468

Emergent Parsing and Generation with Generalized Chart

HASIDA Kaiti
Electrotechnical Laboratory
1-1-4 Umezono, Tukuba, Ibaraki 305, Japan
E-mail: hasida@etl.go.jp

Abstract

A new, flexible inference method for Horn logic pro-
gram is proposed. It is also a drastic generalization of
chart parsing, partial instantiation of clauses in a pro-
gram roughly corresponding to arcs in a chart. Chart-
like parsing and semantic-head-driven generation emerge
from this method. With a parsimonious instantiation
scheme for ambigunity packing, the parsing complexity
reduces to that of standard chart-based algorithms.

1 Introduction

Language use involves very complex interactions among
very diverse types of information, not only syntactic
one but also semantic, pragmatic, and so forth. It is
hence inappropriate to assume any specific algorithm
for syntactic parsing or generation, which prescribes
particular processing directions (such as left-to-right,
top-down and bottom-up) and is biased for specific
types of domain knowledge (such as a context-frec
grammar). To account for the whole language use,
we will have to put many such algorithms together,
ending up with an intractably complicated model.

A better strategy is to postulate no specific algo-
rithms for parsing or generation or any particular task,
but instead a single uniform computational method
from which emerge various types of computation in-
cluding parsing and generation depending upon vari-
ous computational contexts.

For example, Earley dednction (Percira & Warren,
1983) is a general procedure for dealing with Horn
clauses which gives rise to Earley-like parsing when
given a context-free grammar and a word string as
the input. Shicber (1988) has generalized this method
so as to adapt to sentence generation as well. Those
methods fail to give rise to efficient computation for a
wide varicty of contexts, however, because they pre-
scribe processing directions such as left-to-right for
parsing and bottom-up for generation. They also lack
a general way of efficient ambiguity packing unlimited
to context-frece grammars. Hasida (1994a) proposes a
more general inference nethod for clansal form logic
programs which accounts for efficient parsing and geu-
eration as emergent phenomena. This method pre-
scribes no fixed processing directions, and the way it
packs ambiguity is not specific to context-frec gram-
mars. However, it is rather complicated and has greater
computational complexity than standard algorithms
do.

In this paper we propose another inference method
for Horn logie programs based on Hasida (1994a), and
show that efficient parsing and generation emerge from
it. Like that of Hasida (1994a), this method is to-
tally constraint-hased in the sense that it presupposes
no fixed directions of information flow, but it is more
efficient owing to a parsimonious method of instanti-
ation. In Section 2 we define this inference method,
which is a generalization of chart parsing, and may
be also thonght of as a connection method or a sort of
program transformation. Section 3 illustrates how effi-
cient parsing and generation emerge from this method
without any procedural stipulation specific to the task
and the domain knowledge (syntactic constraints). See-
tion 4 introduces a parsimonious instantiation method
for ambiguity packing. We will show that owing to this
method the efficiency reaches that of the standard al-
gorithms with regard to context-free parsing. Section b
concludes the paper by touching upon further rescarch
directions.

2 Partial Instantiation

A constraint is represented in terms of a Horn clanse
program such as below.

{a) =p(A,B) ~A=a{C).
{(b) p(XY) -X=a(Y).
(¢) p(UW) =p(U.V) -p(V.W).

Names beginning with eapital letters vepresent vari-
ables, and the other names predicates and fanctors.
The atomie formulac following the minus sign are neg-
ative (body) literals, and the others are positive (head)
literals. A clause withont a positive literal is called
a top clause, whose negation represents a goal (top-
level hypothesis), which corresponds to a query in Pro-
log. For instance, top clause (a) in the above program
is regarded as goal JA, B, C{p(4, B) A A =a(C)}. In
general, there may be several top clauses. The pur-
pose of computation is to tell whether any goal is sat-
isfiable; and if so obtain an answer substitution for the
terms (variables) in a satisfiable goal. We consider the
minimal Herbrand models as usual. So the set of an-
swer substitutions for A in the above program is {a(B),
a(a(B)), a(aa(B))), - -}.

A graphical representation of this program is shown
in Figure 1. Here each clause is the set of the literals
enclosed in a dim closed enrve. A link connecting ar-
guments in a clause is the term (variable) filling in

Pigure 1: A graphical representation of a program.

those arguments. (It is a hyperlink when there are
more than two arguments.) A transclansal link repre-
gents the unifiability between two corresponding argn-
ments of two unifiable literals. (Neglect the arrows for
a while.)

