
Emergent Parsing and Generation with Generalized

HASIDA KSiti
Electrotechnical Laboratory

1-1-4 Umezono, Tukuba, Ibaraki 305, J~,pan
E-mail: hasida@etl.go.jp

Chart

Abstract
A new, flexible inference method for Horn logic pro-
gram is proposed. It is also a drastic gencndization of
chart I)aming, partial instaatiation of clauses in a pro-
gram ronghly corresponding to arcs in a chart. Chart-
like i)al~ing and semantic-head-driven generation emerge
from this method. With a parsimonious instantiation
scheme for ambiguity packing, the parsing eoml)lexity
reduces to that of standard chart-based algorithms.

1 Introduction
Language use involves very complex interactions anmng
very divm.'se types of information, not only syntactic
one but also semantic, pragmatic, and so forth. It is
hence inappropriate to assmne any specific algorithm
for syntactic parsing or generation, which prescril)es
particular processing directions (such as left-to-right,
top-down anti bottom-uI)) and is I)iascd fl)r specific
types of domain knowledge (such ,'~s a eontext-fl'ee
grammar). To accmmt for the whole language use,
we will lmve to put many such algorithms together,
ending up with an intractably complicated model.

A better strategy is to i)ostulate no specific algo-
rithms for parsing or generation or any particular t~k ,
but instead a single uniform computational method
from which emerge various types of computation in-
eluding parsing and generation dei)ending ui)on vari-
ous computational contexts.

For example, Earley deductiml (Pereir:t & Warren,
1983) is a general procedure for dealing with Horn
clauses which gives rise to Earlcy-like parsing when
given a context-free grammar and a word string as
the inlmt. Shieber (1988) has generalized this method
so as to adapt to sentence generation as well. Those
nmthods fail to give rise to cllicieut conq)utation for a

wide variety of contexts, however, because they pre-
scribe processing directions such ,~ left-to-right f(Jr

parsing and bottom-up for generation. They also hu:k
a general way of efficient anfl)iguity l)acking unlimited
t o context-free grammars. Hasida (1994a) i)rol)oses a
more general inference method for clausal form logic
l)rograms wtfich accounts for efficient parsing and gen-
eration ~m emergent l)hmmmena. This mctho(l pre-
scribes no fixed processing directions, and the way it
packs ambiguity is not specific to context-free gnun-
mare. However, it is rather complicated an(l has greater
computational complexity than standard algorithms
do.

In this i)ai)er we propose another inference method
for tlorn logic programs based on Iiasida (1994a), and
show that efficient parsing and generation mnerge from
it. Like that of Ilasida (1994a), this metlmd is to-
tally eonstraint-1):med in the sense that it prcsupl)oSCS
no taxed directions of information llow, but it is more
ellicicnt owing to a p:trsimonious nmthod of instanti-
ation. In Section 2 we deline this inference method,
which is a generalization of chart parsing, and may
be also thought of :m a connection method or a sort of
l)rogram transformation. Section 3 illustrates how etfi-
cient parsing and gencratiml emerge from this method
witlmut any procedural stipulation specific to the t:mk
and the domain knowledge (syntactic constraints). Sec-
tion ,1 introduces a parsimmfious instantiation nmthod
for ambiguity packing. We will show that owing to this
nmthod the ciliciency reaches that of the standard al-
gorithms with regard to context-free l)arsing. Section 5
<:on('huh~'s the paper by touching upon further research
directions.

2 Partial Instantiation
A constraint is represented in terms of a Horn clause
prograln such am below.

(a) -p(A,B) -A=a(C).
(b) p(X,Y)-X=a(Y).
(c) p(U,W)-p(u,v)-p(v,w).

Nanms l)cginnlng with eapltal letters rcpreseat vari-
ables, ;md the other names l)rc(li(:ates .'unl funetors.
The atomic formulae following the maims sign are neg-
ative (bo([y) laterals, an(l the others are positive (head)
laterals. A cl.'mse without a positive literal is called
a top clause, whose negation represents agoM (top-
level hYl)othesis), which corrcspomls to a query in Pro-
log. For instance, top clause (a) in the above l)rogram
is regarded as goal ~_IA, B, C{p(A, B) A A = a(C)}. In
general, there may be several top clauses. The pur-
pose of computation is to tell whether any goal is sat-
isfiable, and if so obtain an answer substitution for the
terms (variat)les) in a satisfiabh~' goal. We consider the
minimal Herbrand models as usual. So the set of an-
swer sul)stitutions tbr A in the above i)rogram is {a(B),
a(a(B)), a(a(a(B))),-..}.

