TDL—A Type Description Language

for Constraint-Based Grammars

Hans-Ulrich Krieger, Ulrich Schafer
{krieger,schaefer}@dfki.uni-sb.de

German Research Center for Artificial Intelligence (DIFKI)

Stublsatzenhausweg 3, D-66123 Saarbriicken, Germany

Abstract

This paper presents DL, a typed feature-based repre-
sentation language and inference system, ‘Type delini-
tions in TDL consist of type and feature coustraints over
the boolean connectives. TDL supports open- and closed-
world reasoning over types and allows for partitions and
incompatible types. Working with partially as well as
with fully expanded types is possible. Diflicient reasoning
in TPL is accomplished through specialized modules.
Topical Paper. Topic Area: software [or NP, gram-
mar lormalism for typed leature structures.

1 Introduction

Over the last few years, constraiut-based gramnmar
formalisms have becotne the predominant paradigin
in uwatural language processing and computational
linguistics. Their success stems from the fact that
they can be seen as a monotonic, high-level represen-
tation language for linguistic knowledge which can be
given a precise matbhematical semantics. The main
idea of representing as much linguistic knowledge as
possible through a wique data type called feature
structure, allows the integration of different descrip-
tion levels without taking care of interface probleimns.
While the first approaches relied on annotated phrase
structure rules (e.g., PATR-1), modern formalisms
try to specily grammatical knowledge as well as lexi-
con entries entively through feature structures. Tu or-
der to achieve this goal, one must enrich the expres-
sive power of the first unification-based formalisins
with different forms of disjunctive descriptions. Lat-
er, other operalions came into play, c.g., {classical)
negation. Other proposals consider the integration of
[unctional/relational dependencies into the formalism
which make them 1n general Turing-complete (e.g.,
AL [/1]) However the most iimportant extension to
formalisins consists of the incorporation of types, for
lustance in modern systens like TI'S [15], CUN [6],
or ‘TDL 7). Types are ordered hierarchically as it is
kunown from object-oriented programming languages.
T'his leads Lo multiple inheritance i the description
of linguistic entities. Finally, recursive types are nec-
essary to describe at least plirase-structure recursion
which is inherent in all grammar formalisms which
are not, provided with a context-free backbone.

I the next section, we argue for the need and rel-
cvance of using types in CL and NLIP. After that, we
give an overview of TDL and its specialized inference
modules. Especially, we have a closer look on the
novel featires of TDL and presenl the techniques we
have employed in implementing 7DLC.

2 Motivation

Modern typed unification-based gratmmar formalisins
differ from early untyped systems in that they high-
light the notion of a feature type. L'ypes can be ar-
ranged hierarchically, where a subtype inhierits mono-
tonically all the inforination from its supertypes and
unilication plays the role of the printary information-
combining operation. A type definition can be scen as
an abbreviation for a complex expression, cousisting
of Lype constraints (concerning the sub-/supertype
relationship) and lealure coustraints (stating the ap-
propriate attribules and their valies) over the con-
uechives A, V, and - "Types serve as abbrevialions
for lexicon entries, 1D rule schicmata, and universal
as well as language-specific priuciples as is familiar
from UPSG. Besides usiug types as au abbreviation-
al 1ncans as terplates are, there are other advantages
as well which canuotl be accomplished by templates:

o STRUCTURING KNOWILEDGE
Types together with the possibility to order
theru hierarchically allow for a modular and
clean way to represent linguistic knowledge ad-
equately. Moreover, generalizations can be pat
al the appropriate levels of representation,

e LFIICIENT PROCESSING
Certain type constraints can be compited into ef
ficient representations like bit vectors {1], where
a GLB (greatest lower bound), LUB (least upper
bound), or a < (type subsumption) computation
reduces to low-level bit manipulation; see Section
3.2, Moreover, types release wutyped unification
from expensive computation through the possi
bility to declire them incorpatible. Tn addition,
working with type naes only or with partially
expanded types minimizes the costs of copying
structures during processing. ‘I'his can ouly be
accomplished i the systent makes a mechanisim
for type expansion available; see Section 3.4,

e T'YPX CHECKING
Type delinitions allow a grammmarian to declare
which attributes are appropriate for a given type
and which types are appropriate lor a given at-
tribute, therefore disallowing one to write incon-
sistent feature structures. Again, type expansion
is necessary to deterine the global consisteucy
of a given description.