A hypothesis is a conjunction of atomic formulas
and bindings. The premise of a clause (i.e., the con-
junction of the atomic formulas and bindings which
appear as negative literals) is a hypothesis. An ex-
pansion for a hypothesis is a way of combining {in-
stances of) clauses by resolutions so as to translate the
hypothesis to another hypothesis involving bindings
only. We will refer to an expausion by the sequence
of clauses in the order of leftmost application of res-
olution using their instances.! In the above program,
for example, expansion (¢, b, b) translates the top-level
hiypothesis s(A,B) A A=a{C) to a hypothesis A=a(C)
A C=a(B). An expansion of a clanse is an expansion of
its premise. We will simply say ‘an expansion’ to mean
an expansion of the top-level hypothesis. A program
represents a set of expansions, and the computation as
discussed later is to transform it so as to fignre out cor-
rect hypotheses while discarding the wrong expansiouns
(those entailing wrong hypotheses).

We say that there is a dependency between two
terms when those terms are unified in some expansion,
and the sequence of terms (including them) mediating
this unification is called the dependency path of this
dependency. In Figure 1, for instance, the dependency
hetween A and X is mediated by dependency path A-X|
A-U-X, A-U-U-X, and so on. There is a dependency be-
tween C and B, among others, because of the unifia-
bility of the two —e=a(s)s, though this unifiability is
not explicitly shown in Figure 1. We say a dependency
between two terms is consistent when they are not
bound by inconsistent bindings. All the dependencies
in Figure 1 are consistent.

A solution of the program is an expansion in which
every dependency is consistent. So the computation
we propose in this paper is to transform the given pro-
gram in such a way that every dependency be consis-
tent. To figure out dependencies, we use a symbolic
operation called subsumption, and delete the parts
of the program which contributes to wrong expansions

LHere we mention the order among the literals in a clause
just for explanatory convenience. This order is not significant
in the computation discussed later,

only. Tor example, supposc there is an inconsistent
dependency between terms e and . We create an
instance ' of /# by subsumption operations to be dis-
cussed shortly, so that every expansion containing an
instance of i contains an instance of a dependency
path between « and . We can then delete the clause
containing 3’ and probably some more parts of the
program without affecting the declarative semantics
of the program. Below we will define a computational
procedure in such a way that the set of the possible
expansions eventually represent the set of all the soln-
tions.

Subsumption operation is to create subsumption
relationship. We regard each part (clause, atomic
formula, term, ete.) of a program as the set of its
instances, and say that a part £ of the program sub-
sumes another part 7 to mean that we explicitly know
that £ D 7. We consider that a link is subsnmed by 4
if and only if one of the terms it links is subsumed by
§. We say term 4 is an origin of 5 when 9 is subsumed
by 4. In this paper we consider that every origin is a
hound term (the term filling in the first argument of
a binding). Let us say that two clauses (or two liter-
als) are equivalent when they are of the same form
and for each pair of corresponding terms the two teris
have the same set of origins.

Subsuniption relation restricts the possibility of ex-
pansions so that if term 7 is subsumed by another
term 8, then cvery expansion containing an instance
of 7 must also contain an instance of 6. Subswnption
relation is usclul to encode structure sharing among
expansions. In subsumption-based approaches, a term
may subsume several non-unifiable terms and thus the
first term is shared among the latters. However, that
is impossible in unification-based approaches, where
different expansions cannot share the sane instance of
a term or a clause.

A partially instantiated clause is a clause sone
of whose terms is subsumed by another term in possi-
bly another clanse. For instance,

(1) a(&:.2) -b(Ri ;) ~<(5.2).
is a partial instantiation of the following clanse:
(2) a(X.2) -b(X.Y} —<(Y,Z).

A represents a term subsnmed by term A2 Hereafter
we say just ‘clause’ Lo refer to both uninstantiated
clauses and partially instantiated clauses.

A program consisting of such clauses is a gener-
alization of a chart (Kay, 1980). A chart is a graph
whose nodes denote positions between words in a sen-
tence and whose arcs are regarded as context-free rules
each instantiated partially with respect to at most two
such positions. For instance, an active are from node
i to node j labelled with [A — ¢ 7 o (] is an instance
of rule A — B C with both sides of B instantiated by
positions ¢ and j. This arc approximately corresponds

to (1).%

2

his notation is problematic because it is unclear whether
two oceurrences of A in a clause denote the same term. In this
paper they always do.

