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Abstract 
A new, flexible inference method for Horn logic pro- 
gram is proposed. It is also a drastic gencndization of 
chart I)aming, partial instaatiation of clauses in a pro- 
gram ronghly corresponding to arcs in a chart. Chart- 
like i)al~ing and semantic-head-driven generation emerge 
from this method. With a parsimonious instantiation 
scheme for ambiguity packing, the parsing eoml)lexity 
reduces to that of standard chart-based algorithms. 

1 Introduction 
Language use involves very complex interactions anmng 
very divm.'se types of information, not only syntactic 
one but also semantic, pragmatic, and so forth. It is 
hence inappropriate to assmne any specific algorithm 
for syntactic parsing or generation, which prescril)es 
particular processing directions (such as left-to-right, 
top-down anti bottom-uI) ) and is I)iascd fl)r specific 
types of domain knowledge (such ,'~s a eontext-fl'ee 
grammar). To accmmt for the whole language use, 
we will lmve to put many such algorithms together, 
ending up with an intractably complicated model. 

A better strategy is to i)ostulate no specific algo- 
rithms for parsing or generation or any particular t~k ,  
but instead a single uniform computational method 
from which emerge various types of computation in- 
eluding parsing and generation dei)ending ui)on vari- 
ous computational contexts. 

For example, Earley deductiml (Pereir:t & Warren, 
1983) is a general procedure for dealing with Horn 
clauses which gives rise to Earlcy-like parsing when 
given a context-free grammar and a word string as 
the inlmt. Shieber (1988) has generalized this method 
so as to adapt to sentence generation as well. Those 
nmthods fail to give rise to cllicieut conq)utation for a 

wide variety of contexts, however, because they pre- 
scribe processing directions such ,~ left-to-right f(Jr 

parsing and bottom-up for generation. They also hu:k 
a general way of efficient anfl)iguity l)acking unlimited 
t o  context-free grammars. Hasida (1994a) i)rol)oses a 
more general inference method for clausal form logic 
l)rograms wtfich accounts for efficient parsing and gen- 
eration ~m emergent l)hmmmena. This mctho(l pre- 
scribes no fixed processing directions, and the way it 
packs ambiguity is not specific to context-free gnun- 
mare. However, it is rather complicated an(l has greater 
computational complexity than standard algorithms 
do. 

In this i)ai)er we propose another inference method 
for tlorn logic programs based on Iiasida (1994a), and 
show that  efficient parsing and generation mnerge from 
it. Like that of Ilasida (1994a), this metlmd is to- 
tally eonstraint-1):med in the sense that it prcsupl)oSCS 
no taxed directions of information llow, but it is more 
ellicicnt owing to a p:trsimonious nmthod of instanti- 
ation. In Section 2 we deline this inference method, 
which is a generalization of chart parsing, and may 
be also thought of :m a connection method or a sort of 
l)rogram transformation. Section 3 illustrates how etfi- 
cient parsing and gencratiml emerge from this method 
witlmut any procedural stipulation specific to the t:mk 
and the domain knowledge (syntactic constraints). Sec- 
tion ,1 introduces a parsimmfious instantiation nmthod 
for ambiguity packing. We will show that owing to this 
nmthod the ciliciency reaches that of the standard al- 
gorithms with regard to context-free l)arsing. Section 5 
<:on('huh~'s the paper by touching upon further research 
directions. 

2 Partial Instantiation 
A constraint is represented in terms of a Horn clause 
prograln such am below. 

(a) -p(A,B) -A=a(C). 
(b) p(X,Y)-X=a(Y). 
(c) p(U,W)-p(u,v)-p(v,w). 

Nanms l)cginnlng with eapltal letters rcpreseat vari- 
ables, ;md the other names l)rc(li(:ates .'unl funetors. 
The atomic formulae following the maims sign are neg- 
ative (bo([y) laterals, an(l the others are positive (head) 
laterals. A cl.'mse without a positive literal is called 
a top  clause,  whose negation represents agoM (top- 
level hYl)othesis), which corrcspomls to a query in Pro- 
log. For instance, top clause (a) in the above l)rogram 
is regarded as goal ~_IA, B, C{p(A, B) A A = a(C)}. In 
general, there may be several top clauses. The pur- 
pose of computation is to tell whether any goal is sat- 
isfiable, and if so obtain an answer substitution for the 
terms (variat)les) in a satisfiabh~' goal. We consider the 
minimal Herbrand models as usual. So the set of an- 
swer sul)stitutions tbr A in the above i)rogram is {a(B), 
a(a(B)), a(a(a(B))),-..}. 