¢ RECURSIVE TYPLES
Recursive types give a grammar wriler the op-
portunity to formulate certain functions or re-
lations as recursive type specifications. Work-
mg in the type deduction paradigin enforces a
grammar writer Lo replace the context-lree back-

893

bone through recursive types. Here, parameter-
ized delayed type expansion is the ticket to the
world of controlled linguistic deduction [13]; see
Section 3.4.

3 TDC

TDL is a unification-based grammar development en-
vironment and run time system supporting HPSG-
like grammars. Work on 7DL has started within the
DISCO project of the DFKI [14] (this volume). The
DISCO grammar currently consists of approx. 900
type specifications written in 7D and is the largest
HPSG grammar for German [9]. The core engine of
DISCO consists of TDL and the feature constraint
solver UDNE [3]. UDIAE itself is a powerful untyped
unification machinery which allows the use of dis-
tributed disjunctions, general negation, and function-
al dependencies. The modules communicate through
an interface, and this connection mirrors exactly the
way an abstract typed unification algorithm works:
two typed feature structures can only be unified if
the attached types are definitely compatible. This
is accomplished by the unifier in that #DiAé handles
over two typed feature structures to 7DL which gives
back a simplified form (plus additional information;
sec Fig. 1). The motivation for separating type and
feature constraints and processing them in special-
ized modules (which again might consist of special-
ized components as is the case in TDL) is twofold: (i)
this strategy reduces the complexity of the whole sys-
tem, thus making the architecture clear, and (ii) leads
to a higher performance of the whole system because
every module is designed to cover only a specialized
task.

3.1 7DC Language

TDL supports type definitions consisting of type con-
straints and feature constraints over the operators
A, V, =, and @ (xor). The operators are gencral-
ized in that they can connect feature descriptions,
corclerence tags (logical variables) as well as types.
TDL distinguishes between avm types (open-world se-
mantics), sort types (closed-world semantics), built-in
types (being made available by the underlying Com-
MON LIsp system), and afoms. Recursive types arc
explicitly allowed and handled by a sophisticated lazy
type expansion mechanism.

In asking for the greatest lower bound of two avm
types a and b which share no common subtype, 7DL
always returns a A b (open-world reasoning), and not
L. The reason for assuming this is manifold: (i) par-
tiality of our linguistic knowledge, (ii) approach is
in harmony with terminological (KI-ONE-like) lan-
guages which share a similar semantics, (iil) impor-
tant during incremental grammar/lexicon construc-
tion (which has been shown useful in our project),
and (iv) one must not write superfluous type defini-
tions to guarantee successful type unifications during
processing.

The opposite case holds for the GLB of sort types
(closed-world approach). Furthermore, sort types dif-
fer in another point from avm types in that they are
not further structured, as is the case for atoms. More-
over, TDL offers the possibility to declare partitions,

894

a feature heavily used in HPSG. In addition, one can
declare sets of types as incompatible, meaning that
the conjunction of them yields L, so that specific avm
types can be closed.

TDCL allows a grammarian to define and use param-
eterized lemplates (macros). There exists a special
instance definition facility to ease the writing of lex-
icon entries which differ from normal types in that
they are not entered into the type hierarchy. Input
given to TDL is parsed by a Zebu-generated LALR(1)
parser [8] to allow for an intuitive, high-level input
syntar and to abstract from uninteresting details im-
posed by the unifier and the underlying Lisp system.