3However, an are in a chart does not precisely correspond to
a partially instantiated clause derived from a program encoding

469

A subsumption operation is to extend subsump-
tion rclation by possibly creating a partially instanti-
ated clause, A subsumption operation is character-
ized by the origin, the source, and the target. The
origin (let it be §) is a bound term. The source (o)
and the target (r) are arguments. o should already
be subsumed by the origin, but 7 should not be so.
They should be connected through a transclausal link
X. Let the literal containing o be p. Also let the literal
containing 7 be 7, and the clause containing them be
®. There are two cases for subswmption, and in both

cases o comes to be linked through A with an argument

which is an instance of 7 subsumed by 6.

In the first case of subsumption operation, which
we call unfolding, a partial instantiation @' of @ is
created. They are equivalent except that the instance
7! of T in ®' is subsumed by 8. After the unfolding, o
is linked through X to the instance of 7 in @' instead
of the original 7, and accordingly p is linked to the
instance of 7 in ¥/, Let 7" be 7 after the unfolding.
Then 7 Ur" =7, 7' 07" = §, and v’ = 7 N o hold.
This implies 7' € § and 7" No = . So 7" and o are
not unifiable.

Tor instance, the two subsumption operations indi-
cated by the two arrows in Figure 1 are unfoldings. In
cither case, the origin and the source are both A. The
target in the left is X and that in the right is U. We
obtain the program in Figure 2 by these operations,

Figure 2: After snbsumptions to X and U by A.

where partial instantiation (bl) and (c1) of (b) and
(c) have been created, respectively.

In Figure 1, the subsumption operation through
the (invisible) link comnecting C and Y is not exe-
cutable now, because the unification represented by
this link presupposes the unification of A and X through
the dependency paths A-X; A-U-X, A-U-U-X, and so on,
That is, it is only when C subsumes an instance (let it
be Y’) of Y that subsumption from C to Y’ is possible.
(This subsumption is an unfolding without any copy,

a context-free grammar in a standard way. See Section 4 for
further discussion.

470

-

because then C automatically subsumes Y'.) Samne for
the subsumption in the opposite direction.

The second case of subsumption operation is called
folding. It takes place when there is already a literal
' equivalent to 7 except that its argument 7/ cor-
responding to 7 is subsumed by §. In this case, no
new instance of clause is created, but instead link A is
switched so that it links o with 7 and accordingly p is
linked with «'. Let 77 be 7 after the unfolding., Then
707 = B both before and after the folding, and e N7
is subtracted from 7 and added to 7 by the [olding.
Folding is triggered when there exists literal 7' as de-
seribed above, and unfolding is executed otherwise, If
there existed several such «'s, folding takes place, cre-
ating as many instances of A and connecting to those
#'s.

The two subsumption operations indicated in Fig-
ure 2 are foldings. Actually, in the left, the p(e,e) in
(b1) and that in (b) are equivalent except that the first
argument of the former is subsumed by A. So the link
with the arrow and the parallel accompanying link are
switched up to p(s,e) in (b1). Similatly for the right
subsumption. Shown in Fignre 3 is the result,

@

TFigure 3: After foldings.

Note that the original program encodes a problem
of partial parsing of a string beginning with “a” under
the context-free grammar consisting of the following
rules,

P —a

1) — I) I)

The result in Figure 3 encodes the infinitely many pos-
sible parses of this incomplete sentence. Note also that
here the subsumption from C to the instance of Y in
(b1) would be possible if C were bound. The next
section contains relevant examples.

When a link is subsumed by two terms bound by
two inconsistent bindings (such as e=a and «=b), then
that link is deleted, surrounding clauses possibly be-
ing deleted if some of their atomic formnlas are linked
with no atomic formula any more.

Tor the sake of simplicity, we mainly consider input-
bound programs in this paper. We say a program
is input-bound when every dependency path hetween
bound terms connects a term in a top clause and one
in a non-top clause. The program in Figure 1 and the
ones for parsing and generation in the following sec-
tion are all input-hound programs. Tor input-hound

programs, we have only to consider subsumptions by
terms in top clauses: input-driven computation. Also,
in input-driven computation for input-bound programs
we do not have to worry about duplications of origing
by subsumptions.

