
PARSING AS TREE TRAVERSAL

Dale Gerdemann*

Seminar ffir Sprachwissenschaft, Universiti t T bingen t

A B S T R A C T

This paper presents a unified approach
to parsing, in which top-down, bot tom-
up and left-corner parsers m:e related
to preorder, postorder and inorder tree
traversals. It is shown that the sim-
plest bo t tom-up and left-corner parsers
are left recursive and must be con-
verted using an extended Greibach nor-
mal form. With further partial exe-
cution, the bo t tom-up and left-corner
parsers collapse togethe~ as in the I]IJP
parser of Matsumoto .

1 I N T R O D U C T I O N

In this paper , I present a unified ap-
proach to parsing, in which top-down,

bo t tom-up and left-corner parsers are
related to preorder, postorder and in-
order tree traversals. To some extent ,
this connection is already clear since
for each parsing strategy the nodes of
the parse tree are constructed accord-
ing to the corresponding tree traversal.
It is somewhat trickier though, to ac-
tually use a tree traversa.l program as
a parser since the resulting pa.rser may
be left recursive. This left recursion can

*The research presented in this paper was
partially sponsored by Teilprojekt Bd "Con-
straints on Grammar for Efficient Generation"
of the Sonderforschungsbereich 340 of the
Deutsche Forschungsgemeinschaft. I wouhl
also like to thank Guido Minnen and Dieter
Martini for helpflfl comments. All mistakes
are of course my own.

?KI. Wilhelmstr. 113, D-72074 T(ibingen,
Germany, dg@sfs.nphil.uni-tuebingen.de.

be el iminated, however, by employing a
version of Greibach Normal Form which
is extended to handle argument instan-
tiations in definite clause grammars .

The resulting parsers resemble the
s tandard Prolog versions of versions of
such parsers. One can then go one step
further and partially execute the parser
with respect to a part icular g rammar- - -
as is normally done with definite clause
gra,,nn~a,'s (Per(,ir~ ~ Warren [JO]). a
surprising result of this partial execu-
tion is l.ha.t the bo t tom-up and left-
corner parsers become identical when
they are 1)oth partially executed. This
may explain why the BUP parser of
~/lil.tSllll]OtO e t a] . [6] [71 was ,'eferre.d tO

as a bottona-u I) parser even though i t
c lear ly fol lows a le f t -corner strategy.

T R E E T R A V E R S A L
P R O G R A M S

Following O'Keefe [8], we can imple-
ment i)reorder, postorder and inorder
tree tra.versals as I)CCs, which will then
1)e converted directly into top-down
])otl.om-u 1) and heft-corner l)arsers, re-
spectively. The general schema is:

x ._o r d e r(']'t'ee) --*
(x_ordered node labels in Tree).

Note tha.t in this case, since we are
most likely to call x_orde r with the
T ree va.riable instantiated, we are us-

ing the DCG in generation mode rather
tha.n as a parser. When used as a parser

396

on the s t r i ng lS , the p rocedure will re-
turn all t rees whose x _ o r d e r traw~rsal
p roduces S. T h e three, ins tan t ia t ions of
th is p rocedure are as ['ollows:

Z preorder traversal
pre(empty) --> [].
pre(node(Mother,Left,Right)) -->

[Mother],
pre(Left),
pre(Right).

postorder traversal
post(empty) --> [].
post(node(Mother,Left,Right)) -->

post(Left),
post(Right),
[Mother].

inorder traversal
in(empty) --> [].
in(node(Mother,Left,Right)) -->

in(Left),
[Mother],
in(Right).

2.1 D I R E C T E N C O D I N G OF
P A R S I N G S T R A T E G I E S

Analogous to these three tl 'aversal pro-
g rams , there are three pars ing strage-
gies, which differ f rom the tree t raversal
p rog rams in only two respects . First ,
the base case for a parser should be to

parse a lexical i t em rathe,: than to parse
an e m p t y string. And second, in the re-
cursive clauses, the m o t h e r care.gory fits
into the parse t ree and is l icensed by the
auxi l iary p red ica te r u l e / 3 but it does
not figure into the s t r ing tha t is parsed.