The kernel of 7DL (and of most other monoton-
ic systems) can be given a sct-theoretical semantics
along the lines of [12]. It is casy to translate 7DC
statements into denotation-preserving expressions of
Smolka’s feature logic, thus viewing 7DL ouly as syn-
tactic sugar for a restricted (decidable) subset of first-
order logic. Take for instance the following feature
description ¢ written as an attribute-value matrix:

np
agreement

¢ =1 AGR [NUM sg }
PERS JIrd

SUBJ

It is not hard to rewrite this two-dimensional dec-
scription to a flat first-order formula, where at-
tributes/features (e.g., AGR) are interpreted as binary
relations and types (e.g., np) as unary predicates:

dz . np($) A AGR(¢, z) A agreement (x) A
NUM(z, sg) A PERS(z, 87d) A SUBJ(¢, z)

The corresponding 7DL type deflinition of ¢ looks as
follows (actually & is uscd on the keyboard instead
of A, | instead of V, instcad of —):

¢ 1= np A [AGR #x A agreement A [NUX sg, PERS 9rd],
SUBJ #z).

3.2 Type Hierarchy

The type hierarchy is either called directly by the
control machinery of 7DL during the definition ol a
type (type classification) or indirectly via the simpli-
fier both at definition and at run time (type unilica-
tion).

3.2.1 Encoding Method

The implementation of the type hicrarchy is based
on Ait-Kaci’s encoding technique for partial orders
[1]. Every type t is assigned a code y(t) (represented
via a bit vector) such that (t) reflects the reflexive
transitive closure of the subsumption relation with
respect to t. Deccoding a code ¢ is realized either
by a look-up (iff 3t . y=(¢) = t) or by computing
the “maximal restriction” of the set of types whose
codes are less than ¢. Depending on the encoding
method, the hierarchy occupies O(nlogn) {compact
encoding) resp. O(n?) (iransitive closure encoding)
bits. Here, GLB/LUB operations dircctly correspond
to bit-or/and instructions. GI.I3, LUB and < com-
putations have the nice property that they can be
carried out in this framework in O(n), where n is the

0]l
uer
Y O R —

Type hierarchy

_ fenl)

—_—

{e,and, 1}

L

Result

—_—

Dile
UDNe Al

({e,a A b, LY}, {yes, no, fail})

TFigure 1: Interface between TDL and UDMNe. Depending on the type lhicrarchy and the type of [1] and [2,
TDL cither returns ¢ (c is definitely the GLB of ¢ and b) or a Ab (open-world reasoning) resp. L (closed-world
reasoning) if there doesn’t exist a siugle type which is cqual to the GLB of @ and b. In addition, TDL determines
whether UDINE nust carry out feature term unification (yes) or not (no), L.e., the return type contains all the
information one needs to work on properly (fail signals a global unification lailure).

number of types.!

Alt-Kact’s method has been extended e 7°DL to
cover the open-world nature of avin types in that po-
tential GLB/LUB candidates (calculated frot their
codes) must be verified. Why so? Take the following
example to sec why this is necessary:

ri=yAz
e =y A Alald]

During processing, one can defiuitely substitute y Az
through @, but rewriting v’ A z’ to 2’ is not correct,
because @ differs from y' A 2/— -2’ 1s more specific as
a conscquence of the feature constraint [¢ 1], So we
make a distinction between the “internal” greatest
lower bound GLB<, concerning only the type sub-
swmption relation by using ATt-Kaci’s method alone
(which is however used for sort types) and the “ex-
ternal” one, GLBc, which takes the subsumption re-
lation over feature structures into account.

With GLB< and GLBg in mind, we can define a
generalized GLI operation informally by the follow-
ing table. This GLB operation is actually used during
type unification (fe = feature constraint):

[QU [y [vty | atonis | fer)
avr sce 1. L ;

WLy 1 L
sorls A sce 3

Jes sce 2. | L

where

! Actually, one can choose in 7PL between the two
encoding technigues and belween bit vectors and bignums
in CoMMmoON Lisp for the representation of the codes. In
our Lise implementation, operalions on bignums are a
magnitude {aster than on bit vectors.

avmy <= GLBg (cvmy, aving) = avmy
AV <= aviny = aving
. L <= GLB<(avmy, avms) = 1, via an
explicit inconmpatibility declaration
aving A aving, otherwise {open world)

9 avny » <=> expand(avmy 2) M fes 1 # L
’ L, otherwise
sorty <==> GLB<(sorty, sortp) = sorty
3. s01ty <= sort; = sorty
L, otherwise (closed world)
alom; » <= type-of(atom; ») < soris 4,
4. where sorty (is a built-in
1., otherwise
- atomng {=> alomy = alomy
9 L, otherwise
. T <= fey Nfes # L
6. .
L, otherwise

