
A MODULAR ARCHITECTURE

FOR CONSTRAINT-BASED PARSING

F r a n c o i s B a r t h d l e m y ~ " Fran(;ois R o u a i x 0

0 INRIA Roequeneourt, BP 105, 78153 Le Chesnay cedex, France
& Universidade Nova de Lisboa, 2825 Monte de Caparica, Portugal

ABSTRACT

This paper presents a framework and a system for
implementing, comparing and analyzing parsers
for some classes of Constraint-Based Grammars.
The framework consists in a uniform theoretic
description of parsing algorithms, and provides
the structure for decomposing the system into
logical components, with possibly several inter-
changeable implementations. Many parsing al-
gorithms can be obtained by compositi(m of the
modules of our system. Modularity is also ,~ way
of achieving code sharing for the common parts
of these various algorithms. Furthermore, tile de-
sign lielpi~ reusing the existing modules when im-
plementing other algorithms. The system uses
the flexible modularity provided by the program-
mifig languages hleool-90, 1)ased on a type system
that ensures the safety of module composition.

1 INTRODUCTION

We designed a system to study parsing. Our aim
was not to implement only one parsing algorithm,
but as many as possible, in such a way that we
could compare their performances. We wanted to
study parsers' behavior rather than using them to
exploit their parses. Furthermore, we wanted a
system opened to new developments, impossibh~
to predict at the time we began our project.

We achieved these aims by detining a mo(lular
architecture that gives us in addition code sharing
between alternative implementations.

Onr system, called APOC-II, implements more
than 60 ditferent parsing algorithms for Context-
Free Grammars, Tree-Adjoining Grammars, and
Definite-Clause Grammars. The different gener-
ated parsers are comparable, because they are im-
plemented in the same way, with common data
structures. Experimental comparison can involve
more than 20 parsers for a given grammar and
give results independent from the implementa-
tion.

Fnrthermore, adding new modules multiplies
the mHnber of parsing Mgorithm. APOC-II is
open to new parsing techniques to such an ex-

tent that it can be seen as a library of tools for
parsing, including constraint solvers, look-ahead,
parsing strategies and control strategies. These
tools make prototyping of parshlg algorithms eas-
ier an(l qui(:ker.

The system is I)ase(1 on a general framework
that divides parsing matters in three different
tasks. First, tl,e compili~tion that translates a
grammar into a push-down automaton (tescrib-
ing how a parse-tree is built. The automaton can
be non-determinlstic if several trees have to be
eonsidere(l when parsing a string. Second, the
interl)retation of the push-down ~mtomaton that
has to deal with non-determinism. Third, the
constraint solving, used by 1)oth eomi)ilation and
interpretation to perform operations related to
constraints.

Several algorithms can perform each of these
three tasks: the compiler can generate either top-
down or bottom-up automata, the interl)reter can
make use of backtracldng or of tal)ulation and
the solver has to deal with different kinds of con-
straints (first-order terms, features, . . .).

Our architecture allows different combinations
of three components (one for each basic task) re-
sulting into a specific parsing system. We use the
Alcoo[-90 progranmfing language to implement
our mo(hlles. This language's type system allows
the definition of alternative implementations of
a con lponen t and enmlres the safety of module
cond)ination, i.e. each module provides what is
neede(1 by other mo(lules and re(:eives what it re-
quires.

The same kind of modularity is used to split the
main components (conll)iler, interpreter, solver)
into independent snb-modnles. Some of these
sub-modules can bc shared by several different
implementations. For instance the coml)utation
of look-ahead is the same for LL(k) and LR(k)
techniques.

The next section defines the class of grammar
we consider. Then, ~t general framework for pars-
ing and the sort of modularity it requires are pre-
sented. Section 4 is devoted to the AIcool-90 lan-
guage that provides a convenient module system.
Section 5 is the detailed description of tile APOC-

454

II system that implements the gonoral ff~tmework
using Alcool-90.

2 CONSTII.AINT- B ASED C~RAMMARS

The notion of Constraint-Based Gramm~tr aii-
ile~tred ill computat ional linglfistic. It is rt useful
allstraction of several classes of grammars, inelud-
h l g the most commonly used to describe NatuntI
Language in view of COmlmter processing.

