
C O N C U R R E N T LEXICALIZED DEPENDENCY PARSING:
A BEHAVIORAL VIEW ON ParseTalk EVENTS

Susanne Schacht, Udo tlahn & Norbert Br6ker

C L I] - Computational Linguistics Research Group
Freiburg University

D-79085 I:reiburg, Germany

email: {sue, hahn, nobi }@coling.uni-freiburg.dc

Abstract. The behavioral specification of an obj~t-ori-
cnted grammar model is considered. The model is based
on full lexicalization, hcad-oricntation via valency con-
straints and dependency relations, inhcritancc as a means
for non-redundant lexicon specification, and conct, rrcncy
of computation. The compntation model relies upon the
actor l)aradigm, with concurrency entering throt~gh asyn-
~:hronous message passing between actors. In pa,ticular,
we here elaborate on principlcs of how the global lyzhavior
of a lexically distributexl grammar and its corresponding
parser can be specified in terms of evcnt type networks and
cvent networks, resp.

1 I N T R O D U C T I O N

In this paper, we propose a grammar model that combines
lexical organization of grammatical knowledge with lexi-
calized control of the corresponding parser in a coherent
object-oriented specification framework. We build upon
recent developments in the lield of linguistic grammar the-
ory which have already yiekled a rigid lexical mod,lariza-
tion, but extend thcm by assigning full procedural auton-
omy to lexical units. In particular, we treat lexic,'ll items as
active lexieal processes commtnticating with each other by
message passing. Titus, they dynamically establish hetero-
geneous communication lines in order to dctcnninc each
lexical item's fimctional role. While the issue of lexieali-
ze(I control has early becn invcstigatcd in the l)aradigm of
conceptual parsers (e.g., Riesbcck & Schank 1978), and
word expell parsing in particular (Small & Ricger, 1982),
we here elaborate on improving ils lcxical commtmication
facilities by formalizing the parscr's message passing pro-
tocol according to actor computation principles. As this
protocol allows for asynchronous message passing, con-
currency enters as a theoretical notion at the level of grant-
mar specification, not only as an implcmentational fcatttrc.
Correspondingly, we introduce a behavioral description in
terms of event type networks which rcpresent grammatical
interrelations at the level of actor definitions, while event
networks represent the I)arsing process in terms of actual
messages exchanged between instantiated actors. The Par-
seTalk model outlined in this paper can thereft)re be con-
sidcred as an attempt to rcmedy the lack of theoretical
integration of parallelism at the level of grammar design.

2 ParseTalk's G R A M M A R M O D E L

The ParseThlk grammar mcxlel (of. Br6kcr, Hahn &
Schacht (1994) for a more comprehensive treatment) con-
siders dependency relations between words as the funda-
meatal notion of lingnistic analysis. This corresponds to
the head-orientation found in most modern grammar theo-
ries. Grammatical spccilications are given in the format of
valency constraints attached to each lexical unit, on which
lhe comptttalion of concrete dependency relations is
based. A modilicr is said to depend on its head if the mod-
ifier satisfies the constraints placed on it. These constraints
incorl×)rate iulormation about the hierarchy of word
classes (encapsulating declarative and behavioral proper-
ties of lexical items), nmrphosyntax (containing Ihe gram-
malical conditions of the combination of lcxical items to
l)hrascs as expressed by a unification [ormalism, similar to
Shieber, 1986), linear ordering (stating precedence rela-
tions between a head and its modiliers), and permitted con-
ceptnal roles (expressed in terms of a hybrid, classilica-
tion-based knowledge represenlation formalism; cf. Mac-
Gregor, 1991). Dependencies are thus asymmelric binary
relations that can be established by local computations
involving only two lexical items 1 and simnllaneonsly lake
grammatical as well as conceptual well-formedness crite-
ria into account.

P,y way of inheritance (for a rcccnt survey of apl)lying
inheritance mechanisms in modern gramlnar theory, of.
l)aclemans, I)e Sine(It & Gazdar, 1992) the cnlirc collec-
tion of lexical items is nrganizc(l in a lexieal hierarchy, the
lexical items forming its leaves and the intermediary nodes
representing grammatical generalizations in terms of word
classes. This form of specification is similar to variotts
proposals currently investigated within the unification
grammar connnunity (e.g., Evans & Gazdar, 1990).

