ComMruTING FIRST AND FOLLOW FUNCTIONS FOR
FEATURE-THEORETIC GRAMMARS

Arturo Trujillo
Computer Laboratory
University of Cambridge
Cambridge C132 3QG, England
iat@Qcl.cam.ac.uk

ABSTRACT

This paper deseribes an algorithm for the com-
putation of FIRST and FOLLOW scts for use
with feature-theoretic grammars, in which the
value of the sets consists of pairs of feature-
theoretic categories. The algorithm preserves
as much information from the grammars as
possible, using negative restriction to define
equivalence classes. Addition of a simple data
structure leads to an order of magnitude im-
provement in execution time over a naive im-
plementation.

1 INTRODUCTION

The need for eflicient parsing is a constant one
in Natural Language Processing. With the ad-

vent of feature-theoretic grammars, many of

the optimization techniques that were applica-
ble to Context Free (CI7) grammars have re-
guired modification. For instance, a number
of algorithms used to extraclt parsing tables
from CI' grammars have involved discarding
information which otherwise would have con-
strained the parsing process, (Briscoe and Car-
voll, 1993). "This paper describes an extension
to an algorithm that operates over CF gram-
mar to make it applicable to feature-theoretic
ones. One advantage of the extended algo-
rithtn is that it preserves as much of the in-
formation in the grammar as possible.

1.1 PIRST anp FOLLOW

[n order to make more efficient parsers, it is
sometimes necessary to preprocess (compile) a
grammar to extract from it top-down informa-
tion Lo guide the scarch during analysis. The
first step in Che preprocessing stage of sev-
cral compilation algorithis requires the solu-
tion of two functions normally called FIRST
and FOLLOW. Intuitively, IF/RST(X) gives
us the terminal symbols that may appear in
initial position in substrings derived from cate-
gory X. I'OLLOW (X)) gives us the terminals
which may imwmediately follow a substring of
category X. For example, in the grammar S
-y NP VP; NP -+ det noun; VP - vira NI,
we get:

FPIRST(S) = I'LRST(NP) = {det},
'TRST(V P) = {vtra},

POLLOW (NP = {vlra, $},

FOLLOW(S) == FOLLOW (VD) = {$} ($

marks end ol input)

These two functions are important in a large
range of algorithms used for constructing ef-
licient parscrs. For example the T.IR-parser
construction algorithm given in (Aho ¢t al.,
1986):232 uses FIRST to compute item clo-
surc values. Another example is the compu-
tation of the /% relation which is nsed in the
construction of gencralized left-corner parsers,
(Nederhof, 1993); this relation is eflectively an
extension of the function FIRST.

2 CompruTING FIRST AND
FOLLOW

We propose an algorithm for the computa-
tion of FIRST wvalues which handles feature-
theoretic grammars without having to extract
a CI' backbone from them; the approach is eas-
ily adapted to compute FOLLOW values too.
An improvement to the algorithm is presented
towards the end of the paper. Before describ-
ing the algorithm, we give a well known proce-
dure for computing FIRST for CF grammars
(taken from (Aho et al., 1986):189, where € is
the empty string):

“To compute FIRST(X) for all grammay sym-
bols X, apply the following rules until no more
terminals or e can be added to any FIRST set.

1. If X is terminal, then FIRST(X) is X.

2. If X — ¢ is a production, then add ¢ to
FIRST(X).

3. I X is nonterminal and X -5 V1YY, is

a production, then place a in F'TRST(X) if

for some 4, @ is in FIRST(Y;), and € is in
all of FIRST (Y1) ... FIRST(Y;_1); that is,
Vi..Yiy == e If e is in FIRST(Y;) for all
J=1,2,.., k, then add ¢ to FIRST(X).

Now, we can compute FIRST for any string X
Xy.. X, as follows. Add to FIRST(X,X5..X,)
all of the non-¢ symbols of FITRST(Xy). Also
add the non-¢ symbols of FIRST(X,) if ¢ is in

FIRST(X,), the non-e symbols of FIRST(X3) if

e is in both FIRST(X) and FIRST(X3), and so
on. Finally, add ¢ to 'IRST(X,X,...X,,) if, for
all 4, 'TRST(X;) contains e.”