A graphical representation of this program is shown
in Figure 1. Here each clause is the set of the litends
enclosed in a dim closed curve. A link connecting ar-
gmllnents in a clause is the term (varial)le) filling in

468

Figure 1: A graphical representat ion of a program.

those arguments. (It is a hyperlink when there arc
more than two arguments.) A transclausal link repre-
sents the unifiability between two corresponding argu-
ments of two unifial}lc It)orals. (Neglect the arrows for
a while.)

A h y p o t h e s i s is a conjunction of atomic formulas
and I)indings. The premise of a clause (i.e., the con-
junct ion of the atomic formuhts and bindings which
appear ~ negative literals) is a hypothesis. An ex-
p a n s i o n for a hypothesis is a way of conll)ining (ill-
stances of) clauses by resolutions so ~m to transl:tte the
hyl}othcsis to another hypothesis involving bindings
only. We will refi,~r to an expausion by the sequence
of clauses iu the order of lcftnlost aplfiication of res-
elution using their instances. 1 In the above l}rogram,
for exami}le, expansion (e, b, Ii) translaLes the tol)-level
hylmthesis s(A,B) A A=a(C) to a hypothesis A=a(C)
A C=a(B). An expansion of a clause is an exl)ansiou of
its premise. We will simply say 'an exi}ansion' to mean
all expansion of the top-level hyl}othesis. A l)rogranl
represents a set of expansions, and the COml}ut~tion ~m
discussed later is to transform it so a.s to ligure out c o l
rect hypotheses while discarding the wrong expansions
(those entail ing wrong hypotheses).

We say that there is a d e p e n d e n c y between two
t e r m s w h e t l t h o s e t e r n l s a r e unified in s o m e exl) ; t l lSiOll ,

and the sequence of terms (including them) ntcdiating
this unification is called the d e l) e n d e n c y l) a t h of i, his
dependency. In Figure 1, for instance, the dependcacy
1)etween A and X is mediated by dependency path A.X,
A.U.X, A.U.U.X, and so on. There is a dependency I}e-
tween C and B, among others, be, cause of the unilia-
bility of the two -o=a(o)s, though ~his unifiability is
not explicitly shown in Figure 1. We say a dependency
between two terms is c o n s i s t e n t when they at'(: not
bound 1)3' inconsistent bindings. All tile dependencies
in Figure 1 are consistent.

A s o l u t i o n of the program is an expansion ill which
every dependency is consistent. St) the {:Oml)utation
we propose in this paper is to t ransform the given pro-
gram in such a way tha t every del}endeney be consis-
tent. ~lb figure out dependencies, we use a symt)olic
oI)eration called s u b s u m p t i o n , and d e l e t e the parts
of the l}rogram which contri lmtes to wrong exl}ansi{ms

t l l e r e we meution the order an long the literals in a clause
j u s t for e x p l a n a t o r y conven ience . Th i s o rde r is l tot .sigaificanl,
in the c o m p u t a t i o n d i scussed la ter .

only. For example, suppose there is an inconsistent
dependency between terms <~ and ft. We create an
instance fl' of fl 1)y substunpt ion operations to be dis-
cussed shortly, so tha t every expansion containing an
instance of [31 contains an instance of a del}cndeney
path between ¢x and ft. We can then delete tit," clause
containing flJ and probably sonte more parts of the
progranl wi thout affecting the declarative semantics
of the program. Below wc will dciine a computat ional
i}roccdure in such a way tha t the, set of the possil)le
expansions eventually represent the set of all the solu-
ti(ms.

Subsmupt ion operation is to create s u b s u m p t i o n
r e l a t i o n s h i p . We regard each part (clause, atomic
fornmla, term, etc.) of a program as the seg of its
instances, and say tha t a part ~ of the program sub -
s u m e s another Itart 't I to mean tha t we e x p l i c i t l y k n o w
tha t (D ~/. We consider tha t a link is subsumed by 5
if and only if one of the terms it links is sul}smncd by
5. We say term 5 is an o r i g i n of ,q when ~/is sul)sumed
by 5. In this)taper we consider tha t every origin is a
bound term (the term filling in the Iirst argmnent of
a I)inding). Let us say that two clauses (or two liter-
als) are e q u i v a l e n t when tltey are of the same form
and for each pair of correslmnding terms the, two terms
have the same sel; of origins.