The encoding algorithin is also extended towards
the redefinition of types and the use of undefined
types, an cssential part of an incremental granm-
mar/lexicon development system. Redelining a type
means not only to make changes local to this type.
Instead, one has to redeline all dependents of this
type —all subtypes in case ol a conjunctive type del-
inition and all disjunction alternatives for a disjunc-
tive type specification plus, in both cases, all types
which use these types in their definition. The depen-
dent types of a type ¢ can be characterized graph-
theoretically via the strongly connected component
of t with respect to the dependency relation,

3.2.2 Deccomposing Type Definitions

Conjunctive, c.g., @ := y A z and disjuncilive type
specifications, e.g., @' ==y V 2’ are cutered differ-
cutly into the hierarchy: @ iuberits from its super-
types y and z, whercas o' defines itself thvough its

895

T

u v w
fuA vl

z |uAv A w|

Figure 2: The intermediate types [uAv| and [uAvAw)
arc introduced by TDC during the type definitions
z:=uAvAfe0)andy:=wAvAuAlal]

alternatives i’ and 2. This distinction is represent-
cd through the usc of different kinds of edges in the
type graph (bold edges denote disjunction elements;
see Tig. 3). But it is worth noting that both of them
express subsumption (z < y and 2’ = y') and that
the GLB/LUB operations must work properly over
“conjunctive” as well as “disjunctive” subsuinption
links.

TDL decomposes complex definitions consisting of
A, V, and - by introducing intermediate types, so
that the resulting expression is either a pure conjunc-
tion or a disjunction of type symbols. Intermediate
type names are enclosed in vertical bars (cf. the in-
termediate types |u A v| and |[uA v Aw|in Fig. 2},

The same technique is applied when using © (see
Fig. 3). @ will be decomposed into A, V and —, plus
additional intermediates. For each negated type -,
TDL introduces a new intermediate type symbol | -]
having the definition —¢ and declares it incompatible
with ¢ (sec Section 3.2.3). In addition, if ¢ is not
already present, TDL will add ¢ as a new type to the
hierarchy (see types |—b} and |~¢| in Fig. 3).

Let’s consider the example ¢ ;= b @ ¢. The de-
composition can be stated informally by the follow-
ing rewrite steps (assuming that the user has chosen
CNFY):

a:=bDc
a:=0bA-c)V(abAac)
a:=bVabAbVe)A(-bV=e)A(meVe)

a:=0bVe)A(=bV—e)
a = |bVe| A |mbV e

3.2.3 Incompatible Types and Bottom
Propagation

Incompatible types lead to the introduction of spe-
cialized bottom symbols (sec Fig. 3 and 4) which how-
cver are identified in the underlying logic in that they
denote the emply set. These bottom symbols must be
propagated downwards by a mechanism called bottom
propagation which takes place at definition time (see
Fig. 4). Note that it is important to take not only
subtypes of incompatible types into account but also
disjunction clements as the following exarmple shows:

896

Lip,-) Licme)

Figure 3: Decomposing a := b®c, such that a inherits
from the intermediates |bVe| and |=bV-c|.

bl_z :l/:/bb;‘} L Aby=Land aNby = L

One might cxpect that incompatibility statements
together with feature teri unification no longer lead
to a monotonic, set-theoretical semantics. But this
is not the case. To preserve monotonicity, onc must
assume a Z-level interpretation of typed feature struc-
tures, where feature constraints and type constraints
might denote differcnt sets of objects and the glob-
al interpretation is determined by the intersection of
the two sets. Take for instance the type definitions
A :=[a 1] and B := [b 1], plus the user declaration
L = AA B, meaning that A and B3 are incompatible.
Then A A B will simplify to L although the corre-
sponding feature structures of A and B successfully
unify to [1, b 1], thus the global interpretation is L.