Wo give our own definition of constraint-lmsed
grammars tha t may slightly differ from other def-
initions.

D e f i n i t i o n 1 ConstTnint-11ased Grammar
A constraint-based grammar is a 7-tuple
{ N t , T , (~, V, Am, C L, R } where

• N t is a set of symbols called non-terminals

• 7' is a set of symbols called terminals

• a is a f lmet ion f rom N t O 7' to the natm'al
integers called the arity of the symbol,s

• V is an infinite set of variables

• Aa: is an element of N t called the a:dom

• C L is a constraint language (see definition be-
loin) having V as variable set and being closed
it~'tder renaming a~td conjunction

• R is a f inite set of rules of the form:

- , (2 ' ,) , <2;,)
such that so E N t , sl ~ N t U 7' for 0 < i _<. n,

c e C L , X i are tuples of (t(sl) distinct va,'i-
ables, and the same wwiabIe cannot appear in
two different tupIes.

in this definitio,t, we use the notion (if con-
s t r a i n t language to define the syntax and the se-
mantics of the constraints usod 1)y the grammars.
Wo refer to the definition given Iiy H/Sfcld and
Smollm in [ITS88]. This detinition is especially
suitable for constraints used in NLP (unrestricted
synt*tx, multiplicity (if interpretat ion donmins).
The closure under renaming property has ~tlso
1lees detined by IISfeld and Snlolka. It ensures
tlt~tt constraints are independent from the vari-
able names. This grmtnds the systematic renam-
ing of g rammar rules to avoid wtriallle conflicts.

D e f i n i t i o n 2 Constrnint Language
A constraint Language is a 4-tuple (V ,C ,u , I) such
that:

• V is an infinite set of variables

• C is a decidable set whose elements are called
cons traints

• u is fanct ion that associates a finite set of
variables to eaeh constraint

• I is a non-empty set of interpretations

Ii'or bt<:k of Slm<:e we <lo not recall in detail what
itll i n t e r p r e t & t i o l l Jill(| the "<'losuro l l l ldel" I'(!IlH.III ~

ing" pr<)perty are, and refer to [IIS88].

The semantics of Constra.int-Based Gnmmlars
is defined by the .'-;(?lllalltics of the constra.int lan-
guage ~tll(l l, ho notion of syntax tree. A synta.x
trce is a tree which]ms at grammttr rule (remtmed
with fi'esh v~triables) as latml of ea.ch nodo. A
constraint is associatted to at parse tree: it is the
conjunction of all the constr~dnts of the labels and
the oqualities between the tUllle of wtriables from
the non-termilml ,if the loft-hand side of a label
and the tlq)le of the relewmt symbol of tim right>
hand side of tim l~dml of its p~trent.

An hnpor tan t lloint ~dmut p;trse trees is tlt*tt
the ordor of terminal symbols of tll(~ ini)ut string
and the order of the symhols in rig}lt-h;md sides
of rules are signitica.nt.

A Context-Free Gramma, r is obtained just
by ,'omoving tutiles and constr~dnts fl'om tho
grammar rules. Most i)m'sing techniques for
Constraint-Bas(~d Grainmars use the underlyillg
context-fro(! structure, to guido parsing. This al-
lows the ,'euse of cont.ext-fl'ee lntrsing tccl,niques.

T}Io g~r;tllllll;H's w o h l t v e just definod OIICOIII-

pass several c l a s s e s {if i ; r&l l l l l l ; t r s llSOd ill N] ,]),

including log;it p;l'amlttlal'S (Definite Clause Cram-
mars and variants), UIlifica~tion Cramlmtrs, Tree
Adjoining (h 'ammars I and, at least p~trtially,
i,exical-I;'unctioval C~l'~tlllllHli's ;ilia I/oral Phras(~
~.I'IIC~/.III'(~ (.*fl'~llllllllLl'S. ()1" ('OllI'S(~ 1 t,h(!r(~ ;tl'(~ s y n -

t a c t i c a l differ(mces 1)(~twe(m these (:lassos altd
Constraint-Based (ll'amlmU'S. A simple t:ransla.-
t . ion ['r()lll on(? syntax t,/) {.he () th (, r is n(~(:essary.