Both subsnmption and deletion preserve the declar-
ative semantics of the program (the set of the solu-
tions), though we skip a detailed proof due to the space
limitation. So when they are not applicable any more,
every expansion is a solution and vice versa. For input-
bound programs, the input-driven computation always
terminates within time polynomial as to the size of the
program. This is because there are at most n™ par-
tially instantiated clauses derived from a clause with
m terms, where n is the size of the input (the number
of bound terms in the top clause(s)), and accordingly
there are polynomially many transclansal links. Ob-
viously, partially instantiated clauges and new tran-
sclansal links are each created in constant time. It is
also clear that each folding terminates in polynomial
time,

3 Parsing and Generation

Here we show that chart-like parsing and semantice-
head-driven generation emerge from the above compu-
tational method. We discuss examples of parsing and
generation both on the basis of the following grammaur.

(3) s(Sem,X,Z) —np(SbjSem,X,Y)
~vp(Sem,SbjSem,Y,Z).

(4) vp(Sem,SbjSem,X,Z)
—v(Sem,SbjSem,ObjSem,X,Y)
—np(ObjSem,Y,7).

(5) np(Sem,X,Y) ~Sem=tom —X="Tom" ().
(6) np(Sem,X,Y) ~Sem=mary -X="Mary"(Y).

(7) v(Sem,Agt,Pat,X,Y)
-Sem=love(Agt,Pat) —X="loves" (Y).

Since we have already mentioned ambiguity packing in
the previous section, helow we do not explicitly deal
with ambiguity but instead discuss just one senfence
structure in both parsing and generation,

Let us first consider parsing of sentence *Lom loves
Mary’. The problem is encoded by the program in
Figure 4. The input-driven computation proceeds as
shown by the arrows, which represent subsnmption op-
erations taking place in the ordering indicated by the
labelling numbers. A thick dependency path is pro-
cessed by successive subsumptions with the same ori-
gin. The only subsumption operations executable in
the initial situation is the one numbered 1 and after
that the one numbered 2, along the thick path between
Ag and X in (5). As the result of these unfoldings, we
obtain the following clauses.

(8) s(Sem,Ag,Z) —np(SbjSem Ag,Y)
—vp{Sem,SbjSem,Y,2).
9) np(Sem,-A"E.KT) ~Sem=tom -Ay="Tom" (—AT)

Of course other partially instantiated clauses may be
created here from definition clauses of s other than (3)

and those of np other than (5), but we omit them here
and concentrate on just one solution,

Now the copy of link with the arrow numbered 3
connected to (9) can mediate subsnmption operations.
So the subsumption operation indicated that arrow is
triggered, though that does not duplicate (9) becanse
Ay already subsumes the target. The result is already
reflected in (9). The snbsequent subsumption oper-
ations numbered 4, 5, and 6 will yield the following
clauses.

(10) s(Sem,Z\T,,Z) —np(SbjSem_,E;]\T)
-vp(Sem,ShjSem,A;,2).

(11) vp(Sem,SbjSem,A;,Z)
-v(Sem,SbjSem,0bjSem,A1,Y)
-np(ObjSem,Y,Z).

(12) v(Sem,Agt,Pat, A1, Ay) ~Sem=love(Agt,Pat)
~Ay="loves" (Az).

Now the substunption operations by Ag are commenced,
due to the creation of (12). Accordingly, the following
clauses are created, and the parsing is {inished.

(13) s(Sem,Ag,A3) —np(SbjSem,Ay,A7)

~vp(Sem,SbjSem, Ay ,7\:)

(14) vp(Sem,SbjSem,A1,Az)
~v(Sem,SbjSem,ObjSem, Ay A;)
~np(ObjSem,Az,A3).

(15) np(Sem,Ay,Ay) ~Sem=mary -A,="Mary" (As).

From the earlier discussion, in the case of context-
freec parsing the number of clauses ercated there is
O(n™), where n is the mmmber of the input words
and M the maximum number of the occeurrences of
non-terminal symbols in a context-free vule. This is
larger than the space complexity of the standard pars-
ing algorithms, but later we will show how to hmprove
the cfliciency so as to be cquivalent to the standard
algorithms.

No particular order among the subsumption oper-
ations is prescribed in the above computation, and so
it is not inherently limited to top-down or bottom-
up. Note also that the left-to-right processing order
among the input words is derived from the definition
strong link, rather than stipulated as in Barley deduce-
tion, among others. We can account for island-driven
parsing as well, by allowing links between bindings to
trigger subsumptions more earlier.