A graphical representation of this program is shown 
in Figure 1. Here each clause is the set of the litends 
enclosed in a dim closed curve. A link connecting ar- 
gmllnents in a clause is the term (varial)le) filling in 
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Figure 1: A graphical representat ion of a program. 

those arguments.  (It is a hyperlink when there arc 
more than two arguments.)  A transclausal link repre- 
sents the unifiability between two corresponding argu- 
ments  of two unifial}lc It)orals. (Neglect the arrows for 
a while.) 

A h y p o t h e s i s  is a conjunction of atomic formulas 
and I)indings. The  premise of a clause (i.e., the con- 
junct ion of the atomic formuhts and bindings which 
appear  ~ negative literals) is a hypothesis. An ex-  
p a n s i o n  for a hypothesis is a way of conll)ining (ill- 
stances of) clauses by resolutions so ~m to transl:tte the 
hyl}othcsis to another  hypothesis involving bindings 
only. We will refi,~r to an expausion by the sequence 
of clauses iu the order of lcftnlost aplfiication of res- 
elution using their instances. 1 In the above l}rogram, 
for exami}le, expansion (e, b, Ii) translaLes the tol)-level 
hylmthesis s(A,B) A A=a(C) to a hypothesis A=a(C)  
A C=a(B).  An expansion of a clause is an exl)ansiou of 
its premise. We will simply say 'an exi}ansion' to mean 
all expansion of the top-level hyl}othesis. A l)rogranl 
represents a set of expansions, and the COml}ut~tion ~m 
discussed later  is to transform it so a.s to ligure out c o l  
rect hypotheses while discarding the wrong expansions 
(those entail ing wrong hypotheses). 

We say that  there is a d e p e n d e n c y  between two 
t e r m s  w h e t l  t h o s e  t e r n l s  a r e  unified in s o m e  exl) ; t l lSiOll  , 

and the sequence of terms (including them) ntcdiating 
this unification is called the d e l ) e n d e n c y  l ) a t h  of i, his 
dependency. In Figure 1, for instance, the dependcacy 
1)etween A and X is mediated by dependency path A.X, 
A.U.X, A.U.U.X, and so on. There is a dependency I}e- 
tween C and B, among others, be, cause of the unilia- 
bility of the two -o=a(o)s,  though ~his unifiability is 
not explicitly shown in Figure 1. We say a dependency 
between two terms is c o n s i s t e n t  when they at'(: not 
bound 1)3' inconsistent bindings. All tile dependencies 
in Figure 1 are consistent. 

A s o l u t i o n  of the program is an expansion ill which 
every dependency is consistent. St) the {:Oml)utation 
we propose in this paper  is to t ransform the given pro- 
gram in such a way tha t  every del}endeney be consis- 
tent.  ~lb figure out dependencies, we use a symt)olic 
oI)eration called s u b s u m p t i o n ,  and d e l e t e  the parts  
of the l}rogram which contri lmtes to wrong exl}ansi{ms 

t l l e r e  we meution the order  an long  the  literals in a clause 
j u s t  for e x p l a n a t o r y  conven ience .  Th i s  o rde r  is l tot  .sigaificanl, 
in the  c o m p u t a t i o n  d i scussed  la ter .  

only. For example, suppose there is an inconsistent 
dependency between terms <~ and ft. We create an 
instance fl' of fl 1)y substunpt ion operations to be dis- 
cussed shortly, so tha t  every expansion containing an 
instance of [31 contains an instance of a del}cndeney 
path  between ¢x and ft. We can then delete tit," clause 
containing flJ and probably sonte more parts  of the 
progranl wi thout  affecting the declarative semantics 
of the program. Below wc will dciine a computat ional  
i}roccdure in such a way tha t  the, set of the possil)le 
expansions eventually represent the set of all the solu- 
ti(ms. 