t We exlend this definition to incoqxmLtc the notion of phrases as well.
Ahhough phrases are not explicitly represenled (c,g., by non-lexical
categories), we consider each complete suhtrce of Ihe delx~ndency tree
a phrase (Ihis definition allows discontinuous phrases as well). A
dependency is thus not trealed a~: a relation between words (as in Word
Grammar (lludson, 199(], p.1171, but between a word and a dependent
phrase (as in l)epcndency Unification (]rammar (llellwig, 1988)). The
root of a phrase is taken to be the rel~resent:ttlve of tim whole phrase,

489

3 P a r s e T a l k ' s C O M P U T A T I O N M O D E L

Although the object-oriented pm-adigm seems to bc well
suitexl to support the distribution of data through encapsu-
lation and the distribution of control via message passing,
most object-based calculi rely on synchronous messages
and dmrcfore do not provide for concurrency. One of the
few exceptions that aim at the methodologically clean
combination of object-oriented features with concurrency
and distribution is the actor model of computation (Agha
& Hewitt, 1987). It assumes a collection of independent
objects, the actors, communicating via asynchronous,
point-to-point message passing. All messages art guaran-
teed to be delivered and processed, but in an unpredictable
order and indeterminate time. Each actor has an identity
(its mail address), a state (consisting of the addresses of its
acquaintances, i.e., the set of other actors it may send mes-
sages to) and a behavior (i.e., its reaction to incoming mes-
sages). Tile arrival of it message at an actor is called an
event; it triggers an action described by the corresponding
method definition, a composition of the following atomic
actions: creating a new actor (create actorType (acquain-
tances)); sending a message to an acqtminted or a newly
created actor (send actor message); or specifying new
acquaintances for itself (become (acquaintances)). An
actor system is dynamic, since new actors can be created
and the communication topology is reconfignrable in the
course of actor computations.

The actor model does not contain synchronization
primitives, but we assume one-at-a-time serialized actors
for our specification, i.e., actors that cannot process more
than out message at a time and that process each message
step by step (cf. Hcwitt & Atkinson (1979) for expressing
this convention in terms of patterns of simple actors). The
distribution of comlmtation among the collection of actors
is dins dm only source of parallelism. Furthermore, in or-
der to compute complex, but well understo~x[and locally
determined linguistic conditions and functions, such as
unification of feature structures iuld queries sent to a (con-
ceptual) knowledge base, we esud)Iish a synchronous re-
quest-reply protocol (of. Licberman, 1987).

The ParseTalk model extends Ihe formal foundalkms
of the basic actor model according to the requirements set
up by tilt natural language processing application. These
extensions are expressible by the primitives of the basic
model. We distinguish between word actors, relations
between word actors and a special set of messages word
actors exchange.

• Word Actors: The grammatical knowledge associated
with each lexieal item is represented in a word actor
definition. Upon instantiation of a specific word actor,
d~e acquaintances specilied in the definition will be ini-
tialized with actors which stand for the lexical item's
morphosyntactic features, its conceptu,'d representation,
valency constraints and, after instantiation and subse-
quent parsing events, governed lexical items and further
grammatical relations (e.g., adjacency, textual rela-
tions).

• Word actor relations: Acquainumces of word actors
are tagged according to linguistic criteria in order to
serve as navigation aids in linguistic structures (the
message distribution mechanism described below). Tex-
tual relations, e.g., are distinguished from linear adja-
cency and hierarchical dependency relations. Tagging
imposes a kind of typing onto acquaintances that is
missing in odmr actor systems.

• Word actor messages: In contrast to simple messages
which unconditionally trigger the execution of the cor-
responding method at the receiving actor, we define
complex word actor messages as full-lledgcd actors
with independent computational capabilities. Departure
and arrival of complex messages are actions which are
performed by the message itself, laking the sender and
the target actors as parameters. Upon arrival, ,'~ complex
message determines whether a copy is forwarded to se-
lected acquaintances of its receiver and whether the re-
ceiver may process the message on its own. Hence, we
redefine an arrival event to be an uninterruptable se-
quence of a computation event and distribution events.
The computation event corresponds to an re'rival of a
simple message at the receiving word actor, i.e. an event
in the basic model; it consists of the execution of an ac-
tor's lee(hod that may change the actor's state and trig-
ger additional messages. The distribution events pro-
vide for the lorwarding of the message and are realized
by cre,qtiug new complex mess.ages. They depend on the
(unchanged) state of the receiving actor or on the result
of the computation event and take place before and after
the computaliou event. This extension accounts for the
complexity of interactions I)ctween word actors.