As was the case for the three tree
t raversa l p rog rams , the three parsers
differ f rom each o ther only with respect
to the right hand side order.])'or sim-
plicity, I a s sume tha t phrase s t ruc tu re

rules are b inary branching, though the
approach can easily be general ized to

non-bi uary branching. 1

% top-down parser
td(node(PreTerm,lf(Word))) -->

[Word],
{word(PreTerm,Word)}.

td(node(Mother,Left,Right)) -->
{rule(Mother,Left,Right)},
gd(Left),
td(Right).

bottom-up parser
bu(node(PreTerm,lf(Word))) -->

[Word],
{word(PreTerm,Word)}.

bu(node(Mother,Left,Right)) -->
bu(Left),
bu(Right),
{rule(Mother,Left,Right)}.

Y, left-corner parser
ic(node(PreTerm,lf (Word))) -->

[Word] ,
{word (Pr eTerm, Word) }.

ic (node (Mother, Left ,Right)) -->
ic(Lef%),
{rule (Mother, Left, Right) },
ic (Right).

iks seen here the on]y difference be-
tween the t]lree s t ra tegies concerns |,he.
choice of when to select a phrase struc-
t u r e rule. 2 Do you s ta r t wi th a. rule and
then t ry to satisfy it as iu the top-down
apl~roa.ch , or do you parse the (laugh-
t(ers of a. rule. first before select ing the
rule as in the b o t t o m - u p approach , or
do you l,al(e an in te , 'media te s t r a t egy as
in the lef t -corner al)l)roach.

lq'he only ln'oblematic ease is for left corner
since the corresponding tre.e traw~'rsal inorder
is normally defined only for bina,'y trees. But
inorder is easily extended to non-binary trees
as follows: i. visit the left daughter in inorder,
ii. visit the mot, her, iii. visit the rest; of the.
daughters in inorder.

eAs opposed to, say, ~t choice of whether to
use operations of expanding and matching or
operations of shifting and reducing.

397

G R E I B A C H N O R M A L
F O R M P A R S E R S

While this approach reflects the logic
of the top-down, b o t t o m - u p and left-
corner parsers in a clear way, the result-
ing p r o g r a m s are not all usable in Pro-
log since the b o t t o m - u p and the left-
corner parsers are lef t-recursive. The re
exists, however , a general t echnique for
removal of lef t - recursion, namely , con-
version to Ore ibach no rma l form. T h e
s t anda rd Ore ibach no rma l form conver-
sion, however , does not allow for I)CG
type rules, bu t we can easily t ake care
of the Prolog a r g u m e n t s by a technique
suggested by P r o b l e m 3.118 of Pere i ra
& Shieber [9] to p roduce what I will
call Extended Greibach Normal Form
(ECINF). 3 Pere i ra & Shieber ' s idea has
been more fo rmal ly presented in the
Generalized Greibaeh Normal Form of
D y m e t m a n ([1] [2]), however , the sim-
pl ici ty of the parsers here does not jus-
t ify the e x t r a compl ica t ion in D y m e t -
m a n ' s procedure . Using this t ransfor-
ma t i on , the b o t t o m - u p parser then be-
comes as follows: 4

aEGNF is similar to normal GNF except
that the arguments attached to non-terminals
must be manipulated so that the original in-
stantiations are preserved. For specific gram-
mars, it is pretty e~y to see that such a ma-
nipulation is possiMe. It is nmch more dif-
tlcult (and beyond the scope of this paper)
to show that there is a general rule tbr such
manipulations.

4The Greibach NF conversion introduces
one auxiliary predicate, which (following
IIopcroft & Ulhnan [4]) I have called b. Of
course, the GNF conversion also does not tell
us what to do with the auxiliary procedures in
curly brackets. What I've done here is silnply
to put these auxiliary procedures in the trans-
formed grammar in positions corresponding to
where they occurred in the original grammar.
It 's not clear that one can always find such a
"corresponding" position, though in the case
of the bottom-up and left-corner parsers such
a position is easy to identify.