,qubsuntption relation restricts the possibility of ex-
pansions so tha t if term ~l is subsumed by auother
to, r l) l (~ ,) h e l l e v e l ' y e x p a n s i o n containing an instance.
of 7] 1)ll)St also contain an instance of 5. SttbsUlnl)tion
relation is usefld to encode s t ructure sharing among
CXIt&IlSiOIIS. [ll Sl)bSlll)ll}[;ioll-});tse{[~ t p p r o : t e h e s ~ a t e r) l t
n)ay subsume several non-unilial)le terms and thus the
first term is shared among the latters. IIowever, thai;
is intpossibh; in unification-I)ased approaches, where
d i f l ' e r c n t e x p a n s i o n s (:ltl)llOf5 share the same instance of
it ~erl l) Ol" [t C[a l l se .

A p a r t i a l l y i n s t a n t i a t e d c l ause is a el,'utse some
ol7 whose terms is subsumed by another terln in possi-
bly another clause. For instance,

O) a (A ~ , Z) - b (~ , ~) - c (~ , Z) .

is a I}arti;tl instant)at)on of Lhe followin~ clause:

(2) a(X,Z)-b(X,Y)-c(Y,Z).

represents a term sul)sumed I,y t{!l.1]t) A, 2 IIercafter
wc say just 'clause' l.o refer to 1)oth unins tant ia ted
clauses al)(l partially ins tant ia tcd clauses.

A program consisting of such clauses is a gener-
alizatiou of a chart (Kay, 1980). A char t is a graph
whose node, s denote positions between words ill a sell-
tenee and whose ares are regarded as context-free rules
each instant)areal partially with respect to at most two
such positions. For instance, an active are front node
i to node j labelled with [A -* * H • C] is an instance
of rule A -~ l~' C with I}oth sides of B instantiate{l by
positions i and j . This arc approxintatcly corresponds
to (1)2

2Thi s n o t a t i o n is i)ro]iIelllati(: I)e{:itll,~(! it i8 illlch!~ll' w h e t h e r
~,w{} OC¢;III'I'I~IICtL~ of A ill il, CIallS(! (IellOt(} the .q;ill|{! t{!l'lll. Ill this
p a p e r t hey alway,'; do.

311owevcr, an a rc in a c h a r t does no t 1}reclsely {:orl'e,ql}olld to
a p a r t l a n y in . s tan t la ted dau:~c der ived fi 'om a p r o g r a m enc,}dlng

469

A subsumpt ion operat ion is to extend subsump-
lion relation by possibly creating a partially instanti-
ated clause. A subsumptiml operation is character-
ized by the or ig in , the source , anti the t a rge t . The
origin (let it be 5) is a bound term. Tit(.' source (a)
and the target (r) are arguments, a should already
be subsumed by the origin, but r shmfld not be so.
They should be connected through a transclausal link
~. Let the literal containing a be p. Also let the literal
containing r be 7r, and the clause containing thmn be
(IL There are two cases for subsumption, and in both
cases a comes to be linked through ~ with an argument
which is an instance of r subsmned by 5.

In the first case of subsumption operation, which
we cdl unfo ld ing , a partial iustantiation ,I)' of iI~ is
created. They are cquiwdent except that the instance
r ' of r in (I)' is subsumed by & After the unfolding, a
is linked through ~ to tile iustance of r in (D' instead
of the originM r, and accordingly p is linked to the
instance of 7r in 4)'. Let r " be ~- after the unfolding.
Then r I U r " = % "# N "1"" = ~, and r I = "r ~ a hohl.
This i m p l i e s r ' C a a n d r ' V I o = ~ . S o t " atndo are
not unifial)le.

For instance, the two suhsumption operations indi-
cated by tim two arrows in Figure 1 are unfohlings. In
either case, the origin and the source are both A. The
target in the left is X and that in the right is U. We
obtain the program in Figure 2 by these operations,

/

Figure 2: After subsumi)tions to X and U by A.

where partial instantiation (bl) and (el) of (b) atnd
(c) have been created, respectively.