We define tl~c semantics of an actor program in terms of
two kinds of networks. First, we consider event types
which refer to message keys and can easily be determined
from ,'1 given actor program. Next, we turn to actual events
that involve instantiated actors. Both, event types and
events, arc partially ordered by the transitive closures of
relations alll()ng them, causes t and causes, resp., that give
rise to event type networks and event networks.

A program (in our apl)lication: a lexical grammar) is
given by a set of actor d@nitions. The definition charac-
lerizcs the type ()1" an actor. Given a program, event types,
written as I* <- key], can be syntactically deterlnined by
inspecting the method delinitions wilhin the program. Let
an actor type aName I)e defined by:

.£kelg£J.~ aName (acquaintance 1 ... acquaintancek)
meth key 1 (param 1 ... paramrn) (action1)
. . .

meth key n (param 1 ... paraml) (actionn)
with action i delincd by the following grammar fragment:

action ::= action; action
] if condition (action) [~ (action)]
I .keJ3£L actor messageKey (param*)
] becom_____~e (acquaintance*)

Wc may now map message keys to sets of message keys,
defining the function sctipt~,r~zm e as follows:

490

scriptaNa,ne : Keys -4 2 7(¢~.

scriptaA(ome (keYi) = send(action!) with

sent{(action) :=

{msgKey } if action = send actor msgKoy (param, ...)
setu{(al) u sertd{a2) if action = [[condition a I else a 2
sent{(al) if action = if condition a 1
sentf((at) u senaC(a2) if action = a l ; a2

else

For a program P, script is the union of all given script,m,, e
with name e { a r o m a I P contains a delinition for aNamo }
and yields a set containing the keys of those messages that
can be provoked by a ,nessage with the key mKey. Now, a
relation between event types is delined hy causes!:

([* ¢= mKey], [* ¢=- nKey]) < c a t t s e s t

:<=> nKey ~ scrit)t(mKey).

Turning to actual events now, we define an actor a/as being
composed of an identity n (taken from lhe set of natural
numbers, N), a state e Sand a behavior e 9{. l lence, .9/,
the set of actors, is a subset of N x S x O~.

,5 = 2 { (y: z ,) ly is an identifier, z e A] , a n element of`5 asso-

ciates a c q n a i n t a n c e n a m e s a n d v a l u e s , w h i c h a r e a c t o r s .

Since actors change their acquaintances, their state is valid
in lime, i.e. lit a p a r t i c n l a r e v e n t . T h e s t a t e o f an a c t o r a.

receiving a message m will be written as S¢l a <= ml' Slate
changes caused by the message apply at the end of the
event [a <=- m] (by executing a become action).

q# is a set of fnnetions, delhted as folk>ws: The state
s<, e of an lictor ,X'flt tile event e (the reception of a mc.ssage
m) is determined by iL,; initial state given after its creation
event, arid the repeated application of its state transition
function, transit~c, which maps pairs of stales (s c S) and
messages (m ~ 9¢1 c .90 to new slates:

tra,sitx: (`5 x 9t4} -> ,5

The sand actions an actor ,1" perlk)rms at a partictflar event
are expressed as pairs of target actors and messages to be
sent; the target actors are either ,'lcqnainlances o[" the send-
ing actor or supplied as message parluneters. They are de-
termined by the function

task~ (,5 x Ov 6 -> 2 (m('q) × ~6

where ~ l (N) denotes the projection onto the first compo-
!tent of N, viz. N.

The behavior of an actor A'can then be stated by the
function be~ar;e~Ce q~ that comhines transit,@nd tas~.,,f.in
that it maps pairs of suites and messages to pairs consisting
of the new slate of the actor and a set of pairs of target
actor identities and ,nessages, viz.,

bebave~: (S x 9v~ -> (S x 2 (Tq(& x 94)).

Abstracting from a local actor perspective the behavior
of an entire actor system (in our applicatkm: lhe lexical
parser composed of a collection of word actors) is deter-
mined by the way multiple events are related under Ihe
causes relation (though events are written as [actor <=

,nessagel, the message key is used as an abbreviat ion for
the messages in Section 5):

([a ~ nil, [,6<=- h i)< ca,ses

:¢~ (Xl(&, '0 e tasfCa(Sa,[a~ ml, "0.

Event.'.; that ;ire not ordered by the transitive closure of
causes can take place in parallel or, if they refer to the
same lictor, ill an arbitrary order.