Subsmupt ion operation is to create s u b s u m p t i o n  
r e l a t i o n s h i p .  We regard each part  (clause, atomic 
fornmla, term, etc.) of a program as the seg of its 
instances, and say tha t  a part  ~ of the program sub -  
s u m e s  another  Itart 't I to mean tha t  we e x p l i c i t l y  k n o w  
tha t  ( D ~/. We consider tha t  a link is subsumed by 5 
if and only if one of the terms it links is sul}smncd by 
5. We say term 5 is an o r i g i n  of ,q when ~/is sul)sumed 
by 5. In this )taper we consider tha t  every origin is a 
bound term (the term filling in the Iirst argmnent  of 
a I)inding). Let us say that  two clauses (or two liter- 
als) are e q u i v a l e n t  when tltey are of the same form 
and for each pair of correslmnding terms the, two terms 
have the same sel; of origins. 

,qubsuntption relation restricts the possibility of ex- 
pansions so tha t  if term ~l is subsumed by auother  
to, r l) l  ( ~ , ) h e l l  e v e l ' y  e x p a n s i o n  containing an instance. 
of 7] 1)ll)St also contain an instance of 5. SttbsUlnl)tion 
relation is usefld to encode s t ructure  sharing among 
CXIt&IlSiOIIS. [ll  Sl)bSlll)ll}[;ioll-});tse{[ ~ t p p r o : t e h e s ~  a t e r ) l t  
n)ay subsume several non-unilial)le terms and thus the 
first term is shared among the latters. IIowever, thai; 
is intpossibh; in unification-I)ased approaches, where 
d i f l ' e r c n t  e x p a n s i o n s  (:ltl)llOf5 share the same instance of 
it ~erl l)  Ol" [t C[a l l se .  

A p a r t i a l l y  i n s t a n t i a t e d  c l ause  is a el,'utse some 
ol7 whose terms is subsumed by another  terln in possi- 
bly another  clause. For instance, 

O) a ( A ~ , Z ) - b ( ~ , ~ ) - c ( ~ , Z ) .  

is a I}arti;tl instant)at)on of Lhe followin~ clause: 

(2) a(X,Z)-b(X,Y)-c(Y,Z). 

represents a term sul)sumed I,y t{!l.1]t) A, 2 IIercafter 
wc say just  'clause' l.o refer to 1)oth unins tant ia ted  
clauses al)(l partially ins tant ia tcd clauses. 

A program consisting of such clauses is a gener- 
alizatiou of a chart  (Kay, 1980). A char t  is a graph 
whose node, s denote positions between words ill  a sell- 
tenee and whose ares are regarded as context-free rules 
each instant)areal partially with respect to at  most two 
such positions. For instance, an active are front node 
i to node j labelled with [A -* * H • C] is an instance 
of rule A -~ l~' C with I}oth sides of B instantiate{l by 
positions i and j .  This arc approxintatcly corresponds 
to (1)2 

2Thi s  n o t a t i o n  is i)ro]iIelllati(: I)e{:itll,~(! it i8 illlch!~ll' w h e t h e r  
~,w{} OC¢;III'I'I~IICtL~ of A ill il, CIallS(! (IellOt(} the  .q;ill|{! t{!l'lll. Ill this  
p a p e r  t hey  alway,'; do.  

311owevcr, an  a rc  in a c h a r t  does  no t  1}reclsely {:orl'e,ql}olld to 
a p a r t l a n y  in . s tan t la ted  dau:~c der ived  fi 'om a p r o g r a m  enc,}dlng 
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A subsumpt ion  operat ion is to extend subsump- 
lion relation by possibly creating a partially instanti- 
ated clause. A subsumptiml operation is character- 
ized by the or ig in ,  the source ,  anti the t a rge t .  The 
origin (let it be 5) is a bound term. Tit(.' source (a) 
and the target (r) are arguments, a should already 
be subsumed by the origin, but r shmfld not be so. 
They should be connected through a transclausal link 
~. Let the literal containing a be p. Also let the literal 
containing r be 7r, and the clause containing thmn be 
(IL There are two cases for subsumption, and in both 
cases a comes to be linked through ~ with an argument 
which is an instance of r subsmned by 5. 

