
Backtracking-Free Dic t ionary Access M e t h o d for

Japanese Morpholog ica l Analys i s

H i r o s h i Maruyama
IBM Research, Tokyo Research Labo ra to ry

maruyarna@trl . ibm.co. jp

1 Introduction Input sentence: ~-[-Ill:~f¢:,~ e) I-3f- ~: j~. --~/:. o

JMA output:

Since the Japanese language does not have

explicit word boundaries, dictionary lookup

should be done, in principle, for all possible sub-

strings in an input sentence. Thus, Japanese

morphological analysis involves a large number

of dictionary accesses.

The standard technique for handling this

problem is to use the T R I E structure to find all

the words that begin at a given position in a sen-

tence (Morimoto and Aoe 1993). This process is

executed for every character position in the sen-

tence; that is, after looking up all the words be-

ginning at position n, the program looks up all

the words beginning at position n + 1, and so

on. Therefore, some characters may be scanned

more than once for different starting positions.

This paper describes an at tempt to minimize

this 'backtracking' by using an idea similar to one

proposed by Aho and Corasick (Aho 1990) for

multiple-keyword string matching. When used

with a 70,491-word dictionary that we developed

for Japanese morphological analysis, our method

reduced the number of dictionary accesses by

25%.

The next section briefly describes the prob-

lem and our basic idea for handling it. The de-

tailed algorithm is given in Section 3 and Sec-

tion 4, followed by the results of an experiment

in Section 5.

22.-I-ft1:*i1:19 I~:19 © : 7 6

-I-~I-: :19 ~:. :78

ix :9 0 : 2 9]'2:63 o :100

Fig. 1: Sample input /output of JMA

2 Japanese
Analysis

Morphological

2.1 G r a m m a r

A Japanese morphological analyzer (here-

after called the JMA) takes an input sentence

and segments it into words and phrases, attach-

ing a part-of-speech code to each word at the

same time. Figure 1 shows a sample input and

the output of our JMA.

Tile grammaticality of a sequence of

Japanese words is mainly determined by look-

ing at two consecutive words at a time (that

is, hy looking at two-word windows). There-

fore, Japanese morphological analysis is nor-

really done by using a Regular Grammar (e.g.,

Maruyama and Ogino 1994). Our JMA gram-

mar rules have the following general form:

state1 ~ "word" [linguistic-features]
state2 cost=cost.

Each grammar rule has a heuristic cost, and

tile parse with the minimum cost will be selected

as the most plausible morphological reading of

the input sentence. A part of our actual gram-

208

mar is shown in Figure 2. Current ly our gram-

mar has about 4,300 rules and 400 nonterminal

symbols.

2 . 2 D i c t i o n a r y L o o k u p

While the flmction words (particles, auxiliary

verbs, and so on, total ing several hundred) are

encoded in the grammar rules, the content words

(nouns, verbs, and so on) are stored in st sepa-

ra te dictionary. Since content words may appear

at any posit ion in tile input sentence, dict ionary

access is tr ied from all the positions n.

For example, in the sentence fragment: ill Fig-

ure 3,

"7..~ ~{'/. (large)" and "J~ ~I'J. ~i[~i ~

(mainframe)"

are the results of dict ionary access at, posit.ion

1. For simplicity, we assume that the dict ionary

contains only the following words:

"i~ ~ (large),"
";k2 ~lJ. ~['.~ ~: (mainframe),"

" a] ' ~ (computer)" ,

" ~ I g ~ f ~ (eomput.ing facility),"

and

",~R~ (facility)."

2 . 3 U s i n g T R I E

The most common method for dict ionary

lookup is to use an index s t ructure called TRIE

(see Figure 4). The dict ionary lookup begins

with the root node. The hatched nodes represent.

the terminal no(tes that correspond to dict ionary

entries. At position 1 in tile sentence ab(we, I, wo

words, "Jq~.eJ. (large)" and ")k:)l'-I.}i].~:~.~ (main-

frame)," are found.

Then, the s tar t ing position is advanced 1;o the

second character in the text; and the dict ionary

lookup is tried again. In this case, no word is

found, because there are no words thai, begins

~Actual' dictionaries' '£1so co,train i')'C (big)," " ,b~,!
(type)," "~'1" (measure)," "i{l'~: (compute)," "~'~: (cwdm.),"
" ~ (m,.:hi.~.)," "~b~ (~.~t,,bU.~h)," ,.,,i "~;;i (p,.,,~)."

with "~{'.1." in the dictionary. The start, lug posi-

tion is l, hen set I,o 3 and t.rled again, and this

,.i,,~ th,. words "al~:~ (,:,lnlp,,Ce,.y and "i}t~';

k)~;{'~{i[i (comput.ing facilit,y)" are obtained. 'e

The problem here ix (,hal;, even though we

know that, 1,here is "TQ){l!}i[.~])~ (ma.in[rarne)"

al, posit;ion I, we look up "}}[~{:t~ (computer)"

again. Since "iil~:~.~: (computer)" is a snhstring

of "9'4~{~iI'~;)1~ (n-lainframe)," we know that, t;he

word "~,i]~,i~ (compul:er)" exists at, posit;ion 3 as

soon as we lind "X~{~}~[~3,,i~ (lnainframe)" at i)o-.

sit;ion I. Therefore, going back l;o 1;he root node

at posit ion 3 and trying mat;citing all over again

means duplicatAng our efforts unnecessarily.