In Figure 1, the subsumption opm'atiml through
the (invisible) link connecting C and Y is not exe-
cutable now, because the unification represented by
this link presupposes the unification of A and X through
the dependency paths A.X, A.U.X, A.U.U.X, and so on.
That is, it is only when C subsumes an instance (let it
be Y') of Y that subsumption from C to Y' is Imssible.
(This subsmnption is an unfohling without any e.opy,

a context-fl'ee grammar in a standard w~ty. See Section 4 for
further discussion.

?
$

because then C automaticMly subsumes Yq) Same for
the. subsumption ill the opposite direction.

Tile second ease of subsmnption operation is called
folding. It takes place when there is already a literati
7d equivalent to qr except that its argument r ' c o l
responding to r is subsumed by 5. In this case, no
new instance of clause is created, but instead link h is
switched so that it links a with ~" anti accordingly p is
linked with ~'. Let r " he T after the unfohling. Then
r n ~J = 0 both I)efore and after the fi)lding, and o n r
is subtracted from r and added to r ~ 1)y tile folding.
Fohling is triggered when there exists literal ~' as de-
seribed abow~', and unfolding is executed otherwise. If
the.re existed several such ~ds, folding takes place, cre-
ating as n l a l l y i l t s t a u e e s of ~ and eo t l l t ee t i t l g to those,

'KIS.
The two subsumption operations indicated in Fig-

are 2 are fohlings. Actually, in the. left, the p(., .) in
(bl) att(l tlutt in (b) are equivMent except that the tirst
argument of the former is subsunmd by A. So tile link
with the arrow arm the paralle.l aceoml)anyiug link are
switched up to p(o,.) in (bl). Similarly for tile right
subsuml)tion. Shown ill Figure. 3 is the result.

/.....,.-

(bU
/" Pt, t,~) ",,",,~ / /x" P g',',). \ , ,
(A-~/ ~ ~A~ f / f A 2 / ' - - - ' \ "1

Figure 3: After Rfldiugs.

Note that the original program encodes a im)lflem
of partial parsing of a string beginning with "at" under
the context-free granunar consisting of the following
r l l les .

1~ ~ a
P ~ P P

The re.suit in Figure 3 encodes the iutinitely many pos-
stifle parses of this incomplete se,lteuee. Note also that
here the subsuml)tiou from C to tit(', instance, of Y in
(1)1) would bc possible if C were bound. ']~he next
section contains relevant examl)lcs.

When a link is subsumed by two terms bound by
two hmonsistent bindings (such am °=a and o=b), then
that link is de l e t ed , surrounding clauses possibly be-
ing deleted if some of their attomie formubm are linked
with no atomic fornmla any more.

For the sake of simplicity, we mainly consider inpu t -
b o u n d programs in this paper. We say it program
is inlmt-bound when every dependency path between
bound terlns eOlluects a t e r t u ill a top clause and olte
in a non-top clause. 'l~he program in Figure 1 and tile
ones for parsing ;and geue.ration in the billowing sec-
tion are all inlmt-lmund programs. For input-bound

470

programs, we have only to eonsider subsumt)tions by
terms in top clauses: inl)ut-driven conqmtation. Also,
in inlmt-driven computation for inpnt-bound l)rogr~uns
we do not have to worry about duplications of origins
by subsmnl)timm.

Both subsmnl)tion and deletion preserve the declar-
ative semamtics of tlm program (the set of the solu-
tions), tlmugh we skip at detailed proof due to the sl/ace
limitation. 8o when they arc ,rot ;q)plicablc rely more,
every expansion is a solutiml atnd vice versa. For input-
l)ound programs, the inlmt-driven COmlmtattion alw;tys
terminates within time polynomiM as to the size of the
program. This is 1)ecanse there are at nmst n ',~ liar -
tially instantiated clauses deriv(:d front a clausc with
m terms, where n is the size of the inlmt (the trundler
of bound terms in the top clause(s)), and accordingly
there are polynomially many tr;umclausal links. Ob-
viously, partially instantiated clauses atnd new tran-
sel,'msal links are each created in constant time.. It is
also clear that each fohling ternfinates in polynomial
time.

3 Pars ing and Generat ion

tlere we show that chart-like l)arsing and s(muultic-
]le,%d-driven g e n e r a t i o n e m e r g e f ronl t h e ;t})ove (:()lll[)ll-
rational method. We discuss examph!s of parsing ~tnd
genenttion l)oth on the basis of the Mlowing gratnm~tr.