In the first case of subsumption operation, which 
we cdl  unfo ld ing ,  a partial iustantiation ,I)' of iI~ is 
created. They are cquiwdent except that the instance 
r '  of r in (I)' is subsumed by & After the unfolding, a 
is linked through ~ to tile iustance of r in (D' instead 
of the originM r, and accordingly p is linked to the 
instance of 7r in 4)'. Let r "  be ~- after the unfolding. 
Then r I U r "  = % "# N "1"" = ~, and r I = "r ~ a hohl. 
This i m p l i e s r ' C a a n d r ' V I o  = ~ .  S o t "  atndo are 
not unifial)le. 

For instance, the two suhsumption operations indi- 
cated by tim two arrows in Figure 1 are unfohlings. In 
either case, the origin and the source are both A. The 
target in the left is X and that in the right is U. We 
obtain the program in Figure 2 by these operations, 

/ 

Figure 2: After subsumi)tions to X and U by A. 

where partial instantiation (bl) and (el) of (b) atnd 
(c) have been created, respectively. 

In Figure 1, the subsumption opm'atiml through 
the (invisible) link connecting C and Y is not exe- 
cutable now, because the unification represented by 
this link presupposes the unification of A and X through 
the dependency paths A.X, A.U.X, A.U.U.X, and so on. 
That  is, it is only when C subsumes an instance (let it 
be Y') of Y that subsumption from C to Y' is Imssible. 
(This subsmnption is an unfohling without any e.opy, 

a context-fl'ee grammar in a standard w~ty. See Section 4 for 
further discussion. 

? 
$ 

because then C automaticMly subsumes Yq) Same for 
the. subsumption ill the opposite direction. 

Tile second ease of subsmnption operation is called 
folding.  It takes place when there is already a literati 
7d equivalent to qr except that its argument r '  c o l  
responding to r is subsumed by 5. In this case, no 
new instance of clause is created, but instead link h is 
switched so that it links a with ~" anti accordingly p is 
linked with ~'. Let r "  he T after the unfohling. Then 
r n ~J = 0 both I)efore and after the fi)lding, and o n r 
is subtracted from r and added to r ~ 1)y tile folding. 
Fohling is triggered when there exists literal ~' as de- 
seribed abow~', and unfolding is executed otherwise. If 
the.re existed several such ~ds, folding takes place, cre- 
ating as n l a l l y  i l t s t a u e e s  of ~ and eo t l l t ee t i t l g  to  those, 

'KIS. 
The two subsumption operations indicated in Fig- 

are 2 are fohlings. Actually, in the. left, the p(., .) in 
(bl) att(l tlutt in (b) are equivMent except that the tirst 
argument of the former is subsunmd by A. So tile link 
with the arrow arm the paralle.l aceoml)anyiug link are 
switched up to p(o,.) in (bl). Similarly for tile right 
subsuml)tion. Shown ill Figure. 3 is the result. 

/.....,.- ...................... . .  

(bU 
/" Pt, t,~) ",,",,~ / /x"  P g',',). \ , ,  
(A-~/ ~ ~A~ f / f A 2 / ' - - - ' \  "1 

Figure 3: After Rfldiugs. 

Note that the original program encodes a im)lflem 
of partial parsing of a string beginning with "at" under 
the context-free granunar consisting of the following 
r l l les .  

1~ ~ a 
P ~ P P 

The re.suit in Figure 3 encodes the iutinitely many pos- 
stifle parses of this incomplete se,lteuee. Note also that 
here the subsuml)tiou from C to tit(', instance, of Y in 
(1)1) would bc possible if C were bound. ']~he next 
section contains relevant examl)lcs. 

When a link is subsumed by two terms bound by 
two hmonsistent bindings (such am °=a and o=b), then 
that link is de l e t ed ,  surrounding clauses possibly be- 
ing deleted if some of their attomie formubm are linked 
with no atomic fornmla any more. 

For the sake of simplicity, we mainly consider inpu t -  
b o u n d  programs in this paper. We say it program 
is inlmt-bound when every dependency path between 
bound terlns eOlluects  a t e r t u  ill a top clause and olte 
in a non-top clause. 'l~he program in Figure 1 and tile 
ones for parsing ;and geue.ration in the billowing sec- 
tion are all inlmt-lmund programs. For input-bound 
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programs, we have only to eonsider subsumt)tions by 
terms in top clauses: inl)ut-driven conqmtation. Also, 
in inlmt-driven computation for inpnt-bound l)rogr~uns 
we do not have to worry about duplications of origins 
by subsmnl)timm. 

