
Fax: An Alternative to SGML

Kenneth W. Clmrch, William A. Gale, Jonathan I. tlelfman and David D, Lewis

AT&T Bell Laboratories
600 Mountain Ave.

Murray Hill, NJ 07974, USA
kwc @research.art.corn

We have argued elsewhere (Church and Mercer,
1993) that text is more available than ever before,
and that the availability of massive quantities of
data has been responsible for much of the recent
interest in text analysis. Ideally, we wotdd hope
that this data would be distributed in a convenient
format such as SGML (Goldfarb, 1990), but in
practice, we usually have to work with the data in
whatever format it happens to be in, since we
usually aren't in much of a position to tell tim data
providers how to do their business. Recently, we
have been working with a collection of 15,000
AT&T internal documents (500,000 pages or 100
million words). Unfortunately, this data is stored
in a particularly inconvenient format: fax.

It might seem odd to work with a corpus of faxes,
but faxes might well be the way of the future. Fax
is used a lot more than SGML (especially over tele-
phone networks). SGML might be more con-
venient for our research, but the world is using fax.

So, what can we do with a corpus of faxes? Right
now, we might not consider a fax to be as
"machine readable" as a text file, but if we set our
minds to it, it ought to be possible to do practically
anything with a fax that can be done with a text
file. In particular, it should be possible to search
(grep) for sections of interest in a fax, cut them out
of one document and paste them into another, or
use them as input to an arbitrary program. If we
are successful, the user shouldn't have to know
about markup languages (e.g., SGML), tables,
figures, floating displays, headers, footers,
footnotes, columns, fonts, point sizes, character
sets (e.g., ascii, unicode), and all sorts of other
"technical details." As tar as the user is
concerned, the system is just faxes (or bitmaps),
through and through.

1. Image EMACS: the Ultimate in WYS1WYG

Many of the pieces of this proposal are well
underway. The Image EMACS editor (Bagley and
Kopec, 1992; Bush, 1993), for example, makes it
possible to edit bitmaps more or less the same way
that one edits a text file. You can scan an image

into the computer, change a few words, re-justify a
t~aragraph, and then print it out again.

hnage EMACS is the nltimatc in WYSIWYG:
what you see is what you get, and vice versa. Most
WYSIWYG editors do only half the job; they let
you print out what you see, but they don't let you
scan it back in. The round trip is key. It makes it
possible to work with any document in any format.
(At worst, the document can be printed out and
scanned into hnage EMACS.) Most WYSIWYG
editors don't provide a complete round trip and
therefore their applicability is limited to a relatively
small fraction of the world's documents, those that
happen to be formatted in a suitable marku I)
language.

2. Fax-a-Query: the Ultimate in WYSIWYG
Interfaces for Infurmation Retrieval (1R)

Users will need to search bitmaps for sections of
interest. Traditionally, most IR systems have been
developed for collections of text files rather than
bitmaps. The user types in a query and the system
retrieves a set of matching documents. Some ot'
these systems depend on manual indexing, e.g.,
subject terms or hypertext links. Others allow the
user to type in an arbitrary piece of text as input.
Documents are retrieved lay matching words
against the qt, ery and weighting appropriately
(Salton, 1989).

These systems have been extended to retrieve
bitnmps, by first pre-processing the bitmaps with
an OCR program. Although the OCR results arc
far from perfect, and users would complain about
the OCR errors if they saw them, the OCR output
has been strewn to be more than adequate for
retrieval purposes (Smith (1990), Taghva et al (to
appear)).

But why should a user have to type in a query?
Why not provide a complete round trip capability?
If OCR were used on the queries as well as on the
documents, then the query could be a page of a
book, article, a fax, or whatever. As far as the user
is concerned, the system is just laxes (or bitmaps),
through and through.

525

Figure 1: An example of the fax-a-query prototype. A user is reading a document in a bitmap browser (left
panel), and comes across a topic of interest. The user sweeps a box over an interesting section of the
bitmap (inverse video at bot tom of left panel), which causes the corresponding words (produced by OCR)
to be sent to an information retrieval system. A relevant document pops up in another bitmap browser
(right panel).

We call this proposal Fax-a-Query, and illustrate it
in Figure 1. A user is reading a document in a
bitmap browser, and comes across a topic of
interest. The user sweeps a box over an
interesting section of the bitmap, which causes the
corresponding words (produced by OCR) to be
sent to an information retrieval system. A
relevant document pops up in another bitmap
browser.

Fax-a-Query is also useful for retrieving pictures
as well as text. Most picture retrieval system
require manual indexing, which can be very
expensive. However, since a picture is often
surrounded by useful text such as a caption, one
can find the picture by matching on the text.

We have applied a prototype Fax-a-Query system
to our database of 15,000 AT&T internal
documents. These documents were scanned iuto
the computer by the AT&T library for archival
purposes. They are stored in TIFF, format at 400
dots per inch, using Group 4 fax compression. It
took us about a minute per page or a year of real

time to OCR the collection and 40 hours of real
time to index the collcction with the SMART
information retrieval system (Salton and McGill,
1983, chapter 4). 1 The bitmap browser was
borrowed li'om tbe Ferret system (Katseff,
personal communication).