(3) s(Sem,X,Z)-np(SbjSem,X,Y)
-vp(Sem,SbjSem,Y,Z).

(4) vp(Sem,SbjSem,X,Z)
-v(Sem,SbjSem,ObjSem,X,Y
-np(ObjSem,Y,Z).

(5) n p(Sem,X,Y) -Sem--tom -X=" Tom" (Y).
(6) ,p(Sem,X,Y) -Sere=mary -X=" Ma ry" (Y).
(7) v(Sem,Agt.Pat,X,Y)

-Sem=love(Agt,Pat) -X=" loves" (Y).

Since we h&ve ah'e&(ly nle.ntioned aunl)iguity lta(:king ' in
the previous section, below we do not explMtly deal
with ambiguity but instead discuss jusl; (tit(: senten(:e
strneture in both parsing and gener;ttion.

Let us first consider parsing of sentence 'rl?oln lov(:s
Mary'. The i)roblmn is encoded I)y the wogram in
Figure 4. Tit(: inl)ut-driv(:n COmlmtation l)ro(:eeds as
shown by the arrows, which represent subsuml)tio,t op-
(:rations taking l)la(:(: in tlm ordering itMic~tted I)y tit(:
labclling numbers. A thick del)endency l)atth is llro-
cessed by successive subsmnptions with the sam(; ori-
gin. Tile only subsuml)tion operations exeeul:abh~ in
tire initial situation is the one mmfl)ered 1 and ,'tfter
that the one nmnbered 2, along the thick I)ath l)etween
A0 and X in (5). As the result of these unfoldings, we
obtain the following clauses.

(8) s(Sem,~o,Z)-.p(SbjSem,~0.Y)
-vp(Sem,SbjSem,Y,Z).

(9) np(Sem,~0,~ll) -Sem=tom -Aoo=" To.," (~) .

Of course other partially instanti~Lted (:l~tuses nmy b(:
created lmre from definition clauses nf s other than (3)

and those of np other tlum (5), but we omit them here
iul(l (ZOtl(!(,~lltril.te Oll just one solution,

Now the copy of link with the arrow numbered 3
connected to (9) (:tin mediate subsumption operations.
So the subsuml)tion oper~tion indicated tlu~t arrow is
triggered, though that does not duplicate (9) because
A1 ah'eady subsumes the target. The result is already
refieete.d in (9). The subsequent subsumption Oln:r-
ations mmtbered ,1, 5, aud 6 will yield the. following
claAtses.

(I(I) s(Sem,Ao0,Z)-np(SbjSem,A0,A,)
-vp(Sem.SbjSem.Al ,Z).

(11) vp(Sem,SbjSem,~,Z)
-v(Sem,SbjSem,ObjSem,A1 ,Y)
-np(ObjSem,Y,Z).

(12) v(Sem,Agt,Pat,A1,A2)-Sem=love(Agt,Pat)
-AI ='' loves" (A22).

Now the subsmnl)tion operations by A2 ~L,'e commenced,
due. to the creM;ion of (12). Accordingly, tit(." following
dauses are m'eated, and the parsing is finislw.d.

(13) s(Sem,A0,Aa) -np(SbjSem,A0,A,)
-vp(Sem,SbjSem,A1 ,Aa).

(14) vp(Sem,SbjSem,A1,Aa)
-v(Sem,SbjSem,ObjSem,Al,A2)
--n p(ObjSem,A2,Aa).

(15) np(Sem,~,Aa) -Sere=mary -A-~2=" Mary"(AT).

From tit(; earlier discussion in the cam'. of context-
free parsing tit(', tt(ttllber of ttl[~uses created tl,ere is
O(nm), where n is the number of the input words
and M the lnaxi lnt t l t t ltlllltb{w of the occurrences of
nou-termimd symbols in a eontext-fi'ee rule. This is
l~trger than tit(." space complexity of the st~tndal'd l)ars -
tug Mgorithms, but latter we will show how to improve
i;he ellicien(:y so as to be equiwdent to tlt(; standltrd
algorithnts.