3.3 Symbolic Simplifier

The simplifier operates on arbitrary TDL expressions.
Simplification is done at definition time and at run
time when typed unification takes place (cf. Fig. 1).
The main issue of symbolic simplification is to avoid
(i) unnecessary feature constraint unification and (ii)
queries to the type hierarchy by simply applying
“syntactic” reduction rules. Consider an expression
likezy A+ Az - A-zi... Az, The simplifier will
detect L by simply applying reduction rules.

The simplification schemata are well known from
the propositional calculus. They are hard-wired in
the implementation to speed up computation. For-
mally, type simplification in 7DL cau be character-
ized as a terin rewriting system. A set of reduction
rules is applied until a normal form is reached. Con-
fluence and termination is guaranteed by lmposing
a total generalized lexicographic order on terms (see
below). In addition, this order has the nice effects
of neglecting commutativity (which is expensive and
might lead to termination problems): there is only
one representative for a given formula, Thercfore,
memotzation is cheap and is employed in 7DL to
reuse precomputed results of simplified expressions
(one must not cover all permutations of a formula}.
Additional reduction rules are applied at run timne
using “sernantic” information of the type hicrarchy

(GLB, LUB, and =).

L=aAbAc

17 b ¢ -

L

Figure 4: Bottom propagation trigg
will simplify to L during processiug.

3.3.1 Normnal ¥orm

In order to reduce an arbitrary type expression o
a simpler expression, simplification rules must be ap-
plicd. So we have to define what it means for an
expression to be “simple”. One can either chioose the
conjunctive or disjunctive normal form. ‘The advan-
tages of CNV/DNFE are:

® UNIQUENESS
I'ype cexpressions i normal form are unlque
modulo commutativity. Sorling type expressions
according to a total lexicographic order will lead
to a tolal uniqueness of type expressions (see

Section 3.3.3).

@ LINEARITY
Y B N . e o N oy .
I'ype expressions in normal form are linear. Ar-
bitrary nested expressions can be transformed
ito flat expressions. "This may reduce the com-
plexity of later simplilications, e.g., at run time.

o COMPARABILITY
"T'his properly 1s a consequence of the two other
properties. Unique and linear expressions make
it casy to [ind or to compare (sub)expressions.
T'his is important for the memoization technique
deseribed in Section 3.3.4.

3.3.2 Reduction Rules

In order to reach a normal form, it would suflice
to apply only the schemata for double negation, dis-
tributivily, and De Morgan’s laws. However, in the
worst case, these three rules wonld blow up the length
of the normal form to cxponential sive (compared
with the number of literals in the original expres-
sion). To avoid this, other rules are used intermedi-
alely: idempotence, identity, absorption, cte. If they
can be applied, they always reduce the length of the
expressions. Fspecially at run time, but also at def-
inition time, it s useful to exploit information from
the type hierarchy. Further simplilicatious are possi-
ble by asking for the GLB, LUB, and <.

3.3.3 Lexicographic Order

To avoid the application of the commutativity rule,
we Itroduce a total lexicographic order ou type ex-
pressions, Together with DNIF/CNFE, we obtain a
unique sorted normal form for an arbitrary type ex-
pression. This guarantees fast comparability.

bollom propagation

e bAp -] b

—— - = [¢

I»(a,b,c}

red through the subtypes d and ¢ of b, so that a Ad A ¢ as well as a ne Ac

We defiue the order <y on n-ary norinal forms:
type <yp negated type <pyp congunction <pp dis-
Jgunction <y symbol <y string <yp numnber. For
the comparison of atoms, strings, and type wamnes,
we use the lexicographical order on strings and for
nurbers the ordering < on natural numbers.

Example: @ <pp b <pyp b <yp —a <yp a A b <y
e AN <ypaVh<ypaVbVe<ypaVl

3.3.4 Memoization

The memoization technicque deseribed in {10] has
been adapted inorder to reuse precompited results of
type sinplification. T'he lexicographically sorted nor-
mal form guarantees fast access to precomputed type
simplifications. Memoisation results are also uscd by
the recursive simplification algorithm to exploit pre-
computed results for subexpressions.