Fax-a-Query was also designed to be usable fi'om
a standard fax machine, for users that may be on
the road and don ' t have access to a terminal with a
window system. A user could fax a query to the
system ,and the system would fax back some

1. The OCR errors slow the indexing process considerably
since they make tile vocabulary too large to fit ill main
memory. Our data has a huge vocabulary (3 million
words), most of which are OCR errors. By comparisou, the
TREC text collection (Dumais, 1994) has a much smaller
vocabulary (1 million words). The difference in vocabulary
sizes is especially significant given that TREC is
considerably larger (2 gigabytes) tbau our OCR output (1
gigabyte).

526

relevant documents. In this way, a user could call
the borne office from any public fax machine
anywhere and access documents in a fax mailt)ox,
a private file computer, or a public library. (This
capability is currently limited by the fact that OCR
doesn't work very well on low resolution faxes.)

3. Do We Need OCR?

Fax-a-Query makes heavy use of OCR, hut does
so in such a way that users are often mtaware of
what is actually happening behind the scenes.
hnage EMACS works directly on the pixels, in
order to avoid OCR errors. Even though users can
be fairly well shielded from the limitations of the
OCR program, the OCR errors are fiustrating
nonetheless.

Two examples of the word "pair" are shown in
Figure 2. Both examples were extracted flom the
same document, trot from different pages. One of
them was recognized correctly and tile other wits
misrecognized as "liair". As can be seen in
Figure 2, the two images are ahnost identical.
Even a very simple-minded measure such as
Hamming distance would have worked better than
OCR, at least in tiffs case.

The "liair" error wits probably caused by
incorrectly segmenting the " p " into two letters,
and then labeling the left half of the " p " its an
' T ' and the second half as an ' T ' . This error is
particularly inexcusable since the spacing of the
letters within a word is completely determined by
the font. There is no way that " l i " should he
confusable with " p " since it would require
shilling the "1" with respect to the " i " in both
the horizontal and vertical dimensions in ways
that are extremely unlikely. The Hamming
distance approach would not make this kind of
error because it works at the word-level rather
than the character-level, and so it would not try to
shift parts of words (or letters) around in crazy
ways.

in general, we have found that two instances of
the same word in the same document are often
very similar to one another, nmch more so than
two instances from different doctnnents. Figure 3,
for example, shows a number of examples of the
word "using" selected from two different
documents. If we sum all of tile instances of
"using" across the two documents, as shown in
the bottom-most panel, we get a mess, indicating
that we can't use Hamming distance, or anything
like it, for comparing across two documents. But
if we sum within a single document, .'is shown in

the two panels just above the bottom-most panel,
then we find nmch better agreement, indicating
that something like Hamming distance ought to
work faMy well, as long as we restrict the search
to a single doenment.

Ttte strong document effect should not he
surprising. Chances are that all of the instances of
"using" have been distorted in more or less tile
slnne way. They were p,obably all Xeroxed about
eqttally often. The gain control on tile scanner
wits probably fairly consistent throughout. The
Ibm is likely to be the salne. The point size is
likely to be the same, and so on. Some authors
refer to these factors its defects (Baird, 1992), trot
we prefer to think of thein its document-specific
properties.

We have used this Ilamming distance approach to
build a predicate that compares two boxes and
tests whether the pixcls in the two boxes
correspond to the same word. In tile case of the
two "pairs" in Figure 2, for example, tile
predicate produces the desired result. This
distance measure has been used to implement a
search corn,hand. When the user clicks on an
instance of a word, the systent highlights the next
instance of the same word, by searching the
bitmap for the next phtce that has ahnost the same
pixels. 2

It is remarkable that this search command
manages to accomplish nutch of what we had beett
doing with OCR, but without the C (it is word-
based rather than character-based) attd withont the
R (it doesn't need to recognize the words in order
to search for the next instance of tile same thing).
This opens an interesting question: how much
natural hmgtutge processing can be done without
the C and without the R? For example, could we
count ngram statistics at the pixel-level without
giving the OCR program a chance to screw tip the
Cs and the Rs?

4. Conclusions: Bitnmps :tre The Way of The
Future

We have been working with a large corpus of
faxes (15,000 docnments or 500,000 pages or

2. It is possible to implement this search nmch more
efficiently by i)re-computing It few monmnts for each of the
words in the bitmap and using these moments to quickly
exclude words that are too big or too small, or too spread
out or llOt spread oat enough.

.527

528

100,000,000 words). Faxes raise a number of
interesting technical challenges: we need editors,
search engines, and much more. Of course, we
wouldn't have to work on these hard problems if
only people would use SGML. But, people aren't
using SGML. SGML may be more convenient for
us, but the world is using fax because it is more
convenient for them.