4 E V E N T T Y P E N I . , ; T W O R K S P E C I F I C A T I O N
O F A G R A M M A R F R A G M E N T

The protocol (messages and associated actions) for estab-
lishing dependencies on!lined below encodes structural
restrictions of the dependency structure (projectivity),
ensures incremental general!on of dependency trees, and
provides a domesticated fornl of concurrency.

Consider a newly instantiated word actor wn (cf. Fig. 1)
se,'!rching bottom-up for its head by sending a sea rch-
Head message to its immediate left neighbor, w, . l. The
s e a r c h H e a d message is recursivcly forwarded by a se-
quence of distrihution events to the head of each receiving
actor (i.e., w,,_ I, w k, wj); mess,'lges only p.'lss the outer
fringe of the already eslablished dependency tree (these
am circled in lvig.1). Since only the actors receiving the
s e a r c h H e a d message may later govern w n, projective
trees are generated 2.

""X - ~ - - - s e a r c h H e a d]

, / " ' ~ i,j,k,n: text posit ions /

z z . ~ " ' - o

¢'i ~ %
I;iflure l, [:olwarding a search message

To allow for domesticated concurrency as required for
adequate linguistic and cognit ive processing (Clark &
Gibson, 1988), a receipt protocol allows w n to keep track
of all events (transitively) caused by its s e a r c h H e a d mes-
sage. This protocol requires each actor receiving a sea rch-
Head message to reply Io the initiator of the searchHead
message hy a receipt message when the receivers compu-
lalion has linished 3. Since complex messages can be
quasi-recursively forwarded, the number of replies cannot
be determined in advance. Therefore, the receipt message
contains all actors to which the s e a r c h H e a d message has
been dislrihnted, enabling the initiator w n to keep Irack of
all receivers and wait for a receipt message from each 4.
Only after all events caused by the s e a r c h H e a d message
have terminated, the next word actor w,,~l is instantiated
by sendiag a scanNext message to the text scanning actor.

2 Of coutse w may be l, ovemed by any word actor govemhlg w. lml
' ' I 1 J , p

due (o Ih¢ incremenlality of the analysis, each head c,f wj must Im
hx!ated to Ihe right of w n.

3 Note Ihat "eom[]tllalioll" here may irldlltIe a tll.llllbef of evetlls Lhat are
caused by Ihe soarchHoad message, viz. the hoadFound and hoadAa-
copted messages described below.

,I We plall I0 extend our algolilhm It, a gCllefic [efl1"litla|[olI dcteclion
scheme similar to tim proposal in Shavit & France;,,, 1986.

491

I I'1O Cotlslrailll / I conx t raml I / ..~./;~o~,, t
[sa t i s f ied / [..... ;",.~,,/ [/ J ~ ' ~ J Is tructural]

... ~ . ~ ' ~ / l a m b i g m ' t y J ~ ~ ,

L - " t. I)..,i,.. I

• , • .- modijiers'

j (,.<=-,.,,...,-o, j]i<-.,,,o.. I..o..,, , , L'/J

Figure 2. Event type network

Upon reception of a searchHead m e s s a g e , a word
actor w k checks whether w n satisfies the couslraints for
one of Wk'S valencies. If no constraints are satislied, a
receipt message is sent back to signal termination of this
particular event at w k. If w n may Iill a valency of w k, a
headFound message is sent back to w,, thus possibly
imposing additional grammatical restrictions on the tar-
geted item. If w, is still ungoverned, it adjusts its gram-
matical description (and those of iLs modiliers, if neces-
sary, by sending updateFoatures to each) and signals
acceptance of the new head hy a headAccepted message
directed to w k. These interrelations are sttmmarized in the
event type network in Fig.2.

This three-step protocol allows ,qlternative attachmenL,;
to be checked in parallel (concurrent processing of
searchHead messages at different actors). Structural
ambiguities are detected whenever a headFound message
arrives at an actor w n which is already governed. In this
case, w n duplicates itself and its modifiers (using the
copyStrueture message), resulting in w,, and asks the
prospective head to copy itself (hy sending a duplicat-
eStructure message), w n becomes head of the copies of
the modifiers of w n (because each is answering the copy-
Structure message with a hoadAccepted message) and
will be governed by the copy of the head (because the
copy sends another headFound message to wn; for a more
detailed discussion, of. Hahn, Schacht & BrOker, forth-
coming).

The unpacked representation of antbiguity is necessary
because of the simultaneous incorpor,'~tion of conceptual
analysis into the parsing process. Difl'ercnt syntactic struc-
tures result in different conceptual analyses, which means
fllat there is no common structure to share anymore (cf.
Akasaka (1991) for a similar argument). The set of actors
representing several readings of one lexical item can pro-
ceed concurrently, thus introducing further concurrency.