Sowne empirical results show the usefulness of mem-
oization. ‘The current DISCO grammar for Ger-
man consists of 88H types and 27 templates. Al-
ter a Mull type expansion of a toy lexicon of 244 in-
stances/entries, the memoization table contains ap-
prox. 3000 entries (literals arc nol memoized). 18000
results have been reused at least once (some up to
600 timnes) of which 90 % are proper simplifications
(i.e., the simplified formulae are really shorter than
the unsimplified oues).

3.4 Type Expansion and Coutrol

We noted earlier that types allow us to reler to comn-
plex constraints through the use ol symbol names.
Recoustructing the constraints which detenniue a
type (represeuted as a feature structure) requires a
complex operation called fype cxpansion. This is
comparable to Carpenter’s lotally well-typedness (5],

3.4.1 Motivation

Ln 7°PL, the motivation for type expansion is man-
ifold:

e CONSISTENCY
At delinition tiine, type expansion determines
whether the sct of type definitions (gramuar and
lexicon) is cousistent. At run time, type expan-
sion 1s nvolved in checking the satisliability of
the unification of two partially expanded typed
feature structures, c.g., during parsing,.

® ECONOMY
Trom the standpoint of efficiency, it does make
sense to work only with small, partially cxpand-
ed structures (if possible) to speed up feature
term unification and to reduce the amount of
copying. At the end of processing however, one
has to make the result/constraints explicit.

¢ RECURSION
Recursive types are inherently present in modern
constraint-based grammar theories like TTPSG
which are not, provided with a context-free back-
bone. Moreover, if the formalism does not al-
low functional or relational constraints, one must
specify certain functions/relations like append
through recursive types. Take for instance Alt-
Kaci’s version of the append type which can be
stated in 7DL as follows:
append 1= appendy V append; .
appendp == [FRONT < >,
BACK #1 A list,
WHOLE #1].
appendy = [FRONT < #first. #restl >,

BACK #tback A list,

WHOLE < F#first. #rest? >,

PATCH append A [FRONT #rest!,

BACK #back,
WHOLE #resi2]].
e TYPE DEDUCTION

Parsing and generation can be seen in the light of
type deduction as a nniform process, where ideal-
ly only the plionology (for parsing) or the seman-
tics (for generation) must be given. Type expan-
sion together with a sufficiently specified gram-
mar then is responsible in both cases for con-
structing a fully specified feature structure which
is maximal informative and compatible with the
input. THowever, [15] has shown that type ex-
pansion without sophisticated control strategies
is in many cases inellicient and moreover does
not guarantee termination.

3.4.2 Controlled Type Expansion

Uszkoreit [13] introduced a new strategy for lin-
guistic processing called controlled linguistic deduc-
{ton. His approach permits the. specification of lin-
guistic performance models without giving up the
declarative basis of linguistic competence, especial-
ly monotonicity and completeness. The evaluation of
both conjunctive and disjunctive constraints can be
controlled 1n this framework. For conjunctive con-
straints, the one with the highest failure probability
should be evaluated first. For disjunctive ones, a suc-
cess measure is used instead: the alternative with the
highest success probability is used until a unification
fails, in which case one has to backtrack to the next
best alternative.

TDL and UDNe support this strategy in that ev-
cry feature structure can be associated with its suc-
cess/failure potential such that type expansion can be
sensitive to these settings. Moreover, one can make
other decisions as well during type expansion:

e only regard structures which are subsumed by a
given type resp. the opposite case (c.g., expand
the type subeat-list always or never expand the
type daughters)

898

o take into account ouly structurcs under cer-
tain paths or again assume the opposite case
(c.g., always cxpand the value under path
SYNSEMILOC| CAT; in addition, it i1s possible fo
cmploy path patterns in the sense of pattern
matching)

e sct the depth of type expansion for a given type

Note that we are not restricted to apply only oue
of these settings—-they can be used in combination
and can be changed dynamically during processing.
It does make sense, for instance, to expand at cer-
tain well-defined points during parsing the (partial)
information obtained so far. If this will not result in a
failure, one can throw away (resp. store) this fully ex-
panded feature structure, working on with the older
(and smaller) one. However, if the information is in-
consistent, we must backtrack to older stages in comn-
putation. Going this way which of course assumes
heuristic knowledge (language as well as gramunar-
specific knowledge) results in faster processing and
copying. Moreover, the inference engine must be able
to handle possibly inconsistent knowledge, e.g., in
case of a chart parser to allow for a third kind of
edge (besides active and passive ones).

