the
relative execution speed of source and target gram-
mars, though its importance for subscquent mainte-
nance and development cannot be overstated. How do
we approach the case, for example, where the source
grammar runs norrmally in its native environment but
the translated form fails to terminate unless the de-
scription is completely restructured? And what if the
two systems use conflicting criteria for the apportion-
ment of procedural coutrol between the linguist and
the implementation?

Over the past year, we have been engaged on a num-
ber of experiments designed to investigate these porta-
bility issues, and in particular to bring out the impli-
cations behind the two related sets of questions about
expressivity and performance. In some ways, our work
is similar in spirit to the reusabilily experiments re-
ported in [Arnold et al., 1993}, though these appear
to have been limited to translation to a single, rather
general formalism, and to have been concerned almost
entirely with questions of relative expressivity.

The remainder of this paper discusses our own ex-

periments and coments on some of our more impor-
tant findings so far.



T Type | Explicit | Dedicated | Contel | Lazy | Host
Hicrarchy | Parser | Morphology | Determined | Fvaluation Language
un no | yes yes globally | yes | Comnnon Lisp
TI'S yes no 1o globally yes Coinmon Lisp
Cur yes no ho locally yes Prolog
ALE yes yes yes locally no Prolog

Table 1: A checklist of the significant properties of the sample implemnentations

2  Formalisms

In our experiments to explore the portability of comn-
plex constraint-based grammars we have considered a
sample of four implemented formalisms:

e Ub (Unification Device) [Johnson and Rosner,
1989, Rupp ¢! al., 1992].

o IS (Typed Feature Structures) [Bincle and Za-
jac, 1990).

o CUI (Comprehensive Unification  Formalisin)
[Dérre and Bisele, 1991, Ddrre and Dorna, 1993

s ALE (Attribute Logic Engine) [Carpenter, 1992]

The original reason for selecting this sample was
practical: the availability of thesc systems in the public
domain at the appropriate time™; but on further reflec-
tion this sample turns out lo be quite representative of
the major differences which may occur in formalisms
of this type (cl the very coarse-grained classification in
Table 1)*. T'he consequences of these distinctions are
explored in more detail below.

The nature of experients in portability requires
nob only the selection of source and target formalisins,
but also of example descriptions to be translated. In
this respect we opled for taking grannnars “from the
wild”, 1e. native code from one of the sample for-
malisus that was not designed with any prior consid-
cration of its potential portability. 'To be more precise,
we have worked with a small, but formally represen-
tative IIPSG grammar, originally provided as sample
data with the TS system, and a somewhat larger and
quite intricate Un grammar of French, which touches
on such thorny issues as clitic placement and object
agreement. 'The initial experiiments were in translat-
ing the TFS grammar into UD, and then subsequently
into the other two formalisms. Our attempts o trans-
late the up French grarnmar into ALE were not quite
as successful, as a substantive alteration to the struc-
turc of the syntactic analysis proved neccessary. The
sitnation with CUT is wore promising, even though
the definition of an explicit parsing strategy within
the formalism was required. 'These two lssues are dis-
cussed {urther in Section 4.

Yl%or the purposes of this paper we sec¢ no significant dif-
ferences between UD and its derivative ELU, sece c.g. [Fstival,
1990).

IWe did toy with the idea of entitling this paper: “OIf the
CUF remarks on how much ALE UD need to make sense of a
TI'S grammar”, but thought better of it.

4See also [Rupp, 1992, Johinson and Rupp, 1993]

3 Expressivity

The underlying assumption that is crucial to the na-
ture of this work is that these formalisms have highly
comparable expressivity, i.c. they share more than sep-
arates them. This is ceniral to the success of the en-
terprise since prescrvation of concepts defined by the
linguist is an essential part of grammar translation.
Consequenily, we are particularly concerned here with
the main constructs of a linguistic description: types,
relations and lists. We also consider, though to a lesser
extent, purely notlational devices like macros, which
can be uscful in organising the conceptual structare of
a description. Of lesser importance in the present con-
text is the treatment of logical structure, in particular
disjunction; in any case, this topic has received a good
deal of attention elsewhere (cf [Trost, 1993]).