% EGNF bottom-up
bu(node(PreTerm,lf(Word))) -->

[Word],
{word(PreTerm,Word)}.

bu(Node) -->
[Word],
{word(PreTerm,Word)}.
b(node(PreTerm,lf(Word)),Node).

b(L,node(Mother,L,R)) - - >
b u (R) ,
{ r u l e (g o t h e r , L , R) } .

b (L , N o d e) - - >
b u (R) ,
{rule(Mother ,L,g)} ,
b(node(Mother,L,R),Node).

This , however is not very ef[icient
since the two clauses of both bu and
b differ only in whe the r or not there
is a final call to b. ~Ve can reduce
l.he a.mount of back t rack ing by encod-
ing this opt io lml i ty in the b p rocedure
itself.

% Improved EGNF bottom-up
bu(Node) -->

[Word],
{word(PreTerm,Word)},
b(node(PreTerm,lf(Word)),Node).

b(Node,Node) --> [].
b(L,Node) -->

bu(R),
{rule(Mother,L,R)} ,
b(node(Mother,L,R),Node).

l~y tile same I",GNI: transform~Ltion
and improvement , s, tile resul t ing left-
corner parser is only min ima l ly different
from the b o t t o m - u p parser:

Improved EGNF Left-corner
Ic(Node) -->

[Word],
{word(PreTerm,Word)},
b(node(PreTerm,lf(Word)),Node).

398

b(Node,Node) --> [] .
b(L,Node) -->

{rule(Mother,L,g)},

Xc(R),
b(node(Hother,L,R),Node).

4 P A R T I A L E X E C U T I O N

The improved E C N F bo t tom-np altd
left-corner parsers (lilIhr now only in the
position of the auxiliary l)redicate in
curly brackets. If this auxiliary pred-
icate is part ial ly executed out with re-
spect to a part icular gramlnar , the two
pltrsers will become identical. For ex-
ample, if we have a rule of the ['orl)l:

s (t r e e (s , N P , V P)) -->

np(RP),
vp(VP).

For either parser, this will result in
one b clause of the form:

b(np(NP),Node) - ->
l c (v p (V P)) ,
b (n o d e (s (t r e e (s , N P , V P)) ,

np(RP) ,vp(VP)) ,Node) .

This is essentially eqtfivalent to the
kind of rules produced by Matsumoto
et al. ([6] [7]) i n their "bot tom-up"
l)arser BUI). s As seen here, Mal, sumo(.o
et al were not wrong to call their parser
bottom-ui) , but they could have just as
well called it left-corner.

5 C O N C L U S I O N

In most s tandard presentations, simple
top-down, bo t tom-up and h'.ft-corner

aThis rule is not precis('.ly the same as (.he
rules used in BUP since Matsumoto et al. con>
pile their rules a lltth! further to take adv~tll-
tage of the first argument and predicate name
indexing used in Prolog.

parsers are described in terms of pairs
c)f op(wations such a.s expand/ma(,c]l,
shif t / reduce or sprout /n la tch , l{tlt it
is enl, irely unclear wha.(, expa.nding and
matching has to do with shifting, re-

ducing or sprouting. By relating pars-
ing (.o tree tri~versal, however, it b(:-
comes much clearer how these three ap-
proac]ms 1,o parsing rcbd;e to each other.
This is a natural comparison, since
clearly t, he l)OSSiloh: orders in which a
tree can be traversed should not d i f
f(H' frolll the possible orders in which a
parse I, ree can be constructed. ~Vhltt's
new in this paper, however, is tile idea
gha.(, such tree traversal programs could
be translated into p~trsers usillg ex-
tended (',reibach Nor,ha.1 Form.