This algorithm will form the basis of our pro-
posal.

3 COMPILING FEATURE-
THEORETIC GRAMMARS

3.1 EQUIVALENCE CLASSES

The main reason why the above algorithm can-
not be used with feature-theoretic grammars is
that in general the number of possible nonter-
minals allowed by the grammar is infinite. One

876

of the simplest ways of showing this is where
a grammar accumulates the orthographic rep-
resentation of its terminals as onc of its fea-
ture values. It is not difficult to see how one
can have an infinite number of NPs in such a
gramimar;

NP[orth: the dog]
NP[orth: the fat dog]
NPJorth: the big fat dog], ete.

This means that FIRST(NPlorth: the dog))
would have a different value to I'TRST(NP|
orth: the fat dog]) even though they share
the same leftmost terminal. That is, the fca-
ture structure for the substring “det adj noun”
will be different to that for “det noun” even
though they have the same starting symbol.
This point is important since similar situations
arise with the subcategorization frame of verbs
and the semantic value of categories in con-
temporary theories of grammar, (Pollard and
Sag, 1992). Without modification, the algo-
rithm above would not terminate,

The solution to this problem is to define a
finite number of equivalence classes into which
the infinite number of nonterminals may be
sorted. These classes may be established in
a number of ways; the onc we have adopted is
that presented by (Harrison and Ellison, 1992)
which builds on the work of (Shieber, 1985): it
introduces the notion ol a negative restrictor
to define equivalence classes. In this solution
a predefined portion of a category (a specific
set of paths) is discarded when determining
whether a category belongs to an equivalence
class or not. For instance, in the above ex-
ample we could define the negative restrictor
to be {orth}. Applying this negative restrictor
to-cach of the three NPs above would discard
the information in the ‘orth’ feature to give us
three cquivalent nonterminals. 1t is clear that
the restrictor must be such that it discards fea-
tures which in one way or another give rise to
an infinite number of nonterminals. Unfortu-
nately, termination is not guaranteed for all
restrictors, and furthermore, the best restrie-
tor cannot be chosen automatically since it de-
pends on the amount of grammatical informa-

tion that is to be preserved. Thus, selection

of an appropriate restrictor will depend on the
particular grammar or system used.

3.2 VALUR SHARINC

Another problem with the algorithmn above is
that reentrancies between a category and its
[FIRST and FOLLOW values are not. preserved
in the solution to these functions; this is be-
cause the algorithm assumes atomic symbols
and these cannot encode explicitly shared in-
formation between categories. Ifor example,
consider the following naive grammar:

S > NP[agr: X] VEPagr: X]
VPlagr: X] = Vint[agr: X]
NP[agr: X] =» Det Nagr: X|

We would like the solution of F'OLLOW (N)
to include the binding of the ‘agy’ featwre
such that the value of FOLLOW resembled:
POLLOW (Nlagr : X]) == Vintlagr © X]. But
the algorithm above, cven with a restrictor,
would not preserve such o binding since the
addition of a new category to I'OLLOW(N)
is done independently of the bindings between
the new category and N.

4 Tur BASIC ALGORITHM

We propose an algorithm which, rather than

construct a set of eategories as the value of

FIRST and I'OLLOW, constructs a sct of pairs
each of which represeuts a category and its
[FIRST or FOLLOW category, with all the cor-
rect bindings explicitly encoded. TPor instance,
for the above example, the pair (VP[agr: X],
Vintfagr: X]) would be in the set representing
the value of the function IFTRST. In the next
section the algorithm for computing FIRS'T is
deseribed; computation of FOLLOW proceeds
in a similar fashion.

4.1 Sorvinag FIRS'T

When modifying the algorithm of Scction 2
we note that cach oceurrence ol a category iu
the grammar is potentially distinet from ev-
ery other category. In additiou, Tor cach cale-
gory we need to remember all the reentrancies

between it and the daughters within the rule
in which it occurs. IFinally, we assume that
any category in a rule which can unify with
a lexical category is marked in some way, say
by using the feature-value pair ‘ber: 47, and
that non-terminal categories must unify with
the mother of some rule in the grammar; the
latter condition is necessary because the algo-
rithm only computes the solution of I'TRST for
lexical categories or for categories that ocenr as
mothers.