Fax hardware and software are everywhere:
hotels, airports, news stands, etc. Everyone
knows how to use a fax machine. Word
processors are more expensive, and require more
training and skill. The markup issues, for
example, are very demanding on the users. Part of
the problem may be the fault of the markup
languages, but the real problem is that the
concepts are just plain hard. Most users don't
want to know about tables, figures, floating
displays, headers, footers, footnotes, columns,
fonts, point sizes, character sets, and so on,

Libraries are scanning large numbers of
documents because scanning has become cheaper
and more convenient than microfiche. Our library
is scanning 105 pages per year. Our library has
also been trying to archive "machine readable"
text files in addition to the bitmaps, but with
somewhat less success. Because it is too expense
to re-key the text, they have been asking authors
for text files, but most authors aren't very
cooperative.

Even when the text file is available, we should
also archive the bitmap as well, because the
bitmap is more likely to survive the test of time.
We tend to think of the text file as the master
copy, and the bitmap and the hardcopy as a by-
product, when in fact, it should probably be the
other way around. When the first author was
finishing his Ph.D., he had to generate a copy of
the thesis for archival purposes. At the time, it
seemed that the school library was stuck in the
stone age, because they insisted on a hardcopy
printed on good paper, and they were not
interested in his wonderful "machine readable"
electronic version. In retrospect, they made the
fight decision. Even if the tapes had not rotted in
his basement, he still couldn't read them because
the tape reader is long gone, and the tape format is
now obsolete. The markup language is also
probably dead (does anyone remember R?), along
with the computer (a PDP-10), the operating
system (ITS), and most other aspects of the
hardware and software that woulff be needed to
read the electronic version.

The debate between text files or bitmaps is
analogous to the old debate between character-
based terminals such as a VT100 and bitmap
terminals. At the time, bitmap terminals seemed
wasteful to some because they required what was
then a lot of memory, but nowadays, it is hard to
find a character-based terminal anywhere, and it is
hard to remember why anyone would have wanted
one. How could you run a window system on
such a terminal? How could you do any
interesting graphics? There were solutions, of
course, but they weren't pretty.

So too, there might soon be a day when people
might find it hard to imagine why anyone would
want a text file. How could you do any interesting
graphics? Equations? There are solutions
(markup and include files), but they aren't pretty.
Of course, bitmaps require a little more space (a
400 dpi G4 fax takes about 20 times the space as
the equivalent text file), but the bitmap is so much
more powerful and so much easier to use that it is
well worth the extra space.

References

Bagley, S. and Kopee, G. (1992) "Editing Images of Text,"
Xerox, PARC.

Baird, H. (1992) Document hnage Defect Models, in Baird,
Bunke and Yam,'unoto (eds.) Structured Document hnage
Analysis, Springer-Verlag, Berlin, Germany, pp. 546-556.

Bush, M. (1993) Speech and Text.hnage Processing in
Documents, ARPA Human Language Technology, Morgan
Kaufmann Publishers, San Francisco, CA, USA., pp. 376-380.

Church, K. and Mercer, R. (1993) "lnt~3duction to the Special
Issue on Computational Linguistics Using Large Corpora,"
Computational Linguistics, 19:1, pp. 1-24.

Dumais, S. (1994) "Latent Semantic Indexing (LSI) and
TREC-2," in Ilarman, D. (ed.) The Second Text REtrieval
Conference (TREC-2), National Institute of Standards and
Technology, Gaithersburg, MD, USA.

Goldfarb, C. (1990) "The SGML l-landbook," Clarendon
Press.

Salton, G. and McGill, M. (1983) Introduction to Modern
hlformatian Retrieval, McGraw-Hin Book Company, New
York, NY, USA.

Salton, G. (1989) Automatic Text Processing, Addison-Wesley
Publishing Co., Reading, MA, USA.

Smith, S. (1990) "An Analysis of the Effects of Data
Corruption on Text Retrieval Perform,'mce," Thinking
Machines Corp., DRg0-1, Cambridge, MA, USA.

Tughva, K, Bo~ack, J. and Condit, A. (to appear) "Results of
Applying Probabilistic IR to OCR Text," in Seventeenth
International ACM SIGIR Conference on Research and
Development in Information Retrieval.

[] browser - - - ~

I l l . t..,/, 7. :..J --;. I

Figure 2: Two instances of the word "pai r" and their pixel-wise differences. The pixel-wise differences
show that the two images are ahnost identical, and yet, one was recognized correctly as "pa i r" and the
other incorrectly as " l ia i r" . Even a very simple-minded measure such as llamnfing distance would have
worked better than OCR, at least in this case.

u sltu

/ l / u s i n g

slngj
I ~ ~ - I ~ c ~ ~ - -

]usmgl s l n
W T

O

Figure 3: Hamming distance is ranch more ai~propriate within documents than across documents. The
upper left shows 9 insta,lces of "us ing" extracted from one docume,~t and the upper right shows 4 more
instances extracted from another document. The 9 instances are summed into one image (middle left) and
the 4 instances are summed into another image (iniddle right). These two images (middle left and middle
right) indicate a high degree of interhal consistency within a document. The bottom image is the sum of all
13 instances. Clearly, there is more consistency within documents than across documents.

529