3.1 Types

The role of feature struclure types in constraint-
based linguistics has gained increasing importance
as a result of the lncreasing popularity, some might
say dominauce, of IIPSG [Pollard and Sag, 1987,
Pollard and Sag, fortheomming]. In HPSG the type sys-
temn, or type signature, plays a significant role in defin-
ing the class of legal linguistic objects. In fact in the
current version of the theory only objects whose typ-
ing information is fully resolved are considered to be
adequate models of naturally occurring linguistic con-
structs. Each of the formalisms we consider permits
the definition of feature structure types, but the form
and cxpressivity of these type definitions differ (uite
considerably, as does the significance of type defini-
tions in the description as a whole. The extreme cases
arc 'I'T'S, in which the type system is virtually all there
is, and UD, where type definitions simply constrain the
attributes which can occur on a feature structure.

At this point we should note that a type system in
the “true¢” or 1IPSG sense, requires a notion of type
inheritance which can be further subdivided into three
concepls:

s subtlype/supertype relatious
e fecaturc appropriatencss conditions

e closure conditions

Type definitions which form a type system usually en-
code immediate subtypes and feature appropriatencss
conditions, which specify, at least, the attributes which
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head = subst | funct.
subst = noun | verb | adj | prep.

subst [PRD:boolean].

noun[CASE:case] .

verb[VFORM:viorm,
AUX: Dboolean,
INV: boolean].

Figure 1: A fragmentary type system rooted in head
and written in TFS

are licensed by the type and the types of their values,
as in Figure 1. Closure is usually a derived notion,
in that only attributes licensed by the type or one of
its supertypes may occur, an unlicensed attribute in-
curring either further subtyping or inconsistency. UD
type definitions cannot of themselves be used to define
a hicrarchical type system. They give an entirely flat
system with the most absolute closure and the most
minimal appropriateness conditions. The type defini-
tions of the other formalisms, TFS, CUF and ALE, dif-
fer mainly in the expressivity of their appropriateness
conditions, in order of decreasing cxpressivity, cf [Man-
andhar, 1993] for a more detailed comparison of these
type systems.

Evidently, one of the most basic hurdles to translat-
ing any of the other forinalisms into UD is the recon-
struction of the type system. This was the problem
posed in our initial experiment of porting an HPSG
grammar encoded in TFS into un. Our solution to
this problem, cf Figure 2, consists of separating out the
hierarchies of sub- and supertype dependencies from
those of feature appropriateness, so that each node
in the type hierarchy is represented by two unary ab-
straction definitions in the UD encoding. Un types® are
only utilised on the terminal nodes of the type hierar-
chy to ensure ultimate closure. In principle the use of
any pseudo-type definition will work its way down the
dependency hierarchy to the terminal node and then
back up the appropriateness hierarchy to gain more in-
formation. While this sounds dreadfully inefficient the
lazy evaluation strategy adopted in UD in fact avoids
most of the computational overhead.

3.2 Relations

The other main constructs used for expressing linguis-
tic concepts are relations — or more specifically def-
inite relations since most of these formalisms are in
fact instantiations of the Hohfeld and Smolka notion
ol a Constraint Logic Programming language [HShfeld
and Smolka, 1988]. While the same essential notion oc-
curs in all these formalisms the terminology is quite

5Type assignments in UD have the form: Variable == type.

head(X): !subst(X)
head(X): 'funct(X)
subst(X): !'noun(X)
subst(X): tverb(X)
subst(X): tadj(X)
subst(X): !prep(X)
Subst(X): <X prd> = yes/no
noun(X) X == noun
'Subst (X)

lcase(<X case>)
verb(X) X == verb
1Subst (X)
<X aux> = yes/no
<X inv> = yes/mno
tviform(<X vform>)

Figure 2: The head system rewritten in UD

diverse, including, for instance, rclational abstractions
(up) and parametric sorts (CUF). In fact in TFS rela-
tional constructs actually take the form of types with
features expressing their argument structure, although
a relational notation is provided to sweeten the syn-
tax slightly. Since definite relations occur in each of the
formalisms, their translation does not pose any imme-
diate problems, and many of their usages are the same,
e.g. accounting for relational dependencies and princi-
ples in HPSG-style grammars, ¢f Figure 3. Difficulties
do however occur where the usage of relational con-
structs 1s restricted. ALE imposes the restriction that
true definite relations may only be used in the phrasal
domain, attached to phrase structure rules. On first
lmpression, this could pose a serious problem for trans-
lations from other formalisms where relations may be
used freely in the lexicon. Qur experience has shown
that many such lexical relations can in fact be en-
coded using ALE macros, as in Figure 4, which may
be parameterised, but require a deterministic expan-
sion. Where operations involving recursive or disjunc-
tive relations are required there is still the option of
encoding the construct as a lexical rule, though with
the risk of losing some of the conceptual structure.

hfp(synsem: loc: cat: head: Head) :=
synsem: loc: cat: head: Head.