In computing 'IRS'I" we iterate over all the
rules in the grammar, treating the mother of
each rule ag the category for which we are try-
ing to lind a FIRST value. Throughout each
iteration, unification of a daughter with the Ths
of an clement of IPIRST results in a modificd
rule and a modified pair in which bindings be-
tween the mother category and the rhs of the
pair are established. The modified mother and
rhs are then used to construct the pair which
is added to FIRST. For instance, given rule
X > ¥V oand paiv (1,), we unily ¥ and L to
give X7 - Y and (I/, '); from these the pair
(X', '} is constructed and added to 1FTRST.

The algorithin assumes an operation -«
which constructs a set S" = .S 4 < p in the fol-
lowing way: if pair p subsumes an clement o
of S then 8" = S - a + p; if pis subsumed
by an clement of S then S" = 5 else &' = S
4 9. 1t should be noted that the pairs con-
stituting the value of FIRST can themselves
be compared using the subsumption relation in
which reentrant values are subswmmed by non-
recntrant ones, and combined using the unifi-
cation operation. Thus in the principal step
of the algorithm, a new pair 1s constructed ag
described above, a restrictor is applied to it,
and the vesulting, restricted pair is +-<-added
to 'IRST. The algorithm is as follows:

1. Initialise First = {}.

2. Run through all the daughters in the
grammar. I X is pre-terminal, then
[irst = First o (X, XPP (where
(X, XD)!P means apply the negative re-
strictor ¢ to the pair (X, X)).

3. Tor cach rule in the grammar with mother

877

S = NP[agr: X, slash: NULL] VP[agr: X, slash: NULL)]
S = NP/[slash: NULL] NP[agr: X, slash: NULL] VP[agr: X, slash: NP]

VP[agr: X, slash: Y]
NP[agr: X, slash: NULL]
NP[slash: ND| =€

= Vitrafagr: X ter:
= Det[ter: +] Nlagr: X, ter: +]

+] NPJslash: Y]

Figure 1: Example grammar with value sharing.

X, apply steps 4 and 5 until no more
changes arc made to First.

4. If the rule is X — ¢, then [Ifirst =

First +< (X, €)1,

5. If the rule is X — Y1..Y;..Y,, then First =
First +< (X', a)!® if (Y/, @) has success-
fully unified with an element of ["irst, and
(Y/,e1)...(Y) {,€,1) have all successfully
and simultaneously unified with members
of First. Also, First = First+< (X', €)l®
it (Y{,e1)...(Y{, &) have all successfully
and simultanecously unified with clements
of I'irst.

6. Now, for any string of categories X,
Xl X, First = First+< (XX, o)l O
if (X7, a) has successfully unified with an
clement of Iirst, and a £ e. Also, for
i =2..n, First = First+< (X{...X}, a)!®
il (X/,a) has successfully unified with
an clement of [First, ¢ £ e, and
(X1, e1)...(X]_|, €i—1) have all successtully
and simultancously unified with members
of First. IMinally, First = First +<

(X1..X, e if (X, e)..(X],¢) have

all successfully and simultaneously unified

with members of First. (This step may be
computed on demand).

One observation on this algorithm is in order.
The last action of steps 5 and 6 adds € as a
possible value of FIRST for a mother category
or a string of categories; such a value results
when all daughters or categorics have ¢ as their
FIRST value. Since most grammatical descrip-
tions assign a category to € (e.g. to bind onto it
information necessary for correct gap thread-
ing), the pairs (X', ¢) or (X{..X!,¢) should
have bindings between their two elements; this
creates the problem of deciding which of the
¢s in the FIRST pairs to use, since it is possi-
ble in principle that each of these will have

878

a different value for ¢. In our implementa-
tion, the pair added to First in these situa-
tions consists of the mother category or the
string of categories and the most general cate-
gory for € as defined by the grammar, thus ef-
fectively ignoring any bindings that € may have
within the constructed pair. A more accurate
solution would have been to compute multiple
pairs with €, construct their least upper bound,
and then add this to First. However, in our
implementation this solution has not proven
necessary.