2 .4 E l i m i n a t i n g B a c k t r a c k i n g

Our idea is to use t, he b)dex stsuct,m'e d e

w~loped by Abe and Corasick to find muli;iple

sl,rings in a text. Figure 5 shows l;he TRII!;

with a point.er called t;he fail pointer associated

with the node corresponding to l;he word "7)k/~I T/

~'[~2~: (mail fxa.nm) ' (the rightmost, word in Lhe

first row). When a match st;re'Ling al, position

n reaches I, his node, it is gnaranl,eetl that tile

sl.ring "~,ilJ)i~,~" exists s tar t ing at position n -t-2.

Therefore, if the next character in the input sen-

tence does not mat,oh any of the child nodes, we

do not go b~ck to the root but go back to the

node corresponding 1,o this substr ing by follow-

ing t, he fail pointer, and resume matching from

this node. For the input sentence in l,'igure 3,

l.he dict, ionary access proceeds as indica.ted by

the dot, t;ed line in I.he Figure 5, 13n(ling the words

")<~{t! (la.rge)," "g<~{t[}][#:~.~ (mair,[','ame)," "]i[~'~:

' ~ (COlIIplll;cT)," and so on. Thus, the nmnt)er of

dict ionary node ac(:esses is great ly reduced.

Ill many Japanese tnorphok)gical analysis

systems, the dict ionary ix held in the secondary

storage, a.nd t, herefore the number of dict ionary

~Wh,, r,,:~, ch,~t "X~{'~iil~A:~.~ (,,**i,,~'~,-,,,0" w,~.~ re,,.,1
heft)re does no(. neees;sarily mean f,[ud, there is no need
to l~mk up "~{I'~:)~%.(computr.r ...)," because at this point
twa interpretat.ions, "mainframe facilit.y" and "large com-
puting facilit.y," are possible.

209

J[~i~/~ -> EAGYOU-SDAN [pos=l,kow=doushi] ~f 5 f~;

YJ~ 5 [~ -> °'~'" [pos=26,kow=v_infl] ~,[iJ 5 ~k,~ 4 ~x,~ cost=300;

~] 5 ~-~,~)- 4~(ff6 -> "J'" [pos=64,kow=jodoushi,fe={negative}]

"~" [pos=78, kow=set suzoku_j oshi]
~ I t J j ~ ~'f cost=500;

~l~J~J~,~Y/ -> J[~)~ cost=999;

~ 1 -> "" [pos=48,kow=jodoushi] J~J~-~Y~,#~ cost=S00;

.... ~ ~)~J~ cost=300;
~) j ~ y ~ t ~ _> "fZ o " [pos=45,kow=aux_infl] '"~J[J~ cost=a00;

Fig. 2: Some of the grammar rules

t ~ 3 fl" g- 6 ' ?

4 l a r g e -~ = c o m p u t e r - "
f a c i l i t y

4 m a i n f r a m e

* c o m p u t i n g la iSi l i ty 4~

Pig. 3: Dictionary lookup for Japanese morphological analysis

~F,j ~ m ,11" D : ~ ~ _ m - ~ ~-F--1 - t__.l

Fig. 4: TRIE index

210

- I I
~¢" G% t.-:

Fig. 5: 'I 'I{IE structure with]hil pointers

node accesses dominates the performance of the

overall system.

3 Constructing TRIE with fail

pointers

A TI{IF, index with fail pointers is created in

the following two steps:

1. Create a TI{IE iudex, and

2 . 5 O t h e r C o s i d e r a t i o n s 2. Calculate a fail pointer of each node in the

TRIE.

Theoret ical ly there is a I)ossiMlity of 1)rm,ing

dict ionary lookup by using the s ta te set at. posi-

tion n. For example, if no noun can follow rely

of the states in the current s tate set, there is no

need to look up nouns. One way to do this prun-

ing is to associate with each node a bit vector

representing the set of all parts of speech of some

word beyond this node. [f the intersection of the

expected set of par ts of speeche an(t the possi.

bilities beyond this node is empty, the expansion

of this no(te can be pruned. In general, however,

almost every character posit ion t)redicts most of

the par ts of speech. Thus, it is common practice

in Japanese morphok)gical analysis to h)ok up

every possible prefix at every character position.

Hidaka et al. (1984) used a modified l{-tree

instead of a simple TRIE. Altough a B-tree has

much less nodes than a TRIE and thus the num-

ber of secondary storage accesses can be signif-

icantly reduced, it still backtracks to the next

character position and duplicate matching is in-

evitable.

Since Step 1 is well known, we will describe only

Step 2 here.

]"or each node n, Step 9 given the

value fa i l (n) . In the following algorittlm,

for'ward('n, c) denotes the chikl node of the node

'n whose associated character is c. If there is no

such node, we define f o rward(n , e) = hi]. Root

is the root no(le of the T1HF,.