Both subsmnl)tion and deletion preserve the declar- 
ative semamtics of tlm program (the set of the solu- 
tions), tlmugh we skip at detailed proof due to the sl/ace 
limitation. 8o when they arc ,rot ;q)plicablc rely more, 
every expansion is a solutiml atnd vice versa. For input- 
l)ound programs, the inlmt-driven COmlmtattion alw;tys 
terminates within time polynomiM as to the size of the 
program. This is 1)ecanse there are at nmst n ',~ liar - 
tially instantiated clauses deriv(:d front a clausc with 
m terms, where n is the size of the inlmt (the trundler 
of bound terms in the top clause(s)), and accordingly 
there are polynomially many tr;umclausal links. Ob- 
viously, partially instantiated clauses atnd new tran- 
sel,'msal links are each created in constant time.. It is 
also clear that each fohling ternfinates in polynomial 
time. 

3 Pars ing and Generat ion 

tlere we show that chart-like l)arsing and s(muultic- 
]le,%d-driven g e n e r a t i o n  e m e r g e  f ronl  t h e  ;t})ove (:()lll[)ll- 
rational method. We discuss examph!s of parsing ~tnd 
genenttion l)oth on the basis of the Mlowing gratnm~tr. 

(3) s(Sem,X,Z)-np(SbjSem,X,Y) 
-vp(Sem,SbjSem,Y,Z). 

(4) vp(Sem,SbjSem,X,Z) 
-v(Sem,SbjSem,ObjSem,X,Y 
-np(ObjSem,Y,Z). 

(5) n p(Sem,X,Y) -Sem--tom -X=" Tom" (Y). 
(6) ,p(Sem,X,Y) -Sere=mary -X=" Ma ry" (Y). 
(7) v(Sem,Agt.Pat,X,Y) 

-Sem=love(Agt,Pat) -X=" loves" (Y). 

Since we h&ve ah'e&(ly nle.ntioned aunl)iguity lta(:king ' in 
the previous section, below we do not explMtly deal 
with ambiguity but instead discuss jusl; (tit(: senten(:e 
strneture in both parsing and gener;ttion. 

Let us first consider parsing of sentence 'rl?oln lov(:s 
Mary'. The i)roblmn is encoded I)y the wogram in 
Figure 4. Tit(: inl)ut-driv(:n COmlmtation l)ro(:eeds as 
shown by the arrows, which represent subsuml)tio,t op- 
(:rations taking l)la(:(: in tlm ordering itMic~tted I)y tit(: 
labclling numbers. A thick del)endency l)atth is llro- 
cessed by successive subsmnptions with the sam(; ori- 
gin. Tile only subsuml)tion operations exeeul:abh~ in 
tire initial situation is the one mmfl)ered 1 and ,'tfter 
that the one nmnbered 2, along the thick I)ath l)etween 
A0 and X in (5). As the result of these unfoldings, we 
obtain the following clauses. 

(8) s(Sem,~o,Z)-.p(SbjSem,~0.Y) 
-vp(Sem,SbjSem,Y,Z). 

(9) np(Sem,~0,~ll) -Sem=tom -Aoo=" To.," (~) .  

Of course other partially instanti~Lted (:l~tuses nmy b(: 
created lmre from definition clauses nf s other than (3) 

and those of np other tlum (5), but we omit them here 
iul(l (ZOtl(!(,~lltril.te Oll just one solution, 

Now the copy of link with the arrow numbered 3 
connected to (9) (:tin mediate subsumption operations. 
So the subsuml)tion oper~tion indicated tlu~t arrow is 
triggered, though that does not duplicate (9) because 
A1 ah'eady subsumes the target. The result is already 
refieete.d in (9). The subsequent subsumption Oln:r- 
ations mmtbered ,1, 5, aud 6 will yield the. following 
claAtses. 

(I(I) s(Sem,Ao0,Z)-np(SbjSem,A0,A,) 
-vp(Sem.SbjSem.Al ,Z). 

(11) vp(Sem,SbjSem,~,Z) 
-v(Sem,SbjSem,ObjSem,A1 ,Y) 
-np(ObjSem,Y,Z). 