3.4.3 Recursive Types, Implementational
Issues, and Undecidability

The set of all recursive types of a given grain-
mar/lexicon can be precompiled by employing the
dependency graph of this type system. 'This graph
is updated every time a new type definition is added
to the system. Thus detecting whether a given type
is recursive or not reduces Lo a simple table look-up.
However the expansion of a recursive type itsell is a
little bit harder. In 7DL, we are using a lazy expan-
sion technique which only makes those constraints
cxplicit which arc really new. To pul it in anoth-
er way: if no (global or local) control information
is specified to guide a speciflic expansion, a recursive
type will be be expanded under all its paths (local
plus inherited paths) until one reaches a point where
the information is alrcady given in a prefiz path. We
call such an expanded structure a resolved typed fea-
fure structure. Of course, therc are infinitely many
resolved feature structures, but this structure is the
most general resolved one.

Take for instance the append example from the
previous scction. uppend is ol course a recursive
type because one of its alternatives, viz., append,;
uses append under the PATCH attribute. Expand-
ing append with no additional information sup-
plied (especially no path leading inside append,,
e.g., PATCHIPATCH| PATCH) yields a disjuuctive feature
structure where both append, and append, are sub-
stituted by their definition. The expansion then stops
if no other information enforce a further expansion.

In practice, one has to keep track of the visited
paths and visited typed feature structures to avoid
unnecessary expansion. To make expansion more el-
ficient, we mark structures whether they are fully ex-
panded or not. A feature structure is then fully ex-
panded iff all of its substructures are fully expanded.
This simple idea leads to a massive reduction of the
search space when dealing with incremental expan-
sion (e.g., during parsing).

It is worth noting that the satisfiability of fea-
ture descriptions admitting recursive type equa-
tions/definitions is in general undecidable. Rounds
and Manaster-Ramer [11] were the first having shown
that a Kasper-Rounds logic cnrichied with recursive
lypes allows one to encode a Turing machine. Be-
cause our logic is much more richer, we immediately
get the same result for 7DL.

However, onc can choose in TDL between a com-
plete expansion algorithm which mmay not terminate
and a non-complete one to guarantce termination (see
[2] and [5, Ch. 15] for sirilar proposals). T'he latter
case heavily depends on the notion of resolvedness
(sce above). In both cases, the depth of the search
spacc can be restricted by specilying a maximal path
length.

4 Comparison with other Systems

TDC is unique in that it implements many novel fea-
tures not found in other systemns like ALE [4], LIFE
[2], or TTS [15]. Of course, these systems provide
other features which are not present in our formal-
isni. What makes 7DL unique in compatison to them
is the distinction open vs. closed world, the availabil-
ily of the full boolean connectives and distributed
disjunctions (via UDIAE), as well as an implemented
lazy type expansion mechanism for recursive types
(as compared with LIFE). ALY, for instance, neither
allows disjunctive nor recnrsive types and enforces
the type lierarchy to be a BCPO. owever, il makes
recursion available through definite relations and in-
corporates special mechanisms for empty categories
and lexical rules. TTS comes up with a closed world,
the unavailability of negative information (only im-
plicitly present) and only a poor form of disjunctive
information but performs parsing and generation en-
tirely through type deduction (in fact, it was the first
system). LIFE comes closest Lo us but provides a se-
mantics for types that is similar to TFS. Moreover
the lack of negative information and distributed dis-
Junctions makes it again comparable with T'FS. LIFE
as a whole can be seen as an extension of PROLOG (as
was the case for its predecessor LOGIN), where first-
order terms are replaced by -terms. In this seusc,
IIFY is richer than our fomalism in that it offers a
full relational calculus.