Let us next take a look at sentence generation,
Consider the program shown in Figure 5. Iere the
input is semantic structure love(tom,mary). Again the
computational process is indicated by the numbered
arrows. 6’ takes place after 5, but the order among
6, 7, and 6’ is arbitrary as long as 6 should be before
7. So the only possible subsumption operation in the
beginning is the ones by Love, which go throngh the
thick curve connecting Love and the X in (4). This
ereates the following clanse, among others,

(16) v(Love,Tom,Mary,X,Y)
~Love=love(Tom,Mary) —X="loves" (Y).

471

Figure 4: Parsing

Figure 5: Generation

472

Now subsumption operations can go through the copies
of the other two thick curves. So we are creating the
following clauses, among others.

(17) s(Love,X,Z) —np(Tom X,Y) -vp(Love, Tom,Y,Z).

(18) vp(Love, Tom,X,Z) —v(Love, Tom Mary X,Y)
~-np(Mary,Y,Z).

(19) np(Tom XY} ~Tom=tom ~X="Tom"(Y).
(20) np(Mary,X,Y) =Mary=mary -X="Mary"(Y).

Note that this generation process amounts to a gen-
eralization of semantic-head-driven generation (Shieber,
van Noord, & Moore, 1989). The order among the
retrievals of semantic heads is the order of subsump-
tion operations by different terms in the input seman-
tic structure, just as with the processing order among
words in the case of parsing.® Also as in the case of
parsing, the computational complexity of such a gen-
eration is polynomial with respect to the size of the
input semantic structure, provided that the program
is input-bound and the computation is input-driven.
Although the above example deals with only a single
sentence structure, in general cases ambiguity packing
naturally takes place just as with parsing of ambignons
sentences.

Under the restriction that the program be input-
bound, the grammar cannot employ feature structures
prevalent in the current linguistic theories, and also
must be semantically monotonic (Shicber et al., 1989)°
The proposed method can be generalized so as to re-
move this restriction, though the details do not fit in
the allowed space. This generalization makes it pos-
sible to deal with feature structures and semantically
non-monotonic grammars. Of course the computation
is not any more generally guaranteed to terminate (be-
ause Horn programs can encode Turing machines),
but our method still has a better termination property
than more simplistic ones such as Prolog interpreter or
Larley deduction. For instance, endless expansion of
left recursion or SUBCAT list, which would happen
in simple top-down computations, is avoided owing to
folding.

4 Incremental Copy

The parsing process discussed above is computation-
ally more complex than chart parsing. Here we im-
prove our method by introducing a more efficient scheme
for ambiguity packing and thus reduce the parsing
complexity to that of chart parsing, which is O(n?)
for space and O(n3) for time.

The present inefliciency is due to excessive multi-
plication of clauses: mueh more partially instantiated
clauses are created than arcs in a chart. So let us
suppose that a subsnmption operation does not dupli-
cate a whole clause but only some part of it, so that
a clause is copied incrementally, as shown in Figuare 6.
We assume that a subsumption to an argument of a

*S0 the semantic-head-driven generation parallels better with
left-to-right parsing than with syntactic-head-driven parsing.

5Phe semantic monotonicity is practically same as the input-
boundness with regard to semantic structures.

literal copies the term filling in that argument, the lit-
cral, and some other literals which mention that term,
unless there have already been the terms and literals
to be thus ereated. Subscript ¢ of a literal indicates
that it is created by the i-th subsumption operation.

We must ensure that this partial copying be se-
mantically equivalent to the copying of whole clauses.
That is a trivial business when there are just one or two
literals in the original clause. The case where there are
more than three literals reduces to the case where there
are exactly three literals, by grouping several literals
connected diveetly (through terms) and treat them as
if they were one literal. So below let us consider the
case where there are three literals in a clanse.

A non-trivial check must be done in such a case as
in the lower right of Figure 6. Here yon must copy
~r(e,0)2 and —q{e,e); but not —qe,s), because —r(s,e);
is compatible with —q(s,¢); but not with —q(e,¢). We
say that a set of literals are compatible when there is
an instance of the clanse which involves an instance
of cach of those literals. Also, two literals are said to
be heterogencous when they have different originals
in the original uninstantiated clanse. (The original
of an original literal is itself.) In general, when a sub-
sumption operation copies two heterogencons, divectly
connected literals and creates two directly connected
literals, the necessary and suflficient condition for this
partial copy to be semantically equivalent to the full-
clause copy is obviously that the former two literals be
compatible.