5 E V E N T N E T W O R K S P E C I F I C A T I O N O F A
S A M P L E P A R S E

We will now consider a partM event network in order to
illustrate the parse of "Compaq en twicke l t e inen Notebook
mi t einer 1 2 0 - M B y t e - H a r d d i s k "5. At some point after
reading the sentence, the configuration shown on I7ig.3
will h;tve been reached. The preposition [mit] 6 is not yet
integrated due to a mandatory valency that must tm satis-

lied prior to making conceptual restrictions available.
Upon establishment of a corresponding dependency be-
tween Imit] and [ttarddisk] (Fig.3), [mit] slarts to search
for its head. This search results in the dependency tree
depicted on Fig.4.

enlwickelt

Compaq No|el)ook

einen

mit

120-MB-ltarddisk

/ s ~ J e c

einer

Figure 3. Contiguration before application of "mit" via saarehHead

entwickelt

Compaq Notebook

einen m i %

120-M B-I larddisk

einer i
Figure 4. After establishment of dependency

The events caused by the satisfaction of the mandatory
valency at [mit] (headAecepted event at top left of Fig.5)

[mit] <= ileadAt:cepted)

i

l,'igure 5. Event network

5 A rough English translation of this reads as "Compaq develops a note-
book with a 120-MByte haul divE'. Notice that from a syntactic per-
speclive cilher Ihe verb "entwicla~lt" or the noun "Notebook" may take
a preposilional phrase wifll "mlt" specifying an instrument or a part,
resp. This |x~teutial stnlctural ambiguity dc~s not (recur in our m~xlel
due to parallel evalualicm of constraints in different knowledge sources.

6 Word actors represenllng a lexical item "x" will be wrilten as [x].

492

are specified in tim event network in Fig.5. The dotted line
indicates an alternative possibility how the seanNext
event could have been triggered. Of the two receipt events,
the last one taking place triggers the seanNext event (note
that both involve the same actor, (mitt, so that they must
be ordered, even in a distril)utcd system without global
lime).

6 CONCLUSIONS

The ParseTalk model of natural language understanding
aims at the integration of a lexically distributed, depen-
dency-I)ased grammar Sl)CCification with a solid formal
foundation for concurrent, object-oriented parsing. The
associated concurrent compu~ttion model is based el} the
actor paradigm of object-oriented programming, with sev-
eral extensions relating to special reqtfirements of na tu r a l

langtmge processing. These cover mechanisms for com-
plex message distribution, synchronization in terms of
request-reply protocols, and the distinction of dislriht, tion
and computation events. We have shown how the semantic
specification of actor systems can be used for the consider-
ation of global interrelatious of word actors at the gram-
mar level (event type networks) and the parser level (event
networks). While event type networks provide a general,
global view on the behavioral aspects of ottr grannnar
specification, the current formalism slill lacks the ability to
stlPi)ort r e t i na l reasoning about c o m p u t a t i o n a l prope, rties

of distributed systems, such as deadlock freeness, termina-
tion. On tim oflmr hand, event networks illustrate the cont-
imtations during real parses, but do not allow predictions
in general cases. Providing a type discipline for actor deti-
nitions may Ix: a reasonable apl)roach to till the method-
ological gap between both layers of description.

The ParseT?flk model has been exlmritnentally vali..
dated by a prototype system, a parser for Germ;re. The cur-
rent fifll-form lexicon contains a hierarchy of 54 word-
class specifications and nearly 1000 lexieal entries; a mod-
ule for lnorphological analysis is trader development. The
parser's coverage is currently restricted to the analysis of
assertional sentences, with focus on complex noun and

prepositional phrases. The Parse'l?flk system is imple-
inented in Smalltalk, with extensions that allow for coarse-
grained parallelism through physic,'d distribution in a
workstation cluster (Xu, 1993) and asynchronous ntessage
passing. It is loosely coupled with lhe l.OOM knowledge
representation system (MacGregor & Bates, 1987). We
currently use a knowledge base with 120 concept delini-
}ions covering the domain of information technology. Fur-
thennore, an interactive graphical grammar/parser engi-
neering workbench is supplied which supports the devel-
opment and maintenance of the ParseTalk grammar sys-
leln.

Acknowledgments

The work reported in this paper is funded by grants fl'om
DFG (grants no, l la 2097/1-l, t la 2097/1-2) within a spe-
cial research programme on cognitive linguistics. We like
to thank our colleagues, P. Neuhaus, M. Klenner, and Th.
llanneforth, for valuable comments and supllort.