3 A G ENF.RAI,]?RAMEWOI{K FOIl.

PARSING

This section is devoted to it general fralnework
for iiarsing ill which most of the i)arsing inethods,
i n c h l d i n g ~ all the l n o s t COtlllllOtl OliOS, ar(] e x p r e s s -

ible. It is ;in extension of ~ contoxt-freo framo-
work [Lan74]. i t is based on an explicit separation
lletween tho parsing strategy tha t descrilies how

I T A G s have an u n d e r l y i n g con tex t - f r ee s t r u c t u r e , al-
t h o u g h this is not ol)vi(ms in the i r formM defini t ion. See
for instance [I ,angl] .

455

syntax trees are built (e.g. top-<lown, bot tom-
Ill)), and the control strategy tha t <lcals with the
non-determinism of the parsing (e.g. backtrack-
ing, tabulat ion) .

3 . 1 E P D A s

This separat ion is based on an intermediate repre-
sentat ion tha t describes how a g rammar is used
following a given parsing strategy. This inter-
mediate representat ion is a Push-Down Automa-
ton. It is known tha t most context-free parsers
can be encoded with such a stack machine. Of
course, the usual formalism has to be extended
to take constraints into account, and possibly use
them to disambiguate the parsing. We. call Ex-
tended Push-Down Automaton (EPDA) the ex-
tended formalism.

For lack of space, we do not give here the for-
mal definition of EPDA. hfformally, it is a ma-
chine using three da ta structures: a stack contain-
ing at each level a stack symbol and its tuple of
variables; a representat ion of the terminal str ing
tha t distinguishes those tha t have already been
used and those tha t are still to be read; finally
a constraint . A configuration of an au tomaton
is a triple of these three data. Transit ions are
part ial fimctions from configurations to configu-
rations. We add some restrictions to these tran-
sitions: the only clmnge allowed for the str ing
is tha t at most one more terminal is read; only
the top of the stack is accessible and at most one
symbol can be added or removed from it at once.
These restrictions are needed to employ directly
the generic tabular techniques for au tomata exe-
cution described in [BVdlC92]. EPDAs may be
non-determinist ic, i.e. several t ransi t ions are ap-
plicable on a given configuration.

Parsing for Constraint-Based Grammars
blen(ls two tasks:

• The s t ructural part , tha t consists in buihling
the skeleton of parse trees. This l)art is similar
to a context-free parsing with the underlying
context-free projection of the grammar.

• Solving the constraints of this skeleton.

The two tasks are related in the following way:
constraints appear at the nodes of the tree; the
s t ructure is not a valid syntax tree if the con-
s traint set is unsatisfiable. Each task can be per-
formed in several ways: there are several context-
free parsing methods (e.g. LL, LR) and con-
s t raints sets can be solved globally or incremen-
tally, using various orders, and several ways of
mixing the two tasks are valid. Tree construction

involves a stack mechanism, and constraint solv-
ing results in a constraint . The different parsing
teelmiques can be described as computat ions on
these two da ta structures. EPDAs are thus able
to enco<le various l)arsers for Constraint C~ram-
n l a r s .

Automat ic t ranslat ion of g rammars into EP-
DAs is possible using extensions of usual context-
free teelmiques [Bar93].

3 . 2 ARCIII ' rECTUP=E

Thanks to the intermediate representat ion
(EPDA), parsing can be divi<led into two inde-
pendent passes: tile compilation that translates
a g r a n l n l a r into an extended autonlaton; tim exe-
cution that takes an EPDA and a string and pro-
duees a forest of syntax trees. To achieve the in-
dependence, the compihw is not allowed to make
any assumptions about the way the au toma ta it
produces will lie executed, and the interpreter in
charge of the execution is not allowed to make
assumptions about the au toma ta it executes.

We add to this scheme reused from context-
free parsing a thir<l component: the solver (in an
extensive meaning) in charge of all the oi>erations
related to constraints and wu'iables. We will try
to make it as in<lel)en<teilt from the other two
modules (compiler and interpreter) as possible.