Such a unified approach to parsing is
mostly useful simply (,o understand how
the different l>arsers are related. It is
sm'prising Co see, for examph:, that with
partial executiol L the bo t tom-up and
]el't-cornc.r parsers be('ome, the same.
The similarity bel;weeu t>ot(,om-u 1) and
h:ft-corner pa.rsing ha.s caused a certain
all/Ollllt (If (:onI'usion in the literature.
l"or example, (,It('. so-calh'd "botton>ui)"
chart i)arse.r l)resenl,ed (among other
l)laces) in Cazda.r "~ Me.llish [3] in fact
uses a left-corner strategy. This was
pointed out by Wiren [ll] but has not
receive(l much at tention in the litera-
I.ure. It is hoped I.ha.1, the unifi('.d ap-
proa.ch to parsing l)re.seifix:d h(:re will
hel l) 1,o clear u I> ol, her such confusions.

Finally, one Inight)nen t io l) a co)l--
heel.ion to C, ovcrnm('.nt-llinding parsingj
a.s presented ill ,Iolmson & Stabhn' [5].
These a.uthors present a generate amd

test approa.(:h, in which X-bar struc-
l, lli'es ~llTe ramlomly generated m~d then
tesl, ed agldnst lIB principles. Once (,he
logic of the program is expressed in such
a ma.uner, cfIi('iency considerations are
used in order to fold the testing pro-
cedures into the generation procedure.

399

One could view the strategy takel~ in
this paper as rather similar. Running
a tree traversal program in reverse is
like randomly generating phrase struc-
ture. Then these randomly generated
structures are tested against the con-
straints, i.e., the phrase structure rules.
What I have shown here, is that the de-
cision as to where to fold in the con-
straints is very significant. Folding in
the constraints at different positions ac-
tually gives completely different parsing
strategies.

R e f e r e n c e s

[1] Marc Dymetman. A generalized
greibach normal form for definit;e
clause grammars. In COLING-92
vol. I, pages 366-372, 1992.

[2] Marc Dymetman. Tra'asforma-
tions de Grammaires logiques. Ap-
plicatios au probIeThc de la re-
versibilite~n Traduclion A~do'ma-
tique. PhD thesis, Uniw;rsite/le
Grenoble, Grenoble, France, 1992.
The.~e d'Etat.

[3] Gerald Gazdar and Chris Mel-
lish. Natural Lang~tage Processi.ng
in Prolo 9. Addison-Wesley, Read-
ing, Mass, 1989.

[4] John Itopcroft and .)effrcy lJlhmm.
Introduction to Automata 7'h,c-
ory and Computation. Addison-
Wesley, Reading, Mass, 197!).

[5] Mark Johnson and Edward Sta-
bler, 1993. Lecture Notes for
Course taught at the LSA Summer
School in Columbus Ohio.

[6] Y. Matsumoto, H. tIirakawa.,
I{ Miyoshi, and I1 Yasukawa. Bup:
A bottom-up parser embedded in
prolog. New Ceneration Comp~tl-
ing, 1(2):145-158, 11983.

[7]

Is]

[10]

[11]

Yuji Matsumoto. Natwral Lan-
guage Parsin 9 Systems baaed on
Logic Programming. PM) thesis,
Kyoto University, 1989.

Richard O'Keefe. The Craft of
Prolog. MIT Press, Cambridge,
Mass, 1990.

Fernando C. N. Pereira and Stu-
art Shieber. ProIo 9 and Natural
Language Analysis. CSLI Lecture
Notes No. 10. Chicago University
Press, Chicago, 1987.

Fernando C. N. Pereira and David
lI. 1). W~m:en. Definite clause
grammars-a surw'.y of the formal-
ism and a comparison with aug-
mented transition networks. ArliJi-
cial ['ntelligence , 13:231-278, 1980.
Also in Grosz et. al., :1986.

IVlats \Viren. A comparison of rule-
invocation strategies in context-
free chart parsing. In EACL
Proceedings, 3lh Annual Meeting,
l)ages 226-233, 11987.

400