Figure 3: A CUF encoding of a Head I'eature Principle
as a unary parametric sort



np(Case) macro
Qnominal(Case),
@saturated,
Qlex(falsae).

Figure 4: An ALE macro definition

3.3 ]iliStS

The last class of constructs that we consider in detail
arc lists, or sequences. Our objective here is slightly
different than in the last two cases, since all the for-
malisms support lists and most cven supply the same,
Prolog-style, notation. There is however a more sub-
tle difference between un and the more strongly typed
formalisins, since in all the other formalisms the list
notation is purely syntactic and masks a typed feature
structure that is eithier atomic or has two attributes.
In ub where lists are “real” objects, the unifier is
more explicitly polymorphic, but also admits the pro-
vision of built-in functions over sequence data-types,
whose computational behaviour is more predictable
than that of defined constructs like relations. up pro-
vides both append and member (or perhaps better “ex-
tract”) over lists and - since strings are also a full
data type - - concatenation over strings. The effects
on performance of hard-coding frequently used con-
strucls can be quile dramalic. We do not pursue this
question liere since the associated design issues are
comparable with those associated with the decision to
incorporate dedicated modules which are discussed in
the next sectioi.

4 Performance

T'hie second class ol 1ssues which affect the porting of a
grammar from one formalisim to another is connected
with the relative perforinance of the two iustantia-
tions. We consider two aspects of this topic, the provi-
sion of explicit modules for processing in a particular
domaiu, such as syntactic or morphological analysers,
and the complex and thorny issuc of control informa-
tion, or who gets control of control. First, though, it
is worth emphasising why we consider performance to
be a significant issue at all. We are not - - yet, anyway
- particularly concerned with the real time perfor-
mance of “end-user” applications. We view all of the
systems that implement these formalisms as develop-
ment environments, even if they were originally devel-
oped as “academic” prototypes, in several cascs with
a view to demonstrating a particnlar theoretical per-
spective. Accordingly, we feel that it is more appropri-
ate to evaluate their performance with respect to the
developuient loop associated with gramnmar writing.
More concretely, if either the analysis or compilation
times exceed certain acceptable bounds (determined
by pragmatic, external considerations like the atten-
tion span of a grammar developer or lexicographer),

then the grammar under development should be re-
garded as being, in a purely practical sense, no longer
cxtensible. ‘Thesc may be rather harsh criteria, but we
believe they reflect a more realisiic sense of what these
systermns are good forf,

4.1 Dedicated Modules

A further explicit distinction arises between those
formalisins which include explicit modules for treat-
ing either phrasal or morphological structure (up,
ALE), and those which only provide a theorem prover
over linguistic coustraints (1'FS, CUF). In general, we
expect that, other things being equal, a formalism
whose implementation contains dedicated processors
for phrase structure parsing and/or string processing
will have better run-time performance than one which
does not, and this is indeed horne out empirically in
the behaviour of the systems we considered.

The presence or absence of an explicit parser also
has obvious consequences for porting experiments. [f
there is a parser in the target system and not in the
source system then some phrase structure component
must be supplied. This may just be a vacuous struc-
ture or it may be derived [rom existing components of
the source description. llence we have produced three
instautiations of the UD translation of the TFS-IIPSG
grammar: one involving a vacuous phrase structure de-
scription, one in which gramimar rules are derived {rom
the phrase structure definitions of the TFS encoding
and one in which full strings are associated with a lex-
icon of garbage tokens to avoid invoking either of un’s
dedicated modules for morphology and syntax.

Portability in the other direction poses considerably
greater problems, since not only must the phrase struc-
ture description be encoded, but some parsing strategy
must also be defined. In translating the up grammar
into CUF we encoded a head corner parser (cf e.g.
[van Noord, 1994]) dircctly in the CUF formalism. In
order to obtain adequate results with this strategy it
was necessary to make use of all the facilities offered
for determining both global and local process control.
This sheds a certain amount of doubt on the possibil-
ity of replicating the CUT results within TFS, wherc
explicit local control statements are not permitted. We
address the more general problems with the incorpo-
ration of control information in the next section.

While the guestion of translating more or less ex-
plicit phrase structure information is already a difficult
one, Lhe issue of porting morphological information is
quite chaotic. There is even less agreement on the in-
formation structure of morphological regularities than
there is on syntactic patterning, and this fact is re-
flected in the fact that two of the systerus we have
been working with do not offer any apparatus at all
for dealing with sub-word-level phenomena. Moreover,
the two formalisms in our sample which do admit ex-
plicit morphological descriptions difler so greatly iu

S7That is apart from acquiring publications or yualifications
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the form that these components take that they are
not directly comparable even with cach other”.