No l)~wti(mbtr order ~tntollg the subsmnptioa oper-
ations is ltrescril)ed in the M)ove COml)utation , ~tnd so
it is not inherently limited to toll-down or bottom-
up. Note also that tlt(' left-to-right l)rocessiug or(ler
among the input words is derived fi'om the dellnitiou
strong link, rather than stilmlated a~s in Earley dedue-
[i()ll, ltlllOllg o the r s . W e c a n m:(:onnt [or islatn(|-dl'iV(.ql
parsing ;Ls well, by Mlowing links between bindings to
trigger sul)smnl)tions more earlier.

Le t (ts ll(.'xt take. it look at se l l te l lee genel 'a t io l i .
Consider the program shown in 1,'igure 5. IIere. the
inlmt is semantic structure love(tom,mary). Again the
comltutationM pro(:ess is indicated by the numl)ere.d
atrrows. (i) (;M~es l)ht(:(',atfter 5, but the. order ~tm()ng
6, 7, and 6t is ~u'l)itratry ~m long as 6 should be before
7. So the only 1)ossible sultsmnption <)Iteration in the
b(:ginning is the ones I)y Love, wlfieh go through the
thick curv(: connecting Love ;rod the X in (4). This
creates tlt(: following cl~ume, ~unong othm's.

(16) v(Love,Tom,Ma ry,X,Y)
- Love= love(To m, M a ry) -X ="loves" (Y).

471

Fig~ure 4: P~u'sing

Love

...

=tom

n~ Mary "i
~ e ~ , ~ m a r y ''

\., -rl

,J / L ' \ \

=tOl l l . ."

/ .
/

i

%.•.

. v p
../ j

i "'..,.....

Z . . -

'"""'.,...,....
"....

.%

.... • ,..............

=mary " /

\ Y

Fi#;ui'e S: Cener~d;ion

472

Now subsumpt ion operations Call go through the coI)iCs
of the other two thick curves. So we arc creating the.
following clauses, among others.

(17) ~(VO~,X,Z)-,p(Y--o-om~,X,V)-vp(~Y~m,V.Z).

(18) vp(L-o~,]-om,X,Z)-v(Love,Tom,Mary,X,Y)
- n p (~ , ¥ , Z) .

(19) np(To-m,X,Y) -Tom=tom -X=" Tom" (Y).
(20) .p(M---~,X,Y) -Mary:mary -X=" Mary"(Y).

Not(: t lmt this generation process iunounts to a gem
eralization of semantic-head-driven generation (Shieber,
van Noord, & Moore, 1989). The order among the
retriewds of semantic heads is the or(h;r of sul)sumI)-
t ion operations by dilfi;rent terms iu tile input seman-
tic structure, jus t as with the iiroccssing order iunt)ng
words ill the case of parsing. 4 Also its ill the case of
i),'trsing, the computat ional comillexity of such a gen-
eration is polynonfial with respect to the siz(: of the
inImt semantic stru(.ture, provided tha t the I)rogr~tnl
is in lmt-bound and tile c(unputat ion is input-driven.
Al though the above cxami)lc deals with only a single
sentence structure, ill general cases ambiguity packing
mtturally takes lllace jus t as with parsing of ambiguous
sentences.

Under the restriction tha t the program be input-
bound, tile grammar caunot employ feature stru(:turcs
l)rewdcnt ill the current linguistic theories, and also
nmst be semantically monotonic (Shiebe, r et al., 1989) ~
The proposed nlcthod can be generalized so as to re-
move this restriction, though the details do not lit ill
the allowed space. This gcneraliz;ttion makes it pos-
sible to deal with fc,'tturc s t ructures and scnumtieally
non-nmnotonic grammars. Of course tile cOnll/utlttion
is not any nmre generally guantntced to terminate. (be-
cause Horn programs can encode '.t~uring machines),
but our method still has a t)etter tcxmination prol)crty
than more simI)listic ones such im Pro[og interl)retcr or
Earley deduction. For instanre, endless cxpansiou of
left rceursion or SUBCNF list, which wouhl hal)pen
ill simple top-(Iowa conrIlutations, is avoidrxl owing to
folding.

4 Incrementa l Copy

The parsing process (liseussed above is conllmtatiou-
ally more eomplcx than chart parsing, i lere wc im-
l)rove our method by introducing a more clfi<:ient st:heine
for ambiguity I)a(:king and thus reduce the plu'sing
complexity to tha t of chart l)~trsing, which is O(n :)
for space aud O(n 3) for time.

