454

A MODULAR ARCHITECTURE
FOR CONSTRAINT-BASED PARSING

Francois Barthélemy®®

Francois Rouaix®

& INRIA Rocquencourt, BP 105, 78153 Le Chesnay cedex, Irance
& Universidade Nova de Lisboa, 2825 Monte de Caparica, Portugal

ABSTRACT

This paper presents a framework and a system for
implementing, comparing and analyzing parsers
for some classes of Constraint-Based Grammanrs.
The framework consists in a uniform theoretic
description of parsing algorithms, and provides
the structure for decomposing the system into
logical components, with possibly several inter-
changeable implementations. Many parsing al-
gorithms can be obtained by composition of the
modules of our system. Modularity is also a way
of achieving code sharing for the common parts
of these various algorithms. Furthermore, the de-
sign lielps réusing the existing modules when im-
plementing other algorithms. The system uses
the flexible modularity provided by the program-
ming lahguéxges Alcool-90, based on a type systemn
that ensures the safety of module composition.

1 INTRODUCTION

We designed a system to study parsing. Our aim
was not to implement only one parsing algorithm,
but as many as possible, in such a way that we
could compare their performances. We wanted to
study parsers’ behavior rather than using them to
exploit their parses. Furthermore, we wanted a
system opened to new developments, impossible
to predict at the time we began our project.

We achieved these aims by defining a modular
architecture that gives us in addition code sharing
between alternative implementations.

Our system, called APOC-I, implements more
than 60 different parsing algorithms for Context-
Free Grammars, Tree-Adjoining Grammars, and
Definite-Clause Grammars. The different gener-
ated parsers are comparable, because they are im-
plemented in the same way, with common data
structures. Experimental comparison can involve
more than 20 parsers for a given grammar and
give results independent from the implementa-
tion.

Furthermore, adding new modules multiplies
the number of parsing algorithm. APOCH is
open to new parsing techniques to such an ex-

tent that it can be seen as a library of tools for
parsing, including constraint solvers, look-ahead,
parsing strategies and control strategies. These
tools make prototyping of parsing algorithms eas-
ier and quicker.

The system is based on a general framework
that divides parsing matters in three different
tasks. IPirst, the compilation that translates a
grammar into a push-down automaton descril-
ing how a parse-tree is built. The automaton can
be non-deterministic if several trees have to he
considered when parsing a string. Second, the
interpretation of the push-down antomaton that
has to deal with non-determinism. Third, the
constraint solving, used by both compilation and
interpretation to perform operations related to
constraints.

Several algorithms can perform cach of these
three tasks: the compiler can generate cither top-
down or bottom-up automata, the interpreter can
make use ol backtracking or of tabulation and
the solver has to deal with diflerent kinds of con-
straints (first-order terms, features, ...).

Our architecture allows different combinations
of three components (one for each basic task) re-
sulting into a specific parsing system. We use the
Alcool~90 programming language to implement
our modules. This language’s type system allows
the definition of alternative implementations of
a component and ensures the safety of module
combination, i.e. cach module provides what is
needed by other modnles and receives what it re-
quires.

The same kind of modularity is used to split the
main components (compiler, interpreter, solver)
into independent sub-modules, Some of these
sub-modules can be shared by several different
implementations, For instance the computation
of look-ahead is the same for LL(k) and LR(k)
techniques.

The next section defines the class of grammar
we consider. Then, a general framework for pars-
ing and the sort of modularity it requires are pre-
sented. Section 4 is devoted to the Alcool-90 lan-
guage that provides a convenient module system.
Section 5 is the detailed description of the APOC-

!l system that implements the general framework
using Alcool-90.

2 CONSTRAINT-BASED GRAMMARS

The notion of Constraint-Based Grammar ap-
peared in computational linguistic. It is a uselul
abstraction of several classes of grammars, includ-
ing the most commonly used to describe Natural
Language in view of computer processing.

We give our own definition of constraint-hased
grammars that may slightly differ from other def-
initions.