4.2 Control Information

The final issue that we turn to is one which is in ef-
fect most revealing about how system developers view
their users. In terms of our sample formalisms, we
once again can distinguish a two-way split, which ac-
tually cuts across all of the groupings that we have
observed above. The crude characterisation of this dis-
tinction is that some formalisms permit the grammar
writer to influence the local processing strategy, either
in the good, old-fashioned Prolog manner of ordering
clauses, as in ALE, or by providing additional control
information, such as delay statements in CUF. The
other two systems eschew this kind of local tweak-
ing of the processing strategy and rely on a global
specification of processing behaviour. Of course, this
apparent dichotomy is to some extent illusory. Those
systems which retain global control usually permit the
user to modify certain parameters of this behaviour,
and those that permit local control information must
also assume a global control strategy which may be
less forgiving than that in an apparently more totali-
tarian system. We have two observations in respect of
the control strategies adopted by these systemns.

The first of these is that some form of lazy evalua-
tion, such as that assumed as a global strategy in both
uDp and TFS, can become a requirement of a target sys-
tem when the source system permits lazy evaluation.
More explicitly a description may rely on a particu-
lar evaluation strategy that cannot be emulated in the
target system. This sitnation actually occurred in the
porting of the un French grammar to ALE. The lack of
a lazy evaluation strategy in ALE required a change in
the analysis of verbal structure®, so the ALE descrip-
tion is actually different from the original uD onc. In
a very real sense the port failed, in that, even though
in terms of the declarative formalism a compatible de-
scription was definable, it turned out that this was not
runnable. The class of portable descriptions between
ALE and any of the other formalisms is therefore fur-
ther constrained by the ALE’s underlying evaluation
strategy.

The second point we would like to make harks
back, in many ways, to the warnings inherent in Ka-~
plan’s “procedural seduction”. Kaplan [Kaplan, 1987]
reports experiences with the use of ATN parsers which
ended with both grammar writers and system devel-
opers altempting to improve the performance of the
same parser and effectively getting in each other’s way.
More generally, every time we think we may be mak-
ing a smart move by some kind of local fix to the con-

"In the case of ALE it would probably be incorrect to speak
of a morphological analyser since lexical forms are expanded at
compile time.

BAt the corresponding point in the CUF translation lazy
evaluation had to be explicitly enforced by the use of a delay
statement
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trol strategy we also make it more difficult for a really
smart optimising controller to do its job properly. Of
course we have progressed considerably in the declar-
ativity and monotonicity of our formalisms which we
now tend to view as specialised logics, but where we
have not learnt so much is in our view of the kind
of people who are going to use the implemented sys-
tem and what they are capable of. Where local con-
trol information is specified in the ordering of state-
ments in definitions, we are effectively requiring that
the grammar writer be an accomplished logic program-
mer. Where local control information is added to sup-
plement an existing grammar description the implicit
assuimption is even more demanding: that there are
individuals capable of appending local control infor-
mation to descriptions that other people have written
— or worse still translated — and of getting it right.
Both of these approaches ultimately assume that it
is not only possible but relatively easy to retain a de-
tailed picture of the behaviour of a complex constraint
solver.

When translating to a formalism which permits lo-
cal control from one which does not, the issue may
come down simply to a question of relative speed of
computation, which is important enough in itsclf in
practical situations, as we have already pointed out.
In cases where the target formalism, like ALE, requires
local control information in order to guarantee termi-
nation, much more is at stake.

5 Conclusion

We readily admit that the experiments reported here
are still quite unscientific — or, we would prefer to
think, prescientific — and we are still feeling our
way towards a more rigorous approach to the ques-
tion of comparability of implemented formalisms, even
though the task is noticcably simplified by recent con-
vergence of goals and methods in constraint-based
computational linguistics.

Nonetheless, our experience already suggests, in
keeping with [Arnold et al., 1993], that from the point
of view of relative expressivity it is possible to move
grammars from one formalism to another, and even
perhaps to conceive of new grammars which arc de-
signed from the start to be portable across a range of
related formalisms.

As regards the set of issues which we have classed to-
gether under the heading of performance, on the other
hand, there are still many open questions which nced
to be addressed before porting grammars to serious,
extensible and maintainable applications can become
a realistic enterprise.
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