There is not a fidl in<lependenee, since both the
compiler and the interpreter involve constraints
and related operations, tha t are: l)erfornmd by
the solver. We just want to define a (:lear inter-
face between the solver and the other modules,
an interface independent from the kind of the
constraints and from the solving algorithms be-
ing used. rl'be same coml)iler (resp. interl)reter)
used with different solvers will work on ditl'erent
classes of grammars. For instance, the same com-
piler can compih~ Unilh:ation Grammars an<l Def-
inite Clause Grammars , using two solvers, one
implenmnting feature unilieation, the second one
iml)lementing tirst-order unilieation.

We can see a complete parsing system as the
eoml)ination of three modules, compiler, inter-
prefer, solver. When ea(:h module has several
implementations, we wouhl like to take any com-
bination of three modules. This schematic ab-
straction captures l)arsing algorithms we are in-
terested in. However, actually defining interfaces
for a practical system without restricting open-
endedness or the abstract ion (interehangeabili ty
of components) was the most difficult technical
task of this work.

456

3 . 3 SOLVERS

The main problem lies in the dclinition of the
solver's interface. Some of the required ol)era-
lions are ol)vious: renaming of constraints and
tul)les, constra int lmilding, extract ion of the vari-
al)les from a constraint , etc.

By the way, remark that constraint solving can
be hidden within the solver, and thus not ap-
pear in the interface. There is an equivalence
relation between constraints given by their inter-
pretations. This relation can lie used to replace
a constraint by another eqniwdent one, l)ossibly
siml)ler. The solving call also be explicitly used to
enR)ree the simplification of constraints at some
points of tile parsing.

Unfor tunate ly some special techniques require
more specific operations on constraints. For in-
stance, a family of parsing strategies related to
Earley's algori thm m~tke use of the restrictio~ op-
erator defined by Shieber in [Shi85]. Another ex-
aml)le: some tabular techni(lues take Benetit from
a projectioil operator tha t restricts constraints
with respect to a subset of their variat)les.

We. could define the solver's inte.rface as the
cartesian product of all the operations used by
;tt least one technique. There are two reasons to
re}cot such an apI)roaeh. The first one is tha t
some seldom used operations are ditli(:ult to de-
line on some constraints domains, i t is the case,
among others, of tile projection. The second rea-
son is tha t it woul([restrict to the techniques aI:
ready existing and known by us at the moment
when we design tile interface. This contradicts
the open-endedness requirement. A new ollera-
tion can appear, useful for a new parsing method
o r for optimizing the old ones.

We prefer a flexible detlnition of the interface.
Instead of defining one single interface, we will al-
low each al ternat ive iniF, lenlentation of the solver
to define exactly what it ol['ers and each iml)h~-
nmntat ion of the compiler or of the interpreter
to detine what it demands. The conll)ination of
modules will involve the checking that the @r<'.r
encompasses the demand, tha t all tile needed op-
erations are implemented. This imposes restric-
tions on the combinat ion of niodules: it is the
overhead to obtain an open-ended system, opened
to new developments.

We found it language providing the. kind of llex-
il)le modulari ty we needed: Alcool--90. We now
present this language.

4 '] ' I IE LANGUAGE ALCOOL 9 0

Alcool-90 is an experimental extension of the

functional language ML with run-t ime overload-
ing [I{ou90]. Overloading is used as a tool for
seamless integration of abs t rac t da ta types ill
the ML type system, retaining strong typing,
and type inference prollerties. Abst rac t da ta
types (encapsulating a da ta s t ructure represen-
tat ion and its constructors ~uld interpretive flmc-
tiol,s) i)rovide wdues for overloaded symbols, as
classes provide methods for messages ill object-
o,'ientcd terminology, i{owever, strong typing
means that the compiler guarantees tha t errors
()f kind "method not found" never hal)pen.

Abstract programs axe programs referring to
overloaded syml)ols, which vahles will be deter-
nfined at run-time, consistently with the calling
environment. By grouping Mlstract l)rograms,
we obtain parameterized abstra.ct da ta types (or
fllnctors), the calling environment being here a~
particular instant ia t ion of the I)arameterized adt.
Thus, we obtain Jut environment equivalent to a
module system, each module being an adt, even-
tually llarameterized.

D)r instance, ill APOC-II, (:ompilers h~tve an
abst ract da ta type parameterized by a solver.