Definition 1 Constraint-Based Grammar
A constraint-based grammar is o 7T-tuple

{Nt,T,e, V, Az, CL, R} where
o Nt is a set of symbols called non-terminals
o T is a set of symbols called terminals

o « is a function from Nt UT to the natural
integers called the arity of the symbols

o V is an infinite set of variables
o Ax is an element of Nt called the aviom

o CL is a constraint language (see definition be-
low) having V' as variable set and being closed
under renaming and conjunction

.

R is « finite set of rules of the form:

SO(XU) e Sy (‘\,1)1 ceey 571(Xn)'

such that sp € Nt,s; € NtUT for 0 <i < n,
c € CL, X; are tuples of ofs;) distinet vari-
ables, and the same vartable cannot appear in
two different tuples.

In this definition, we use the notion of con-
straint languege to define the syntax and the se-
mantics of the constraints used by the grammars.
We refer to the definition given by [ofeld and
Smolka in [[1S88]. This definition is especially
suitable for constraints used in NLI (unrestricted
syntax, multiplicity of interpretation domains).
The closure under renaming property has also
been defined by Hofeld and Smolka. It ensures
that constraints are independent from the vari-
able names. This grounds the systematic renam-
ing of grammar rules to avoid variable conflicts.

Definition 2 Constraint Language
A constraint Language is o {-tuple (V,Cv, 1) such
that:

e Vis an infinite set of variables

o ('is a decidable set whose clements are called
constraints

o 1 is function that associales « [inite set of
variables to each constraint

o [is a non-empty st of interpretations

Tor lack of space we do not recall in detail what
an interpretation and the “closure under renam-
ing” property are, and refer to [[1588).

The semantics of Constraint-Based Grammars
is defined by the semantics of the constraint lan-
guage and the notion of syntax tree. A syntax
tree is a tree which has a grammar rule (renamed
with fresh variables) as label of cach node. A
constraint is assoclated to a parse tree: il is the
conjunction of all the constraints of the labels and
the equalities between the tuple of variables from
the noun-terminal of the left-hand side of a label
and the tuple of the relevant symbol of the right-
hand side of the label of its parent.

An important point about parse trees is that
the order of terminal symbols of the input string
and the order of the symbols in right-hand sides
of rules are sipnificant.

A Countext-Iree Grammar is obtained just
by removing tuples and constraints from the
grammar rules. Most parsing techniques for
Constraint-Based Grammars use the underlying
context-free structure to guide parsing, This al-
lows the reuse of context-free parsing techniques.

The grammars we have just defined encom-
pass several classes of grammars used in NLD,
including logic grammars (Definite Clause Gram-
mars and variants), Unification Grammars, Tree
Adjoining Grammars' and, at least partially,
Lexical-I'unctional Grammars and Head Phrase
Structure Grammars., Of course, there are syn-
tactical differences between these classes and
Constraint-Based Grammars. A simple transla-
tion from one syntax to the other is necessary.,

3 A GENERAL I'RAMEWORK YOR

PARSING

This section is devoted to a general framework
lor parsing in which most of the parsing methods,
inchuding all the most common ones, are express-
ible. It is an extension of a context-free frame-
worl [Lan74]. It is based on an explicit separation
between the parsing sirategy that describes how

ITAGs have an underlying context-free structure, al-
though this is not obvious in their formal definition. See
for instance [Lan91).

1

456

syntax trees are built (e.g. top-down, hottom-
up), and the control strategy that deals with the
non-determinism of the parsing (e.g. backtrack-
ing, tabulation).

3.1 EPDAs

This separation is based on an intermediate repre-
sentation that describes how a grammar is used
following a given parsing strategy. This inter-
mediate representation is a Push-Down Automa-
ton. It is known that most context-free parsers
can be encoded with such a stack machine. Of
course, the usual formalism has to be extended
to take constraints into account, and possibly use
them to disambiguate the parsing. We call Ix-
tended Push-Down Automaton (EPDA) the ex-
tended formalism.

For lack of space, we do not give here the for-
mal definition of EPDA. Informally, it is a ma-
chine using three data structures: a stack contain-
ing at each level a stack symbol and its tuple of
variables; a representation of the terminal string
that distinguishes those that have already been
used and those that are still to be read; finally
a constraint. A configuration of an automaton
is a triple of these three data. Transitions are
partial functions from configurations to confign-
rations. We add some restrictions to these tran-
sitions: the only change allowed for the string
is that at most one more terminal is read; only
the top of the stack is accessible and at most one
symbol can be added or removed from it at once.
These restrictions are needed to employ directly
the generic tabular techniques for automata exe-
cution described in [BVdIC92]. EPDAs may be
non-deterministic, i.e. several transitions are ap-
plicable on a given configuration.