4.2 ExaAMPLE

Assuming the grammar in Fig. 1 and the neg-
ative restrictor @ = {slash}, the following is a
simplified run through the algorithimn:

o First = {}

e After processing all pre-terminal categorics
First = {(Det, Det), (N, N), (Vitra, Vira)}

(obvious bindings not shown).

e After the first iteration First = {(Det, Det),
(N,N),(Vira,Vira),(V Plagr X1, Viralagr
X1), (NP, Det), (NP, e)}

e Since ‘slash’ is in ®, any of the NDPs in the
grammar will unify with the lhs of (N7 €) and
hence S will have Vtra as part of its FIRST
value. First = {..,(V Plagr : X|, Viralagr : X]),
(NP, Det),(NP,e), (S, Det), (S, Vira)}

e The next itceration adds nothing and the first
stage of the algorithm terminates.

"The second stage (step 6) is done on demand,
for example to compute state transitions for
a parsing table, in order to avoid the expense
of computing IFIRST for all possible substrings
of categories. For instance, to compute FIRST
for the string [NP NP VP] the algorithm works
as follows:

o Iirst = {..,(VPlagr
(NP, Det), (NPe)...}

X, Virafagr : XJ),

e After considering the (st NI [irst =

{.,(INP NP VP), Det)}.

¢ Consideration of the sccond NI in the input
string results in no changes to I'irst, given the se-
mantics of 4, since the pair that it would have
added, ([NP NP VP, ¢, is already in 1Mirst,

¢ Since NPs can rewrite as ¢ (Le. (NDe)
s in Frst), irst =2 { (NP NP VD], Det),
(NP NP VP, Vira)}.

s [Pinally, ((NP NP VI, €) may not be added since
(V I, ¢) does not, unify with any clement, of #%rst.

5 IMPROVING THE SEARCH
THROUGIH [Frst

If the algorithim is run as presented, cach it~
eration through the grammar rules becomes
slower and slower., The reason is that, in step
5, when scarching F'erst (o create o new pair
(X7, a), every pair in Iirst is cousidered and
unification of its lhs with the relevant daughter
of X attempted. Since each iteration nornally
adds pairs to Farst cach iteration involves a
search through a larger and larger set; fur-
thermore, this search involves unification, and
in the case of a successful match, the subse-
quent construction and addition to First also
requires subsumption checks. All of these op-
erations combine to make cach additional cle-
meul in [%rst have a strong ellect on the per-
[ormance of the algorithm. We therefore need
to minimize the number of pairs scarched.
sonsidering the dependencies that exist be-
tween pairs in First one notices that once a
pair has been considered in relation with all
the rales in the grammar, the effect of that
pair has been completely determined. That is,
after a pair is added to First it need only be
cousidered up to and including the rule from
which it was derived, after which time it may
be excluded from further scarches. For exam-
ple, take the previous grammar, and in partic-
ular the value of Firgt after the first iteration
through the algorithm. "The pair (NP, Det),
added because of the rule NP[agr: X, slash:

NULL] = Detfter: +] Nlagr: X, ter: +], has to be
consgidered only once by every rule in the gram-
mar; after that, this pair cannot be involved in
the construction of new values.

A simple data structure which keeps brack
ol those pairs that need to be scarched al any
one time was added to the algorithm; the data
structure Look the form of a list of pointers to
active pairs in Mirst, where an active pair is
one which has not been considered by the rle
from which it was constructed. For example,
the pair (NP, Det) wonld be active for a com-
plete iteration from the moment that the cor-
responding rule introduced it until that rvule is
visited again during the sccond iteration. The
effect of this policy is to allow ecach pair in
IMirst 1o be tested against cach rule exactly
ounce and then be excluded [rom subsequent
scarches; this greatly rednces the mumber of
pairs considered for each iteration.

Using the Uyped Feature Structure system
(the LKB) of (Briscoe et al., 1993), we wrote
two grammars and tested the algorithm on
them. "Table 1 shows the average number of
pairs considered for cach iteration compared
to the average number of pairs in first.

A3 Rule Grammar | 21 Rule Grammar

Considered | Total | Considered | Total
Teer. U 3s | a5 84| 84
fer. 20 sl w97 | 187
TTter. 3] 12 120 o] 190

Table 1: Average number of pairs per iberation.