Alcool-90 also proposes an innow~tive environ-
ment where we exploit anlbiguities due to over-
loading for semi-automated 1)rogram configura-
tion : the type iufin'elice eoullnltes interfaces of
%llissing" COIllpollents to colnplete a progralll, ae-
cording to the use of overloaded synlbols in the
program. A search algo,'ithm finds components
satisfying those interfaces, eventually by tind-
ing suitable parameters for parameterized compo-
nents. Naturally, instantiatiot , of parameterized
coml)onents is also type-safe : actual parameters
must have interfaces matching formal parameters
(schematically : the actual parameter must pro-
vide at least the functions required by the inter-
face of the formal parameter) .

For instance, only the solvers provi(lil,g
Shieber 's restriction can })e used as the. aetlial pa.-
ramcter of Earley with restriction compiler. But
these solvers can also be '.lse(l l)y a.ll the eoml)ilers
that do not use the restriction.

Simple module systems have severe limita-
tions when several implementat ions of compo-
nents with simil~tr interfaces (:()exist in a system,
or when some component Inay be employed in dif-
ferent contexts. Ada generics provided a first step
to lnodule parameterizat ion, th(mgh at the cost
of heavy declar~tions a.nd difficulties with type
equiwdence. SML pral)oses a very powerful mod-
ule system with paranleterization, but lacks sepa-
rate comllilation and still requires a large amount
of user decl~u'ations to detine and use functors.
Object-oriented languages lack the type security
tha t Alcoo[-90 guarantees.

457

The Alcool-90 approach benefits from the sim-
plification ot modules as abs t rac t da ta types by
adding inference facilities: the compiler is able to
infer the interfaces of parameters required by a
module. Moreover, the instant ia t ion of a functor
is simply seen as a type application, thus no ef-
forts are required from the programmer, while its
consistency is checked by the compiler.

This approacl, is mostly useful when multiple
implementat ions with similar interfaces are avail-
able, whether they will coexist in the program or
they will be used to generate several configura-
tions. Components may have similar interfaces
but different semantics, a l though they are inter-
changeable. Choosing a configuration is simply
choosing fl'om a set of solutions to missing emn-
ponents, computed by the compiler.

Several other features of Alcool-90 have not
linen used in this experiment, namely the inheri-
tance operator on abst ract da ta types, and an ex-
tension of tile type system with dynamics (where
some type checking occurs at run-time).

5 A P O C - I I

APOC-II is a system writ ten in Alcool-90, imple-
menting numerous parsing techniques within the
framework described in section 3. The user can
choose between these techniques to buihl a parser.
By adding new modules wri t ten in Alcool-90 to
the library, new techniques can freely be added
to the system.

APOC-II has two levels of modularity: the first
one is tha t of the three main components distin-
guished above, compiler, interpreter and solver.
Each of these components is implemented by sev-
eral a l ternat ive modules, tha t are combinable us-
ing Alcool-90 discipline.

Tile second level of modulari ty consist in split-
ring each of the three main components i,lto sev-
era.1 modules. This makes the sharing of common
parts of different hnplementat ions possible.

We give now examples of split t ing APOC-ql
uses at the moment , in order to give an idea of
this second level of modularity. This splitt ing has
proved convenient so far, but it is not fixed and
imposed to fllrther developments: ~t new imple-
mentat ion can be added even if it uses a com-
pletely different internal structure.

A solver is made of:

• a module for wtriables, variabh: generation
and renaming,

• a parser for constraints,

• a pret ty-pr inter for constraints,

• a constraint builder (creation of abs t ract syn-
tax trees for constraints, e . g . building con-
straints expressing equality of variables),

• a solver ill the restrictive meaning, in charge
of constraint reduction,

• an interface tha t encapsulate all the other
modules.

A compiler includes:

• a g rammar parser (tha t uses tile constrMnt
parser given by the solver),

• a module for look-ahead (for computat ion of
look-ahead sets by static anMysis of the gram-
I[lar),

• a module for EPDA representat ion and han-
dling,

• ~t transit ion generator which translates gram-
mar rules into EPDA tra.nsitions therefore de-
ternfining the p~trsing strategy (cf. figure 1),

• Control code, using previous modules, defin-
ing the "compih?' function, tile only one ex-
ported.

The two interpreters implemented so far have
very different structures. The tlrst one uses
backtracking and the second one uses tabulation.
They share some modules however, such as a
module handling transit ions and a lexer of inlmt
strings.