Parsing for Constraint-Based Grammars

blends two tasks:

¢ The structural part, that consists in building
the skeleton of parse trees. This part is similar
to a context-free parsing with the underlying
context-free projection of the grammar.

e Solving the constraints of this skeleton.

The two tasks are related in the following way:
constraints appear at the nodes of the tree; the
structure is not a valid syntax tree if the con-
straint set is unsatisfiable. Fach task can be per-
formed in several ways: there are several context-
free parsing methods (e.g. LL, LR) and con-
straints sets can be solved globally or incremen-
tally, using various orders, and several ways of
mixing the two tasks are valid. Tree construction

involves a stack mechanism, and constraint solv-
ing results in a constraint. The different parsing
techniques can be described as computations on
these two data structures. EPDAs are thus able
to encode various parsers for Constraint Gram-
mars.

Automatic translation of grammars into LP-
DAs is possible using extensions of usual context-
free techniques [Bar93).

3.2 ARCHITECTURE

Thanks to the intermediate representation
(EPDA), parsing can be divided into two inde-
pendent passes: the compilation that translates
a prammat into an extended antomaton; the exe-
cution that takes an EPDA and a string and pro-
duces a forest of syntax trees. To achieve the in-
dependence, the compiler is not allowed to make
any assnmptions about the way the antomata it
produces will be executed, and the interpreter in
charge of the execution is not allowed to make
assumptions about the automata it executes.

We add to this scheme reused from context-
free parsing a third component: the solver (in an
extensive meaning) in charge of all the operations
related to constraints and variables. We will try
to make it as independent from the other two
modules (compiler and interpreter) as possible.

There is not a full independence, since both the
compiler and the interpreter involve constraints
and related operations, that arc performed by
the solver. We just want to define a clear inter-
face between the solver and the other modules,
an interface independent from the kind of the
constraints and from the solving algorithms be-
ing used. The same compiler (resp. interpreter)
used with different solvers will work on diflerent
classes of grammars. For instance, the same com-
piler can compile Unification Grammars and Def-
inite Clause Grammars, using two solvers, one
implementing feature unification, the second one
implementing first-order unification.

We can sce a complete parsing system as the
combination of three modules, compiler, inter-
preter, solver. When cach module has several
implementations, we wonld like to take any com-
bination of three modules. This schematic ab-
straction captures parsing algorithms we are in-
terested in. However, actually defining interfaces
for a practical system without restricting open-
endedness or the abstraction (interchangeability
of components) was the most diflicult technical
task of this work.

3.3 SOLVERS

The main problem lies in the definition of the
solver’s interface. Some of the required opera-
tions are obvious: renaming of constraints and
tuples, constraint building, extraction of the vari-
ables from a constraint, etc.

By the way, remark that constraint solving can
be hidden within the solver, and thus not ap-
pear in the interface. There is an equivalence
relation between constraints given by their inter-
pretations. This relation can be used to replace
a constraint by another equivalent one, possibly
simpler. The solving can also be explicitly used to
enforce the simplification of coustraints at some
points of the parsing.

Unfortunately some special techniques require
more specific operations on constraints. For in-
stance, a family of parsing strategies related to
Farley’s algorithm make use of the restriction op-
erator defined by Shieber in [Shi85]. Another ex-
ample: some tabular techniques take benefit from
a projection operator that restricts constraints
with respect to a subset of their variables.

We could define the solver’s interface as the
cartesian product of all the operations used by
at least one technique. There are two reasons to
reject such an approach. The first one is that
some scldom used operations are diflicult to de-
{ine on some constraints domains. 1t is the case,
among others, of the projection. The second rea-
son is that it would restrict to the techniques al-
ready existing and known by us at the moment
when we design the interface. This contradicts
the open-endedness requirement. A new opera-
tion can appear, uscful for a new parsing method
or for optimizing the old ones.