References

AGIIA, G. & IIEWI'Iq; C, (1987). Concurrent programming using
actors, In A.Yonezawa & M. Tokoro, Eds. Object-Oriented Concur-
rent l'rogramming, pp.37-53. MIT Press.

AKASAKA, K. (1991). Parallel parsing system based on dependency
grammar. In C. ltmwn & G. Koch, Fxls. Natural Language Under.
standing and logic Programming, IlL pp, 147-157. North-I lolland.

BR(')KF.R, N.;]IAIIN, U. & SCI1ACIIT, S. (1994). Concurrent lexicali-
zed dependency parsing: the l'arseTalk model COLIN(; '94: Prec.
15th Intl. Conf. on Computational Linguistics (this volume).

CI.ARK, R. & (]]I~.SON, E. (1988), A parallel m(xlel for adult sentence
processing. Prc, c. lOth Annual Conf. of the Cognitive Science Soci-
ety. pp.270-276, l lillsdale, N J: 1.. F.rllxmm.

DAFI.EMANS, W.; l)e SMEDT, K. & GAZI)AI~, (1. (1992), Inheritance
in natural language processing. Computational l,inguistics, lg (2),
205-218.

FVANS, R, & GAZI)AR, G. (199(}). "lTae DATR Papers, Vol. 1, Univ. of
Sussex, IIrighlon. (Cognitive Science Research Paper, CSRP 139).

IIAIIN, U.; SCIlACIIT, S. & FIR()KF.R, N. (fonficoming). Concurrent,
object-oriented natural language parsing: tire ParseThlk m(xlel.
International Journal of Ilnman-Computer Studies, SF, ecial Issue
on Object-oriented Approaches in Artificial Inlelligenee and
Ilnman-Computer Interaction,

tlF.I.I~WIG, 1~ (1988). C.fiart parsing accolding to tire slot and filler prin-
ciple. COLING '88: Prec. 12th Intl. Conf. on Computational Lin-
guistics. Vol.l, pp.242-244.

IIF.WITI', C. & ATKINSON, R, (1979). Specification and proof tech-
niques R~r smializers. Iied;J ;. Trans'actiom" on Software Engit;eering,
SI,;-S (1), 10-23.

l l lJ D.'q O N, R. (1990). English Word (;ram*mar. I~ a sil 1~ lack well,
I.II:nI{I,IMAN, I1. (1987). Concmrenl object-orle,ted programming in

Act 1. In A. Yollezawa & M. Tokoro, F.ds. Object-Oriented Concur-
rent Prograt~uning. pp.9-36. MI'I' Press.

MaeGRFZ~OI~, R. (1991). "Itm cw~lving technology of classilicalion-
based knowledge representation syslems. In J. Sowa, l!d. Principh!s
of Semantic NetworL~'. Exploration,~" in the Representation of
Knowledge. pp.3g5-4(X). Morgan Kaufmam*.

MacGl~liGOl(, R. & I~A'I'F.S, R. (1987). The LOOM Knowledge Repte.
sentation System. University of Sou}hem California (ISI Reprint
Series, ISI/RS-87-188)

RIF.SI]F.CK, C, & SCIIANK, R, (1978). Comprehensioll by computer:
CXlW.ctation-based ;tmdysis of sentences in eonlext, In W.J,M [.ev-
eh & G.IL Flores d'Arcais, Eds. ShMies in the Perception ofl.an.
St}age. pp.247-293. J. Wiley,

SIIAVIT, N & FRANCI'~Z, N. (1986). A new approach to detection of
locally indicative stability. In 1+. Kolt, Ed. AutotmJla, Languages
and I'rogramming. Proceedings ICALP 1986. Springer.

SIIIF.I~ER, S. (1986). An In}redaction to Unifteation-based Approache,~.
to Gratmnar. Chicago University Press

SMALl., S & RIF.GFI~., C. (1982). Parsing and comprehending wiHI
word exlmrts (a Iheop), alld its realization). In W. l.efinmt & M. Rin-
gle, Eds. Strategies for Natural l~Jnguage Proce.~wing. pp.g9-147.
L. l :. l lhaum.

X U, W. (1993), l)L~'trilmted, Shared and PersLvtent Objects. A Model for
Distributed Object Oriented Programmblg. l.ondol~ Universily,
l)ept, of Computer Science (Ph.l),l)iss.).

493