Tile interest of the modular architecture is in
tile eomtfin~ttorhtl effect of module composition.
It leads to many diiferent parsing algorithms.
The tigure 1 summarizes the different ~spects of
the parsing algorithms tha t can vary more or less
independently.

For example, the built-in parsing method of
Prolog for DCGs is ol~t.ained by combining tim
solver for])CGs, the top-down strategy, 0 sym-
bol of look-ahead a.nd a backtracking interpreter
(and other modules not mentioned in Iigure 1 be-
cause they do not change the algorithm, but a.t
most its implenmntation).

Some remarks about :figure 1:

• we call Earle?] parsing strategy the way Earley
deduction [PW8a] builds a tree, *tot the con-
trol method it uses. It difl'e.rs from top-down
by the way constrMnts are taken into account.

• the difference between garley-like tabulat ion
and graph-structure stacks is the data struc-
ture used for item storage. Several variants
are possible, tha t actually change the parser 's
behavior.

4 5 8

Solver C o n t e x t - t Y e e G r a m m a r s - 1)e t in i t e C l a u s e G r a m m a r s
(grammar class) T r e e A d j o i n i n g G r a m m a r s - Uni] icat ion G r a m m a r s . . .

parsing s t ra tegy t o p - d o w n - p u r e b o t t o m - u p - E a r l e y - E a r l e y w i t h r e s t r i c t i o n
(transi t ion g e n e r a t o r) l e f t - c o r n e r - L R - p r e c e d e n c e - P L R . . .

look-ahead eon tex t - lYee l o o k - a h e a d of 0 or 1 s y m b o l
con tex t - f ree look-ahead o f k s ymbo l s - con tca ' t - scns i t i vc look-ahead

interpreter b a c k t r a c k i n g - E a r l e y - l i k e t a b u l a t i o n - Graph-s t r 'ac turcd S t a c k s . . .

Agenda management S y n c h r o n i z a t i o n - lifo - f i fo - wLrio'as we igh t s . . .
(for tabula t ion only)

Figure 1: modules of APOC-II
Modules wri t ten iii. bold font are ah'eady iml)lemented, where.as modules writ ten in italic m'e possible
extensions to the system.

• we call synchronization sL kind of breadth-first
se~trch where sc~tnnlng a terminal is performed
only whe.n it is needed by all the paths of the
search-tree. The search is synchronized with
the. input string. It is the order used by l,;str-
h.'y's algorithin.

• at the moment, only gener i c look-ahead, tha t
is look-ahestd based on the f i r s t and f o l l ow
sets, has been considered. Some more aCCll-
rate look-ahead techniques such as the ones
involved in SLR(k) pa,'sing are probal>ly not
indepen<lent fi'om the parsing s trategy and
<:armor be an independent mo<lule.

Building a parsing system with APOC-II con-
sists roughly in choosing one module of each row
of figure 1 and combining them. Some of the
combinations are not possible. Thanks to type-
checking, Alcool-90 will detect the incompatibil-
ity and provide a tyl)e-based explanation of the
probh;m.

At the moment , APOC-II otDrs more than 60
ditDrent parsing algorithms. Given a g, ralrHn.%r,
there is a choice of more than 20 different parsers.
Adding one module does not add only one more
algorithm, but sewn'M new vstri;tltts.

The techniques i inplemented by APOC-II are
not original. For instance, the LR conq)ilation
strategy comes from a paper I)y Nilsson, [Nil86],
left-corner parsing has been used 1)y Matsumoto
and Tanaka in [MT83]. As far as we know, how-
ever, LR and left-era'her p~trsers have not been
prolmsed for Tree-Adjoining C, rammars before.

Notice tha t the modulari ty is also useful to vary
implementat ion of algorithms. D)r instance, a
first prototype can be quickly writ ten by imple-
menting constraints reduction in a naive way. A
refined version can be wri t ten later, if needed.