5 Summary and Outlook

In this paper, we have presented TDL, a typed fea-
ture formalism that integrates a powerful feature con-
straint solver and type systeni. Botlt of them provide
the boolean connectives A V, and -, where a com-
plex expression is decomposed by employing interme-
diale types. Morcover, recursive types are supported
as well. In 7DL, a grammar writer decides whether
lypes live in an open or a closed world. This ef-
fects GLB and LUB computations. The type system
itself consisls of several infercnce components, cach
designed to cover efficiently a specific task: (1) a bit
vector encoding ol the hierarchy, (i) a fast symbolic
simplifier for complex type expressions, (iii) memo-
ization to cache precomputed results, and (iv) a so-
phisticaled type expansion mechanisni. T'he system

as described in this paper has been implemented in
CoMMON [Isr and integrated in the DISCO environ-
ment [14)].

The next major version of TDL will be integrat-
ed into a declarative specification language which al-
lows linguists to define control knowledge that cau be
nsed during processing. In addition, certain forms of
knowledge compilation will be made available in fu-
ture versions of TDL, e.g., the automatic detection ol
syntactic incomnpatibilitics between types, so thal a
type computation can substitute an extensive feature
term unification.

References

(1] Hassan Ait-Kaci, Robert Boyer, Patrick Lincoln, and
Roger Nasr. ldficient implementation of labtice op-
erations, ACM Transactions on Programming Lan-
quages and Systems, 11(1):115-146, January 1989.

2] Ilassan Ait-Kaci, Andreas Podelski, and Scth Copen
Goldstein. Order-sorted feature theory unilication.
Techn, Report 32, DIC Paris Research Lab., 1993.

[8] Rolf Backofen and Clivistoph Weyers. UDiNe- -a fca-
ture constraint solver with distributed disjunction
and classical negation. Technical report, DIYKI, Saar-
bricken, Germany, 1994. Forthcoming.

[4] Bob Carpenter. ALE—-the attribute logic engine us-
er’s guide. Version 3. “Lechmical report, Laboratory
for Computational Liuguistics. Carnegic Mellou Uni-
versity, Pittsburgly, PA, 1992,

(5] Bob Carpenter. The Logic of Typed Peature Struc-
tures. Cambridge University Press, Cambridge, 1992.

[6] Jochen Ddrre and Michael Dorna. CUF- a formal-
ism for linguistic knowledge representation. In
J. Dérre, editor, Computational Aspects of Con-
straint-Based Linguistic Description. DYANA, 1993,

[7] Mans-Ulvich Krieger and Ulrich Schifer, TDL- a
type description langnage for HPSG. Part 2: user
guide. Technical report, DI'KI, Saarbriicken, Ger-
many, 1994, Forthicoming.

[8] Joachim Laubsch. Zebu: A tool for specifying re-
versible LALR(L) parsers. Technical veport, Hewlett-
Packard, 1993.

[9] Klaus Netter. Architectine and coverage of the DIS-
CO gramwar. In S. Busemam: and K. Harbusch,
eds., Proc. of the DFKI Workshop on Natural Lan-
quage Systerns: Modularity and Re- Usability, 1993,

{10] Peter Norvig. Techniques for automatic memoization

witl applications to coutext-free parsing. Compula-

tional Linguistics, 17(1):91-98, 1991.

William C. Rounds and Alexis Manaster-Ramer. A

logical version of functional grammar. [Proceedings

of the ACL, pages 89-96, 1987,

Gert Smolka. A feature logic with subsorts. LILOG

Report 33, IBM Germany, Stuttgart, 1988,

[13) Hans Uszkoreit. Strategies for adding control infor-

{11

(12

=

mation to declarative grammars. In Proccedings of

the ACL, pages 237-245, 1991.

[14] . Uszkoreit, R. Backofen, S. Busemanu, A.K. Di-
agne, E.A. Hinkelinan, W. Kasper, 3. Kiecfer, H.-
U. Krieger, K. Netter, G. Neumann, S. Oepen, and
S.P. Spackman. DISCO--an HPSG-based NLP sys-
tem and its application for appointment scheduling.
In Proceedings of COLING, 1994.

[15] Rémi Zajac. Inheritance and constraiut-based

gramnar formalisms., Computational Linguistics,
18(2):159 182, 1992,

899