We prefer a flexible definition of the interface.
Instead of defining one single interface, we will al-
low each alternative implementation of the solver
to define exactly what it oflers and each imple-
mentation of the compiler or of the interpreter
to define what it demands. The combination of
modules will involve the checking that the offer
encompasses the demand, that all the needed op-
erations are implemented. This imposes restrie-
tions on the combination of modules: it is the
overhead to obtain an open-ended system, opened
to new developments.

We found a language providing the kind of flex-
ible modularity we needed: Alcool-90. We now
present this language.

4 THE LANGUAGE ALcooL 90

Alcool-90 is an experimental extension of the

functional language MI, with run-time overload-
ing [Rou90]. Overloading is used as a tool for
seamless integration of abstract data types in
the ML type system, retaining strong typing,
and type inference properties. Abstract data
types (encapsulating a data structure represen-
tation and its constructors and interpretive func-
tions) provide values for overloaded symbols, as
classes provide methods for messages in ohject-
oriented terminology. However, strong typing
means that the compiler guarantees that errors
of kind “method not found” never happen.

Abstract programs are programs referring to
overloaded symbols, which values will be deter-
mined at run-time, consistently with the calling
environment. By grouping abstract programs,
we obtain parameterized abstract data types (or
functors), the calling environment being here a
particular instantiation of the parameterized adt.
Thus, we obtain an environment equivalent to a
module system, cach module being an adt, even-
tually parameterized,

Tor instance, in APOC~Il, compilers have an
abstract data type parameterized by a solver.

Alcool-90 also proposes an innovative environ-
nient where we exploit ambiguities due to over-
loading for semi-antomated program configura-
tion : the type inference computes interfaces of
“missing” components to complete a programn, ac-
cording to the use of overloaded symbols in the
program, A scarch algorithm finds components
satisfying those interfaces, eventually by find-
ing suitable parameters for parameterized compo-
nents. Naturally, instantiation of parameterized
compornents is also type-safe : actual parameters
must have interfaces matching formal parameters
(schematically : the actual parameter must pro-
vide at least the functions required by the inter-
face of the formal parameter).

For instance, only the solvers providing
Shieber’s restriction can be used as the actual pa-
rameter of Farley with restriction compiler. But
these solvers can also be used by all the compilers
that do not use the restriction.

Simple module systems have severe limita-
tions when several implementations of compo-
nents with similar interfaces coexist in a system,
or when some component may be employed in dif-
ferent contexts. Ada generics provided a first step
to module parameterization, though at the cost
of heavy declarations and difliculties with type
equivalence. SML proposes a very powerful mod-
ule system with parameterization, but lacks sepa-
rate compilation and still requires a large amount
of user declarations to define and use functors.
Object-oriented languages lack the type security
that Alcool-90 guarantees.

The Alcool-90 approach benefits from the sim-
plification ot modules as abstract data types by
adding inference facilities: the compiler is able to
infer the interfaces of parameters required by a
module. Moreover, the instantiation of a functor
is simply seen as a type application, thus no ef-
forts are required from the programmer, while its
consistency is checked by the compiler.

This approach is mostly nseful when multiple
implementations with similar interfaces are avail-
able, whether they will coexist in the program or
they will be used to generate several configura-
tions. Components may have similar interfaces
but different semantics, although they are inter-
changeable. Choosing a configuration is simply
choosing from a sct of solutions to missing com-
ponents, computed by the compiler.

Several other fcatures of Alcool-90 have not
been used in this experiment, namely the inheri-
tance operator on abstract data types, and an ex-
tension of the type system with dynamics (where
some type checking occurs at run-time).

5 APOC-II

APOC-! is a system written in Alcool-90, imple-
menting numerous parsing techniques within the
framework described in section 3. The user can
choose between these techniques to build a parser.
By adding new modules written in Alcool-90 to
the library, new techniques can freely be added
to the system.

APOC-II has two levels of modularity: the first
one is that of the three main components distin-
guished above, compiler, interpreter and solver.
Each of these components is implemented by sev-
eral alternative modules, that are combinable us-
ing Alcool-90 discipline.

The second level of modularity consist in split-
ting each of the three main components into sev-
eral modules. This makes the sharing of common
parts of different implementations possible.