(12) v(Sem,Agt,Pat,A1,A2)-Sem=love(Agt,Pat) 
-AI  ='' loves" (A22). 

Now the subsmnl)tion operations by A2 ~L,'e commenced, 
due. to the creM;ion of (12). Accordingly, tit(." following 
dauses are m'eated, and the parsing is finislw.d. 

(13) s(Sem,A0,Aa) -np(SbjSem,A0,A, ) 
-vp(Sem,SbjSem,A1 ,Aa). 

(14) vp(Sem,SbjSem,A1,Aa) 
-v(Sem,SbjSem,ObjSem,Al,A2) 
--n p(ObjSem,A2,Aa). 

(15) np(Sem,~,Aa) -Sere=mary -A-~2=" Mary"(AT). 

From tit(; earlier discussion in the cam'. of context- 
free parsing tit(', tt(ttllber of  ttl[~uses created tl,ere is 
O(nm), where n is the number of the input words 
and M the lnaxi lnt t l t t  ltlllltb{w of the occurrences of 
nou-termimd symbols in a eontext-fi'ee rule. This is 
l~trger than tit(." space complexity of the st~tndal'd l)ars - 
tug Mgorithms, but latter we will show how to improve 
i;he ellicien(:y so as to be equiwdent to tlt(; standltrd 
algorithnts. 

No l)~wti(mbtr order ~tntollg the subsmnptioa oper- 
ations is ltrescril)ed in the M)ove COml)utation , ~tnd so 
it is not inherently limited to toll-down or bottom- 
up. Note also that tlt(' left-to-right l)rocessiug or(ler 
among the input words is derived fi'om the dellnitiou 
strong link, rather than stilmlated a~s in Earley dedue- 
[i()ll, ltlllOllg o the r s .  W e  c a n  m:( :onnt  [or islatn(|-dl'iV(.ql 
parsing ;Ls well, by Mlowing links between bindings to 
trigger sul)smnl)tions more earlier. 

Le t  (ts ll(.'xt take. it look at se l l te l lee  genel 'a t io l i .  
Consider the program shown in 1,'igure 5. IIere. the 
inlmt is semantic structure love(tom,mary). Again the 
comltutationM pro(:ess is indicated by the numl)ere.d 
atrrows. (i) (;M~es l)ht(:( ',atfter 5, but the. order ~tm()ng 
6, 7, and 6t is ~u'l)itratry ~m long as 6 should be before 
7. So the only 1)ossible sultsmnption <)Iteration in the 
b(:ginning is the ones I)y Love, wlfieh go through the 
thick curv(: connecting Love ;rod the X in (4). This 
creates tlt(: following cl~ume, ~unong othm's. 

(16) v(Love,Tom,Ma ry,X,Y) 
- Love= love(To m, M a ry) -X ="loves" (Y). 
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Fig~ure 4: P~u'sing 
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Now subsumpt ion operations Call go through the coI)iCs 
of the other  two thick curves. So we arc creating the. 
following clauses, among others. 

(17) ~(VO~,X,Z)-,p(Y--o-om~,X,V)-vp(~Y~m,V.Z). 

(18) vp(L-o~,]-om,X,Z)-v(Love,Tom,Mary,X,Y) 
- n p ( ~ , ¥ , Z ) .  

(19) np(To-m,X,Y) -Tom=tom -X=" Tom" (Y). 
(20) .p(M---~,X,Y) -Mary:mary -X=" Mary"(Y). 

Not(: t lmt this generation process iunounts to a gem 
eralization of semantic-head-driven generation (Shieber, 
van Noord, & Moore, 1989). The order among the 
retriewds of semantic heads is the or(h;r of sul)sumI)- 
t ion operations by dilfi;rent terms iu tile input  seman- 
tic structure,  jus t  as with the iiroccssing order iunt)ng 
words ill the case of parsing. 4 Also its ill the case of 
i),'trsing, the computat ional  comillexity of such a gen- 
eration is polynonfial with respect to the siz(: of the 
inImt semantic stru(.ture, provided tha t  the I)rogr~tnl 
is in lmt-bound and tile c(unputat ion is input-driven. 
Al though the above cxami)lc deals with only a single 
sentence structure,  ill general cases ambiguity packing 
mtturally takes lllace jus t  as with parsing of ambiguous 
sentences. 