When two of the original literals are not connected
divectly with each other, two heterogencous literals
which have directly connected originals are compat-
ible iff they are also directly connected; we need not
consider two literals whose originals are not directly
connected, because one subsumption operation does
not copy such literals at a time. When all of the
three original literals are connected dirveetly with each
other, two heterogencous literals are compatible iff
they are connected not only directly but also through
another literal heterogeneous to hoth. In Fact, —r(e,e)q
and =q(e,e); are comected both through term £ and
through p(e,s)2, but —r(e,e)s and —qs,¢) are not con-
nected through any instance of the original p{e,s).

In the case of context-free parsing, O(n?) literals
are created, where nis the number of words in the in-
put string, provided that the origins ol subsnmptions
are the positions between the input words only, due to
the input-driven computation. Since there ave just a
constant times more links than literals, the space com-
plexity of context-free parsing hence becomes O(n?) in
our method. The time complexity is O(n®), becanse
there are O(n) different ways of making cacl literal.
Now the correspondence with chart parsing is more ex-
act. An are in the chart corresponds to an instantiated
literal. Tor instance, ave [A — o I3 o C] from node ¢ to
node j corresponds to instantiated literal —b(K:,K;),
and [A — ¢ B C o] from node i to node j corresponds
to a(7\—,,A_J) Yor a context-free rule with more than
two symbols in the right-hand side, we can group sev-
eral literals to one as mentioned above and reduce it
to a rule with jnst two symbols in the right-hand side.

473

subsumption

subsumption

subsumption

Tigure 6: Subsumptions with Incremental Copy

5 Concluding Remarks

We have proposed a flexible inference method for Horn
logic programs. The computation based on it is a
sort of program transformation, and chart parsing and

semantic-head-driven generation are epiphenomena emer-

gent thereof. The proposed method has nothing spe-
cific to parsing, generation, context-free grammar, or
the like. This indicates that there is no need for any
special algorithms of parsing or generation, or perhaps
any other aspect of natural language processing.

The idea reported above has already been partially
implemented and applied to spoken language under-
standing (Nagao, Hasida, & Miyata, 1993), and an
account of how the roles of speaker and hearer may
switch in the midst of a sentence (Hasida, Nagao, &
Miyata, 1993). Although this line of work has incor-
porated a notion of dynamics (Hasida, 1994D) as the
declarative semantics to control context-sensitive com-
putation, we arc planning to replace dynamies with
probability. For input-bound programs together with
input-driven computation, it is quite straightforward
to define probabilistic semanties as a natural exten-
sion of stochastic context-free grammars, among oth-
ers, because all the body literals are probabilistically
independent in that case. We would like to report soon
on a general treatment of probabilistically dependent
literals while preserving the efficient structure sharing,
which will guarantee efficient computation and learn-

ing.
Reference
Hasida, K., Nagao, X., & Miyata, T. (1993).

Joint Utterance: Intrasentential Speaker/Hearer
Switch as an Emergent Phenomenon. In Ba-
jesy, R. (Ed.), Proceedings of the 13th Interna-
tional Joint Conference on Artificial Intelligence
Chambéry.

474

Tlasida, K. (1994a). Common Heuristics for Parsiug,
Generation, and Whatever ... In Strzallkowski,
T. (FEd.), Reversible Grammar in Natural Lan-
gquage Processing. Kluwer Academic Publisher,
Dordrecht.

Hasida, K. {1994Db). Dynamics of Symbol Systems.
New Generation Computing, 12(3). to appear in
May 1994.

Kay, M. (1980). Algorithm Schemata and Data Strue-
tures in Syntactic Processing. Tech. rep., XE-
ROX Palo Alto Research Center, Palo Alto, Cal-

ifornia.

Nagao, K., Hasida, K., & Miyata, T. (1993). Under-
standing Spoken Natural Language with Omni-
Directional Information Flow. In Proceedings of
the 18th International Joint Conference on Ar-
tificial Intelligence.

Pereira, I'. C. N, & Warren, D. I D, (1983). Parsing
as Deduction. In Proceedings of the 21st Annual
Meeting of ACL, pp. 137144,

Shicber, S. M. (1988). A Uniform Architecture for
Parsing and Generation, In Proceedings of the
12th International Conference on Computational
Linguistics, pp. 614-619.

Shieber, S. M., van Noord, G., & Moore, R. C. (1989).
A Semantic-Head-Driven Generation Algorithim
for Unification-Based Formalisms. In Proceed-
imngs of the 27th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. T-17T.