We give now examples of splitting APOC-|
uses at the moment, in order to give an idea of
this second level of modularity. This splitting has
proved convenient so far, but it is not fixed and
imposed to further developments: a new imple-
mentation can be added even if it uses a com-
pletely different internal structure.

A solver is made of:

e a module for variables, variable generation
and renaming,

e a parser for constraints,

e a pretty-printer for constraints,

e a constraint builder (creation of abstract syn-
tax trees for constraints, e.g. building con-
straints expressing equality of variables),

e a solver in the restrictive meaning, in charge
of constraint reduction,

e an interface that encapsulate all the other
modules.

A compiler includes:

o a grammar parser {that uses the constraint
parser given by the solver),

¢ a module for look-ahead (for computation of
look-ahead sets by static analysis of the gram-
mar),

e a module for PDA representation and han-
dling,

e o trausition generator which translates gram-
mar rules into FPDA transitions therefore de-
termining the parsing strategy (cf. figure 1),

o Control code, using previous modules, defin-
ing the “compile” function, the only one ex-
ported.

The two interpreters implemented so far have
very different structures. The first one uses
backtracking and the second one uses tabulation.
They share some modules however, such as a
module handling transitions and a lexer of input
strings.

The interest of the modular architecture is in
the combinatorial effect of module composition.
It leads to many different parsing algorithms.
The figure 1 summarizes the different aspects of
the parsing algorithms that can vary more or less
independently.

For example, the built-in parsing method of
Prolog for DCGs is obtained by combining the
solver for DCGs, the top-down strategy, 0 sym-
bol of look-ahead and a backtracking interpreter
(ind other modules not mentioned in figure 1 be-
cause they do not change the algorithm, but at
most its implementation).

Some remarks about figure 1:

e we call Farley parsing strategy the way Earley
deduction [PW83] builds a tree, not the con-
trol method it uses. 1t differs from top-down
by the way constraints are taken into account,

o the difference between Rarley-like tabulation
and graph-structure stacks is the data struc-
ture used for item storage. Scveral variants
arc possible, that actually change the parser’s
behavior.

(grammar class)

Solver Context-free Grammars - Definite Clause Grammars
Tree Adjoining Grammars - Unification Grammars ...

parsing strategy
(transition generator)

top-down - pure bottom-up - Earley - Earley with restriction
left-corner - LR - precedence - PLR . ..

look-ahead

context-free look-ahead of 0 or 1 symbol
context-free look-ahead of k symbols - context-sensitive look-ahead

interpreter

backtracking - Earley-like tabulation - Graph-structured Stacks ...

Agenda management
(for tabulation only)

Synchrounization - lifo - fifo - various weights . ..

Figure 1: modules of APOC-1

Modules written in hold font are already implemented, whereas modules written in italic are possible

extensions to the system.

o we call synchronization a kind of hreadth-first
search where scanning a terminal is performed
only when it is needed by all the paths of the
scarch-tree. The scarch is synchronized with
the input string. It is the order used by Ihar-
ley’s algorithm.

e at the moment, only generic look-ahead, that
is look-ahead based on the first and follow
sets, has been considered. Some more accu-
rate look-ahead techniques such as the ones
involved in SLR(k) parsing are probably not
independent from the parsing strategy and
cannot be an independent module.

Building a parsing system with APOC-Il con-
sists roughly in choosing one module of each row
of fipure 1 and combining them. Some of the
combinations are not possible. Thanks to type-
checking, Alcool-90 will detect the incompatibil-
ity and provide a type-based explanation of the
problem.

At the moment, APOC-II offers more than 60
different parsing algorithms. Given a grammar,
there is a choice of more than 20 different parsers.
Adding one module does not add ouly one more
algorithm, but several new variants.

The techniques implemented by APOC- are
not original. For instance, the LR compilation
strategy comes from a paper by Nilsson, [Nil&6],
left-corner parsing has been used by Matsumoto
and Tanaka in [MT83]. As far as we know, how-
ever, LR and left-corner parsers have not been
proposed for Tree-Adjoining Grammars before,

Notice that the modularity is also useful to vary
implementation of algorithms. Tor instance, a
first prototype can be quickly written by iinple-
menting constraints reduction in a naive way, A
refined version can be written later, if needed.