Under  the restriction tha t  the program be input- 
bound, tile grammar  caunot  employ feature stru(:turcs 
l)rewdcnt ill the current linguistic theories, and also 
nmst  be semantically monotonic (Shiebe, r et al., 1989) ~ 
The  proposed nlcthod can be generalized so as to re- 
move this restriction, though the details do not lit ill 
the allowed space. This gcneraliz;ttion makes it pos- 
sible to deal with fc,'tturc s t ructures  and scnumtieally 
non-nmnotonic  grammars.  Of course tile cOnll/utlttion 
is not any nmre generally guantntced to terminate. (be- 
cause Horn programs can encode '.t~uring machines),  
but  our method still has a t)etter tcxmination prol)crty 
than more simI)listic ones such im Pro[og interl)retcr or 
Earley deduction. For instanre,  endless cxpansiou of 
left rceursion or SUBCNF list, which wouhl hal)pen 
ill simple top-(Iowa conrIlutations, is avoidrxl owing to 
folding. 

4 Incrementa l  Copy 

The  parsing process (liseussed above is conllmtatiou- 
ally more eomplcx than chart  parsing, i lere wc im- 
l)rove our method by introducing a more clfi<:ient st:heine 
for ambiguity I)a(:king and thus reduce the plu'sing 
complexity to tha t  of chart  l)~trsing, which is O(n : )  
for space aud O(n 3) for time. 

Tile present inelfi(:icncy is due to excessive umlti- 
plieation of clauses: much more I)artially instantiate.d 
(:l~uses arc created than arcs ill a chart .  So let us 
snpposc tha t  a subsumption Ol)eratiml does not dul)li- 
(:ate a whole clause I)ut only s()me par t  of it, so tlu~t 
a clause is coiffed incrcnlentally, as shown in Figure 6. 
We ,'Lssumc that  a subsumption to an argument  of a 

aSo the semantic-head-driven gen[~nttiou parallels bett~n' with 
left-to-rlg, ht parsing than with syntactic-heard-driven l)arslng;. 

5The sem~uttlc monotonicity is practically same as the iuput- 
boun(lness with regard to sem~mtlc structures. 

literal copies the term filling in tlutt argulnent, the lit- 
I;ra[, ll, l ld  s o n i c  othP, r literals which l l l e l l t io l l  t h a t  tel ' I l l ,  

unless there have ah'eady been the terms and literals 
to be thus created. Subscrii)t i of ~t liter;d indic~tes 
tha t  it is created by the i-th subsumpt ion operation. 

Wc must  ensure tha t  this partial copying be se- 
mantically equiwdent to the copying of whole chumes. 
Tha t  is a trivial business when there ~tre just  one or two 
litcrals in the original clause. The  case where there arc 
more than throe litcrals reduces to tim e,~se where there 
are exactly three literals, l>y grouping several literals 
e<)nne<:ted directly ( through terms) and treltt thenl i~-'~ 
if they were one literal. So below let us consider the 
cruse where there are three' litcrals ill a clause. 

A non-trivild chet:k must be (loll(! ill  Stlch ~L (tas{. ~ as  
ill the lower right of I"igurc 6. Here you must  copy 
-r(.,.)~ a,.l-q(., .)~ t)ut .ot -q(.,.), I,~ause-~(...)~ 
is c o m p a t i b l e  w i t h - q ( - , . ) l  but  not with -q ( . , . ) .  Wc 
slty tha t  a set of liter.'ds ;trc coml)atible when there is 
an instance of the obtuse, which involves all instance, 
of each of those literals. Also, two literals arc said to 
bc h e t e r o g e n e o u s  when thc, y haw' different originals 
in the original uninstanti~tted clltuse. (The original 
of an origimd literal is itself.) Ill general, when a sub- 
sumption Ol)erldfion copies two heterogeneous, directly 
connected litcrals anti creates two directly connected 
literals, the nct:r.ssary and sullicient c(mdition fl)r this 
partiM copy to 1)e semantie:dly equivalent to the full- 
clause Col)y is obviously tha t  the fin'nmr two literals be 
conlpatibh:. 