Tile present inelfi(:icncy is due to excessive umlti-
plieation of clauses: much more I)artially instantiate.d
(:l~uses arc created than arcs ill a chart . So let us
snpposc tha t a subsumption Ol)eratiml does not dul)li-
(:ate a whole clause I)ut only s()me par t of it, so tlu~t
a clause is coiffed incrcnlentally, as shown in Figure 6.
We ,'Lssumc that a subsumption to an argument of a

aSo the semantic-head-driven gen[~nttiou parallels bett~n' with
left-to-rlg, ht parsing than with syntactic-heard-driven l)arslng;.

5The sem~uttlc monotonicity is practically same as the iuput-
boun(lness with regard to sem~mtlc structures.

literal copies the term filling in tlutt argulnent, the lit-
I;ra[, ll, l ld s o n i c othP, r literals which l l l e l l t io l l t h a t tel ' I l l ,

unless there have ah'eady been the terms and literals
to be thus created. Subscrii)t i of ~t liter;d indic~tes
tha t it is created by the i-th subsumpt ion operation.

Wc must ensure tha t this partial copying be se-
mantically equiwdent to the copying of whole chumes.
Tha t is a trivial business when there ~tre just one or two
litcrals in the original clause. The case where there arc
more than throe litcrals reduces to tim e,~se where there
are exactly three literals, l>y grouping several literals
e<)nne<:ted directly (through terms) and treltt thenl i~-'~
if they were one literal. So below let us consider the
cruse where there are three' litcrals ill a clause.

A non-trivild chet:k must be (loll(! ill Stlch ~L (tas{. ~ as
ill the lower right of I"igurc 6. Here you must copy
-r(.,.)~ a,.l-q(., .)~ t)ut .ot -q(.,.), I,~ause-~(...)~
is c o m p a t i b l e w i t h - q (- , .) l but not with -q (. , .) . Wc
slty tha t a set of liter.'ds ;trc coml)atible when there is
an instance of the obtuse, which involves all instance,
of each of those literals. Also, two literals arc said to
bc h e t e r o g e n e o u s when thc, y haw' different originals
in the original uninstanti~tted clltuse. (The original
of an origimd literal is itself.) Ill general, when a sub-
sumption Ol)erldfion copies two heterogeneous, directly
connected litcrals anti creates two directly connected
literals, the nct:r.ssary and sullicient c(mdition fl)r this
partiM copy to 1)e semantie:dly equivalent to the full-
clause Col)y is obviously tha t the fin'nmr two literals be
conlpatibh:.

When two of the original litcrals ,'tre not (:onnccte(l
directly with each other, two heterogeneous literals
whic.h have ~ directly conne('.tcd originals are compat-
ible iff they arc also directly emmected; wr. need not
eonsi(ler two literals whose originals are not directly
(:onncc ted , I)ccaus(~ one s u l) s u l l q) t i o n o l l e r l t t i on (lt)(~s

not copy such literals at a time.. When MI of the
three original literals arc. connectt:d directly with each
other, two hetcro,e;e.neous literals are compatible if['
they are ctmnected not only (lirectly but ~dso through
another literal heterogeneous to both. Ill flu:t, - r (. , .)~
and -q(* , ') l are (:mme(:ted bo th through tcrnl ~ and
through P(°,o)2, but -r(°,°)2 an (l - q (° , .) are not con-
m~(:ted through any inst,;ume of the original p(.,°).

In the case, of context-free parsing, O(n '~) litr.nd.~
are crt~ate(1, where ,. is tile mnnl)er of words ill the, in-
put string, 1)rovided that the origins o1' sul)suml)tions
are the posit.ions I)ctween tilt: inllut words only, (lue to
the input-driven COml)utation. Since then; ~u'c jusl; i~
constant times more links than literals, the space (:om-
1)Iexity of context-free llarsing hence l)econles O(n '2) ill
our method. The time conq/h.'xity is O(n3), I)eclulse
there are O(n) different ways of making each literal.
Now the correspon(len(:c with vhart pltrsing is more ex-
act. All art: ill the c.h;u't t:orresl)onds to an ins tant ia ted
lit, oral. For instance, arc [A ---* * H • C] fi'om nolle i to
node j corrc~sl)onds to iustanti~tte.d l i t e r a l -b(A// , ,~j) ,

an(l [A -+ • B C *] fi'om n<)(le~ i to node j corresponds
to a(~,i,Aj.), l,'t)r .'t contc.xt-free rule with more than
two symbols ill tile r ight-hand side, we can group sev-
eral literals to oar, ~uu in(!lltiolll2d a b o v e &l)d rP.dtlce i t

to It rule with j , s t two symbols ill the r ight-hand si(h~.