6 C O N C L U S I O N

APOC-II has several advantages. First of all, it

provides comparable implementat ions of the most
comnmn parsing Mgorithms. Their efficiency can
be abstract ly measured, for instance by counting
the number of eomlmtat ion step (EPDA transi-
tion applicatiol 0 performed to eomlmte a tree or
a complete forest of parse trees. We call this
kind of measm'ements abs t rac t])ecallse it does
not rely neither on the implementlttion nor on

the machine that runs the parser. Other compar-
isons could be done statically, on the au tomaton
or on the pstrse forest (e..g. number of transit ions,
alllOllllt ,)f determi~lisnl, size of the forest, alllOllllt
of s t ructure slurring).

()therwise, APOC-II cstn be. used as a to(~lkit
tha t provides :t l ibrary of modules usefld to imple-
lllent quickly ll(!W parse.r generators. For instance,
one has only to write a solver to obtain up to 22
parsing a.lgorithms (perhaps less if tit(', solw!r pro-
vides only basic operations). The library contains
tools to deal with some constraints, look-ahead,
lexing, tabulat ion, etc. Reusing these tools when-
ever it is possible saves a lot of work.

The limitations of APOC-II are tha t it is mainly
convenient for parsing strategies tha t stre some-
how s tat ic , i.e. statically determined at com-
pih! time. Also, al)stractloll (full independence
between coral>tiers and i,~terpreters) cannot Im
achieved for some optimized algorithms. For in-
Sl,&llCe, Nederhof presents in [Ned93] a parsing
strategy called ELI{ for which tsdmlar execution
can be optimized. To implement this a.lgorithm
tit ollr system, one would have to write a Ilow
interpreter dedicated to ELR-EPDAs .

\¥e think that our experiment shows the in-
t(~rest of a tlexible modul;trity for studies abollt
parsing. We believe that the same technique can
fiuitfully apply on other domains of Ns~tural Lan-
guage Processing.

4 , 5 9

7 ACKNOWLEDGEMENTS

The authors are grateflfl to Gabriel Pereira Lopes
for his hell).

REFERENCES

[Bar93] Franqois Barthdlemy. Outils pour l'3-
nalyse syntaxique contextuelle. Thb~-
se de doetorat, Universitd d'Orldans,
1993.

[BVdlC921 F. Barthdlemy and E. Villemonte
de 13 Clergerie. Subsnmption--
oriented push-down autom3t3, hi
Proe. of PLILP'92, pages 100 114,
june 1992.

[II8881 M. ItShfeld and G. Smolk3. Definite
Relations over Constraint Languages.
Technical Report 53, LILOG, IWBS,
IBM Deutschland, october 1988.

[Lan74] Bernard Lang. Deterministic tech-
niques for efficient non-dc'terministic
parsers, hi Proe. of the 2 '~'l Collo-
quium on automata, languages and
Prvgramrning, pages 255-269, Saar-
brlieken (Germany), 1974. Springer-
Verlag (LNCS 14).

[Lan91] Bernard Lang. The systematic con-
struction of earley parsers: Applica-
tion to the production of o(n a) earley
parsers for tree adjoining grammars.
In First International Workshop on
Tree Adjoining Grammars, 1991.

[MTSal Y. Matsumoto and H. Tanaka. Bup:
A bottom-up p3rser embedded in In'O-
log. New Generation Computing,
1:145-158, 1983.

[Ned93] Mark-Jan Nederhof. A multidisei-
plin3ry approach to 3 parsing algo-
rithm. In Proceedings of the Tvmntc
Workshop on Language Technology -
TWLT6, december 1993.

[Ni1861 Ulf Nilsson. Aid: An Mternative im-
plementation of DCGs. New Genera-
tion Computing, 4:383-399, 1986.

[pwsa] F. C. N. Pereir3 and D. II. D. War-
ren. Parsing as deduction. In Proc. of
the 21st Annual Meeting of the Asso-
ciation for Computationnal Linguis-
tic, pages 137-144, Cambridge (Mas-
saehussetts), 1983.

[Rou90]

[Shi85]

Franqois Rouaix. ALCOOL-90: Ty-
page de 13 surcharge dons un langave
fonetionnel. ThSse de doctorat, Uni-
versitd Paris 7, 1990.

Stu3rt M. Shieber. Using re-
striction to extend parsing algori-
thms for complex--feature--based for-
malisms. In Proceedings of the 23 r'~
Annual Meetin 9 of the Association
for Computational Linguistics, pages
145-152, Chic3go (Illinois), 1985.

460