When two of the original litcrals ,'tre not (:onnccte(l 
directly with each other, two heterogeneous literals 
whic.h have ~ directly conne('.tcd originals are compat-  
ible iff they arc also directly emmected; wr. need not 
eonsi(ler two literals whose originals are not directly 
( :onncc ted ,  I)ccaus(~ one  s u l ) s u l l q ) t i o n  o l l e r l t t i on  (lt)(~s 

not copy such literals at  a time.. When MI of the 
three original literals arc. connectt:d directly with each 
other, two hetcro,e;e.neous literals are compatible if[' 
they are ctmnected not only (lirectly but ~dso through 
another  literal heterogeneous to both. Ill flu:t, - r ( . , . )~ 
and -q(* , ' ) l  are (:mme(:ted bo th  through tcrnl ~ and 
through P(°,o)2, but -r(°,°)2 an ( l - q ( ° , . )  are not con- 
m~(:ted through any inst,;ume of the original p(.,°). 

In the case, of context-free parsing, O(n  '~) litr.nd.~ 
are crt~ate(1, where ,. is tile mnnl)er of words ill the, in- 
put  string, 1)rovided that  the origins o1' sul)suml)tions 
are the posit.ions I)ctween tilt: inllut words only, (lue to 
the input-driven COml)utation. Since then;  ~u'c jusl; i~ 
constant  times more links than literals, the space (:om- 
1)Iexity of context-free llarsing hence l)econles O(n '2) ill 
our method. The time conq/h.'xity is O(n3), I)eclulse 
there are O(n) different ways of making each literal. 
Now the correspon(len(:c with vhart  pltrsing is more ex- 
act. All art: ill the c.h;u't t:orresl)onds to an ins tant ia ted  
lit, oral. For instance, arc [A ---* * H • C] fi'om nolle i to 
node j corrc~sl)onds to iustanti~tte.d l i t e r a l  -b(A// , ,~j ) ,  

an(l [A -+ • B C *] fi'om n<)(le~ i to node j corresponds 
to a(~,i,Aj.), l,'t)r .'t contc.xt-free rule with more than 
two symbols ill tile r ight-hand side, we can group sev- 
eral literals to oar, ~uu in(!lltiolll2d a b o v e  &l)d rP.dtlce i t  

to It rule with j , s t  two symbols ill the r ight-hand si(h~. 
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subsumption 

Z'<--_ 
q(,~.._~,~) 

subsumption 

_ q ( ~ ' ~ ' )  

0(~,])2 --  P0',~)2 
~ s ubsumption 

_q(,,, ),~./~<...~_~ - _ q ( ~ ) )  
Figure 6: Sul)sumptions with I,mremcntM Copy 

5 C o n c l u d i n g  R e m a r k s  

We have proposed a flexible iufi~'renee method for Ih)rn 
logic programs. The computation l>;mcd on it is it 
sort (>f program transformation, and chart l>arsing an<l 
semantic-head-driven generation are epil)henomena emer- 
gent thereof. The proposed method has uothing Sl)C- 
cific to parsing, generation, context-free gramm~tr, or 
the like. This indicates that there is no need for any 
si)ecial algorithms of parsing or generation, or perhaps 
any other aSl)CCt of natural language l)rocessing. 

The i(lelt reported al)ove ha.s already been partially 
implemented and applied to spoken language under- 
standing (Nagao, tbusi(ht, & Miyat;t, 1993), and an 
itCCOllllt Of how the  roh:s of speaker ltll(l hcatrer IIHly 
switch in the midst of it sentence (tlasida, Nagao, & 
Miy,'tta, 1993). Although this line of work It;us into> 
porated a notion of dyn,'unics (Ilmsi(la, 1994b) ,'us the 
declarative semantics to control  coutext-sensitive com- 
putation, we ;u:e planning to rel)laee dynamics with 
probability. For inlmt-bound programs together with 
input-driven (:omputation, it is quite straightforward 
to deline probabilistie, semantics auq ~t natm'M exten- 
sion of stochastic context-free grammars, aunong oth- 
ers, because all the body literals are prol)abilistieally 
independent in that case. We wmfld like to report soon 
on ,'t generM treatment of probabilisticMly dependmlt 
literMs whih., preserving the cflieim~t struetm'c sharing, 
which will gmtrantee etlieient computation and learn- 
ing. 
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