473

subsumption

Z'<--_
q(,~.._~,~)

subsumption

_ q (~ ' ~ ')

0(~,])2 -- P0',~)2
~ s ubsumption

q(,,,),~./~<...~~ - _ q (~))
Figure 6: Sul)sumptions with I,mremcntM Copy

5 C o n c l u d i n g R e m a r k s

We have proposed a flexible iufi~'renee method for Ih)rn
logic programs. The computation l>;mcd on it is it
sort (>f program transformation, and chart l>arsing an<l
semantic-head-driven generation are epil)henomena emer-
gent thereof. The proposed method has uothing Sl)C-
cific to parsing, generation, context-free gramm~tr, or
the like. This indicates that there is no need for any
si)ecial algorithms of parsing or generation, or perhaps
any other aSl)CCt of natural language l)rocessing.

The i(lelt reported al)ove ha.s already been partially
implemented and applied to spoken language under-
standing (Nagao, tbusi(ht, & Miyat;t, 1993), and an
itCCOllllt Of how the roh:s of speaker ltll(l hcatrer IIHly
switch in the midst of it sentence (tlasida, Nagao, &
Miy,'tta, 1993). Although this line of work It;us into>
porated a notion of dyn,'unics (Ilmsi(la, 1994b) ,'us the
declarative semantics to control coutext-sensitive com-
putation, we ;u:e planning to rel)laee dynamics with
probability. For inlmt-bound programs together with
input-driven (:omputation, it is quite straightforward
to deline probabilistie, semantics auq ~t natm'M exten-
sion of stochastic context-free grammars, aunong oth-
ers, because all the body literals are prol)abilistieally
independent in that case. We wmfld like to report soon
on ,'t generM treatment of probabilisticMly dependmlt
literMs whih., preserving the cflieim~t struetm'c sharing,
which will gmtrantee etlieient computation and learn-
ing.

R e f e r e n c e

tImsida, K., Nagao, K., & Miyatat, T. (19!)3).
Joint Utterance: Intrmsentential Sl)eakcr/IIearcr
Switch as an Emergent I)henonmnon. In Ba-
jcsy, R. (Ed.), PTveeedinfls of the lgth InteT~za-
tional Joint Conference on Artificial h~telligence
Chamb4ry.

llausida, K. (1994a). Common Ihmristies for P~trsiug,
Generation, ~md Whateww In Strzalkowski,
T. ([,~d.), l~eversible Grammar in Natural Lan-
guage lb'oeessing. Kluwer Ae~ulemie Publisher,
Dordrecht.

tlasida, K. (19941)). l)ynamies of Symbol Systems.
New Generation ComFitling , 12(3). to ~tppear in
May 1994.

Kay, M. (1980). Algorithm Schenmt;t and Datt;~ Struc-
tures in Syntactic Processing. Tceh. rep., XE-
I/.OX Palo Alto II.escarch Center, PMo All:(), Cal-
ifornia.

N~tgao, K., Ibusida, K., & Miyata, T. (1993). Under-
standing Spoken Natm'M Lauguage with Omni-
Directional hfformation Flow. In Proceedings of
the 13th International Joint Conference on Ar-
tiJicial Intelligence.

Pereirat, I,'. C. N., & Warren, D. H.]). (198:/). Parsing
as Deduction. In Proceedings of the 21st Awnual
Meeting of ACL, I)1). 137 14,1.

Shieber, S. M. (1988). A Uniform Architecture. for
Parsing and Generation. In Proceedings of the
12th International Conferenee. on Computational
Linguistics, pp. 614-619.

Shieber, S. M., v;m Noord, G., & Moore, R. C. (1989).
A Semantic.-th:ad-Driven Generation Algorithm
for Unilication-B~sed Forn,Misms. In Proceed-
ings of the 27th Annual Meeting of the Assoeia-
tion for Computational Linguistics, 1)i). 7 17.

474