As we can see, alter the first iteration the
number ol pairs that needs to be considered
is less (mueh less for the final iteration) than
the total nmmber of pairs in First, Similar im-
provements in perfortmance were oblained for
the computation of FOTLLOW,

6 RELATED RESKEARCH

The extension to the LR algorithm presented
by (Nakazawa, 1991) uses a similar approach
to thal described here; the functions involved
however are those necessary for the construc-
tion of an LR parsing table (i.e. the GOTO
and ACTTON functions). One technical it

879

ference between the two approaches is that he
uses positive restrictors, (Shieber, 1985), in-
stead of negative ones. In addition, both of
his algorithms also differ in another way from
the algorithm described here. The difference
is that they add items to a set using simple
set addition whereas in the algorithm of Sec-
tion 4.1 we add elements using the operator
+<. Furthermore, when computing the clo-
sure of a set of items, both of the algorithms
there ignore the effect that unification has on
the categories in the rules.

For example, the states of an LR parser are
computed using the closure operation on a set
I of dotted rules or items. In Nakazawa's al-
gorithms computation of this closure proceeds
as follows: if dotted rule < A — w.Bx > is
in I, then add a dotted rule < C' — .y > to
the closure of I, where C and B unify. This
ignores the fact that both dotted rules may be
modified after unification, and therefore, his
algorithm leads to less restricted [values than
those implicit in the grammar., To adapt our
algorithm to the computation of the closure
of I for a feature-theoretic grammar would in-
volve using a set of pairs of dotted rules as the
value of I.

7 (CONCLUSION

We have extended an algorithm that manip-
ulates CF grammars to allow it to handle
feature-theoretic ones. It was shown how most
of the information contained in the grammar
rules may be preserved by using a set of pairs as
the value of a function and by using the notion
of subsumption to update this set. Although
the algorithm has in fact been used to adapt
the constraint propagation algorithm of (Brew,
1992) to phrase structure grammars, the ba-
sic idea should be applicable to the rest of the
functions needed for constructing LR tables.
However, such adaptations are left as a topic
for future research.

Finally, improvements in speed obtained
with the active pairs mechanism of Section 5
are of an order of magnitude in an implemen-
tation using Common Lisp.

860

ACKNOWLEDGEMENTS

This work was funded by the UK SERC. [
am very grateful to Ted Briscoe, John Carroll,
Mark-Jan Nederhof, Ann Copestake and two
anonymous reviewers. All rcrnaining errors are
mine.

References

Aho, A. V., R. Sethi, and J. D. Ullman , (1986).
Compilers - Principles , Techniques, and Tools.
Addison-Wesley Publishing Company, Read-
ing, MA.

Brew, C., (1992). Letting the cat out of the
bag: Generation for Shake-and-Bake MT. In
COLING-92, pages 610-616, Nantes, France.

Briscoe, E. and J. Carroll, {1993). Generalised
Probabilistic LR Parsing of Natural Language
(Corpora) with Unification-Based Grammars.
Computational Linguistics, 19(1):25-60.

Briscoe, E., A. Copestake and V. de Paiva (eds).
(1993). Inheritance, Defaults and the Lewicon.
Cambridge University Press, Cambridge, UK.

Harrison, 8. P. and T. M. Ellison, {1992). Re-
striction and Termination in Parsing with
Feature-Theoretic Grammars. Computational
Linguistics, 18(4):519-530.

Nakazawa, T., (1991). An Extended LR Parsing
Algorithm for Grammars using Featurc-Based
Syntactic Categories. In Proceedings Furopean
ACL 91, pages 69--74, Berlin, Germany.

Nederhof, M., (1993). Generalized Left-Corner
Parsing. In Proceedings Furopean ACL 93,
pages 305314, Utrecht, The Netherlands.

Head
Chicago Univer-

Pollard, C. and 1. Sag, (1992). Driven
Phrase Structure Grammar.

sity Press, IL.

Shieber, S. M., (1985). Using Restriction to Ex-
tend Parsing Algorithms for Complex-Feature-
Based Formalisms. In Proceedings ACL 85,
pages 145--152, Chicago, IL.