6 CONCLUSION

APOC-II has several advantages. IMirst of all, it

provides comparable implementations of the most
common parsing algorithms. Their efliciency can
be ahstractly measured, for instance by counting
the number of computation step (EPDA transi-
tion application) performed to compnte a tree or
a complete forest of parse trees. We call this
kind of measurements abstract becanse it does
not rely neither on the implementation nor on
the machine that runs the parser. Other compar-
isons could be done statically, on the automaton
or on the parse forest (e.g. number of transitions,
amount of determinism, size of the forest, amount
of structure sharing).

Otherwise, APOC-IIl can be used as a toolkit
that provides a library of modules usefnl to imple-
ment quickly new parser generators. For instance,
one has only to write a solver to obtain up to 22
parsing algorithms (perhaps less if the solver pro-
vides only basic operations). The library contains
tools to deal with some constraints, look-ahead,
lexing, tabulation, ete. Reusing these tools when-
ever it is possible saves a lot of work.

The limitations of APOCl are that it is mainly
convenient for parsing strategies that are some-
how statie, i.c. statically determined at com-
pile time. Also, abstraction (full independence
between compilers and interpreters) cannot he
achieved for some optimized algorithms. Tor in-
stance, Nederhof presents in [Ned93} a parsing
strategy called ELR for which tabular execution
can be optimized. To implement this algorithm
in our system, one would have to write a new
interpreter dedicated to ELR- EPDAs.

We think that our experiment shows the in-
terest of a flexible modularity for studies about
parsing. We believe that the same technique can
fruitinlly apply on other domains of Natural Lan-
guage Processing,.

59

460

7 ACKNOWLEDGEMENTS

The authors are grateful to Gabriel Pereira Lopes
for his help.

REFERENCES
[Bar93) Francois Barthélemy. Outils pour l'a-

[BVAIC92)

[TIS88]

[Lan74]

[Lan91]

[MT83]

[Ned93]

[Nil86)

[PWs3]

nalyse syntaxique contextuelle. The-
se de doctorat, Université d’Orléans,
1993.

F. Barthélemy and Ii. Villemonte
de la Clergerie. Subsumption-
oriented push-down automata. In
Proc. of PLILP’92, pages 100-114,
june 1992.

M. Hohfeld and G. Smolka. Definite
Relations over Constraint Languages.
Technical Report 53, LILOG, IWBS,
IBM Deutschland, october 1988.

Bernard Lang. Deterministic tech-
niques for efficient non-deterministic
parsers. In Proc. of the 2™ Collo-
quium on automatae, lenguages and
Programming, pages 255-269, Saar-
briicken (Gerinany), 1974. Springer-
Verlag (LNCS 14).

Bernard Lang. The systematic con-
struction of carley parsers: Applica-
tion to the production of o(n®) carley
parsers for tree adjoining grammars.
In First International Workshop on
Tree Adjoining Grammars, 1991.

Y. Matsumoto and I, Tanaka. Bup:
A bottom-up parser embedded in pro-
log. New Generation Computing,
1:145-158, 1983.

Mark-Jan Nederhof. A multidisci-
plinary approach to a parsing algo-
rithm. In Proceedings of the Twente
Workshop on Language Technology -
TWLT6, december 1993.

Ul Nilsson. Aid: An alternative im-
plementation of DCGs. New Genera-
tion Computing, 4:383-399, 1986.

F. C. N. Pereira and D. H. D. War-
ren. Parsing as deduction. In Proc. of
the 21st Annual Meeting of the Asso-
ciation for Computationnal Linguis-
tic, pages 137-144, Cambridge (Mas-
sachussetts), 1983.

{Rou90]

[Shi8S5]

I'rangois Rouaix. ALCOOL-90: Ty-
page de la surcharge dans un langage
fonctionnel. Thése de doctorat, Uni-
versité Paris 7, 1990.

Stuart M. Shieber. Using re-
striction to extend parsing algori-
thms for complex-feature-based for-
malisms. In Proceedings of the 237¢
Annual Meeting of the Association
for Computational Linguistics, pages
145-152, Chicago (Illinois), 1985.