"2-1 j'ail(l~oot) ~- leooe

2-2 for each node ft. of depth 1, fa i l (n) ~ lSmt

2-a re,. e~,:l~ depth d - - 1,2, ...,

2-3-1 for each node. n with depLh d,

2-3- I-I for each child node rn of n (where

m = forward(n , c:)),

f a i l (m) +-- f (f a i l (n) , c).

l[ere,] '(n, c) is defined as follows:

fail(',,.) if f o rward(n , c) 5L nil

f('n, c) = f (f a i l (n) , c) if f o rward(n , c:) = nil
& n ~ Root

t~oot otherwise

211

If tile node corresponds to the end of some

word, we record the length l of the word in the

node. For example, at the node that corresponds

to the end of the word " ~ : ~ t ' ~ : ~ (mainframe)",

I = 5 and l = 3 are recorded because it is the end

of both of the words " ~] . ~ : ~ (mainframe,

l = 5)" and "~l'-~-~ (computer, l = 3)." 3

Figure 6 shows the complete TRIE with tile

fail pointers.

traditional TRIE and was 27% faster in CPU

time. The CPU time was measured with all the

nodes in the main memory.

For the computer manuals, the reduction rate

was a little larger. This is attributable to the fact

that computer manuals tend to contain longer,

more technical terms than newspaper artMes.

Our method is more effective if there are a large

number of long words in a text.

4 Dic t ionary a c c e s s

The algorithm for consulting the dictionary

is quite simple:

1 n +-- Root

2 for each character position i = 11,2, ...k,

2-1 while n 7~ Root and f o rward(n , ci) =

nil do n ~-- fa i l (n)

2-2 n = forward(n ,c l)

2-3 i fn is the end of some word(s), output

them

where ci is the character at position i.

5 E x p e r i m e n t a l resul ts

We applied the TRIE with fail pointers to

our 70,491-word dictionary for Japanese mor-

phological analysis (in which the average word

length is 2.8 characters) and compared it with

a conventional TRIE-based system, using two

sets of data: newspapers articles (44,113 char-

acters) and computer manuals (235,104 charac-

ters). The results are shown in Table 1.

The tables show both the number of node ac-

cesses and the actual CPU time. For the news-

paper articles, our method (marked as TRIE w/

FP) had 25% fewer node accesses than than the

SThis information is redundant, because one can look
up every possible word by following the fail pointer, llow-
ever, if the nodes are in secondary storage, it is wort, h hav-
ing the length information within the node to minimize
the disk access.

6 Conc lus ion

We have proposed a new method of dictio-

nary lookup for Japanese morphological anal-

ysis. The idea is quite simple and easy to

implement with a very small amount of over-

head (a fail pointer and an array of length l

to each node). For large l, ermiriology dictionar-

ies (medical, chemical, and so on), this method

will greatly reduce tile overhead related to dic-

tionary access, which dominates the efllciency

of practical Japanese morphological analyzers.

Fast Japanese morphological analyzers will be

crucial to the success of statistically-based lan-

guage analysis in the near fllture (Maruyama et

al. 1993).

References

1. Atlo, A. V., 1990: "Algorithms for Finding

Patterns in Strings," in Leeuwen, J.V. ed.,

Handbook of Theoretical Computer Sci-

ence, Volume A - Algorithms and Com-

plexity, pp. 273-278, Elsevier.

2. llidaka, T., Yoshida, S., and Inanaga, II.,

1984: "Extended B-Tree and Its Applica-

tions to Japanese Word Dictionaries," (In

Japanese) Trans. of IE[CE, Vol. 367-D,

No. 4:.

3. IIisamitsu, T. and Nitro, Y.,]991: "A

Uniform 'h 'eatment of Ileuristic Meth-

ods for Morphological Analysis of Written

272

l,'ig. 6: TI{II,~ index with fail pointers

'I~RI],; TRII!' w/ 1,'1) l{educt~ion rat;e

Node accesses 104,118 78,706 25%
CPU time (set.) 64.77 40.92 27%

(a) 44,11t3 chara(%ers in newsi)aper articles
TRIE 'l~Rllg w/ F1) Reduction rate

Node accesses 542,542 883,176 30%
CPU time (see). 372.47 228.63 28%

(b) 235,104 (;haract~ers in computx~r mamlals

Table 1: lgxi)erimengal results

Japanese," Prec. of 2nd Japan-Australia
Joint Workshop on NLP.

4. Maruyama, II., Ogino, S., and I[idano, M.,

1993: "The Mega-Word Tagged-Corpus

Project," Prec. of 5lh International Con-

ference on Theoretical and Methodological
Issues in Machine Translation (TM1-93),

Kyoto, Japan.

5. Maruyama, H. and Ogino, S., 1994:

"Japanese Morphological Analysis Based

on Regular Grammar," (In Japanese),

Transactions of IPSJ, to appear.

6. Morimoto, K. and Aoe, J., 1993: "Two
Trie Structures far Natural Language [)ic-
tionaries," Prec. of Natural Language Pro-

cessing Pacific Rim Symposium (NLPR,9

'93), Fukuoka, Japan.

213

