208

Backtracking-Free Dictionary Access Method for

Japanese Morphological Analysis

Hiroshi Maruyama

IBM Research, Tokyo Research Laboratory

maruyama@trl.ibm.co.jp

1 Introduction

Since the Japanese language does not have
explicit word boundaries, dictionary lookup
should be done, in principle, for all possible sub-
strings in an input sentence. Thus, Japanese
morphological analysis involves a large number

of dictionary accesses.

The standard technique for handling this
problem is to use the TRIE structure to find all
the words that begin at a given position in a sen-
tence (Morimoto and Aoe 1993). This process is
executed for every character position in the sen-
tence; that is, after looking up all the words be-
ginning at position n, the program looks up all
the words beginning at position n -+ 1, and so
on. Therefore, some characters may be scanned

more than once for different starting positions.

This paper describes an attempt to minimize
this ‘backtracking’ by using an idea similar to one
proposed by Aho and Corasick (Aho 1990) for
multiple-keyword string matching. When used
with a 70,491-word dictionary that we developed
for Japanese morphological analysis, our method
reduced the number of dictionary accesses by

25%.

The next section briefly describes the prob-
lem and our basic idea for handling it. The de-
tailed algorithm is given in Section 3 and Sec-
tion 4, followed by the results of an experiment
in Section 5.

Input sentence: -HIFR B O FEICA o 72,
JMA output:

T ibAL 19 Rtk 19 D176
44F 19 12178
A9 ©:29 /2:63 o :100
I'ig. 1: Sample input/output of JMA

2 Japanese Morphological

Analysis

2.1 Grammar

A Japanese morphological analyzer (here-
alter called the JMA) takes an input sentence
and segments it into words and phrases, attach-
ing a part-ol-speech code to each word at the
same time. I'igure 1 shows a sample input and
the output of our JMA.

The

Japanese words is mainly determined by look-

grammaticality of a sequence of
ing at two consecutive words at a time (that
is, by looking at two-word windows). There-
fore, Japanese morphological analysis 1s nor-
mally done by using a Regular Grammar (e.g.,
Maruyama and Ogino 1994). Our JMA gram-

mar rules have the following general form:

statel — “word” [linguistic-features]

state2 cost=cost.

Fach grammar rule has a heuristic cost, and
the parse with the minimum cost will be selected
as the most plausible morphological reading of

the input sentence. A part of our actual gram-

mar is shown in IMigure 2. Currently our gram-
mar has about 4,300 rules and 400 nonterminal

symbols.

2.2 Dictionary Lookup

While the function words (particles, auxiliary
verbs, and so on, totaling several hundred) are
encoded in the grammar rules, the content words
(nouns, verbs, and so on) are stored in a sepa-
rate dictionary. Since content words may appear
at any position in the input sentence, dictionary
access is tried from all the positions n.

For example, in the sentence fragment in Iig-
ure 3,

“K# (large)” and
(mainframe)”

R NEIUETRG I

are the results of diclionary access al position
1. Tor simplicity, we assume that the dictionary

contains only the following words:

“K (large),”

CARIEHAEE (mainframe),”

“GI 358 (computer)”,

CEFEY B (computing facility),”
and

“Hedi (facility).” !

2.3 Using TRIE

The most common method for dictionary
lookup is to use an index structure called TR
(see Figure 4). The dictionary lookup begins
with the root node. The hatched nodes represent
the terminal nodes that correspond to dictionary

entries. At position 1 in the sentence above, two

words, “KH (large)” and “ AHGE I (main-

? are found.

frame),

Then, the starting position is advanced to the
second character in the text and the dictionary
lookup is tried again. In this case, no word is

found, because there are no words that beging

TActual dictionaries also contain <X (big),” “M
(type),” “Bt (measure),” <Kl (com[mf.‘e:),” “4¥ (order),”
“B (machine),” “¥ (establish),” and “fiii (prepare).”

with “J0” in the dictionary. The starting posi-
tion is then set to 3 and tried again, and this
time the words “i1474% (computer)” and ™ §#4%
Bl (computing facility)” are obtained. 2
The problem here is that, even though we
know that there is “AMHEMYHE (mainframe)”
al position 1, we look up “HF3E4#E (computer)”
again. Since “iEVEE (computer)” is a substring

of “AH

word “HIEVHE (computer)” exists at position 3 as

F08% (mainframe),” we know that the

soon as we [ind “ABFISEH (mainframe)” at po-
sition 1. Therefore, going back to the root node
at position 3 and trying matching all over again

means duplicating our efforts unnecessarily.

2.4 Fliminating Backtracking

Our idea 1s 1o use the index structure de-

“veloped by Aho and Corasick to find multiple

strings in a text. IMigure 5 shows the TRII
with a pointer called the fail pointer associated
with the node corresponding to the word “X I
F 088 (mainframe)” (the rightmost word in Lhe
first row). When a match starting at position
n reaches Lhis node, il is gnaranteed that the
string “HI I8 exists starting at position n + 2.
Therefore, if the next character in the input sen-
tence does not mateh any of the child nodes, we
do not go back to the root but go back to the
node corresponding to this substring by follow-
ing the fail pointer, and resume matching from
this node. For the input sentence in IFigure 3,
the dictionary access proceeds as indicated by
the dotted line in Lthe Pigure 5, finding the words
CRH (large),” “AHEHYAE (mainframe),” 514X
£ (computer),” and so on. Thus, the number of
dictionary node accesses is greatly reduced.

In many Japanese morphological analysis
systems, the dictionary is held in the secondary

storage, and therefore the number of dictionary

TThe Tact that KA (maintrame)” was Jound
before does not necessarily mean that there is no need
to lool np “FI4¥4R..(computer ...),” because at, this point
two interpretations, “mainframe facility” and “large com-
puting lacility,” are possible.

209

210

X -> KAGYDU-SDAN [pos=1,kow=doushi] H4T5 B ;

HAT 5B -> " [pos=26,kow=v_infl] W 5 BRI 1 B cost=300;

BhED B Bekik T Akt -> i [pos=64,kow=jodoushi,fe={negative}]
"iZ" [pos=78,kou=setsuzoku_joshil
WY cost=500;

WHBIFH N ~> B cost=999;

@ -> " [pos=48,kow=jodoushil WIlhH ¥ 5 cost=500;

BhmbER &7 G ~> "5 [pos=27,kow=aux_infl] KK B cost=300;

BhEhE & 3 -> "o [pos=45,kow=aux_infl] WJf ¥ cost=300;

IYig. 2: Some of the grammar rules

' = X "" S s g

Jc mOEF O OB% BX

-—— - . > —
r .

_ large compute » facility

l mainirame

~—computing facility

Fig. 3: Dicti()nary lookup for Japanese morphological analysis

IMig. 4: TRIL index

{Q\‘ \ IJ(;M‘L‘Y

Fig. 5: TRIE structure with feil pointers

node accesses dominates the performance of the

overall system.

2.5 Other Cosiderations

Theoretically there is a possibility of pruning
dictionary lookup by using the state set at posi-
tion n. Tor example, if no noun can follow any
of the states in the current state set, there is no
need to look up nouns. One way Lo do this prun-
ing is to associate with each node a bit vector
representing the set of all parts of speech of some
word beyond this node. If the intersection of the
expected set of parts of speeche and the possi-
bilities beyond this node is empty, the expansion
of this node can be pruned. In general, however,
almost every character position predicts most of
the parts of speech. Thus, it is common praclice
in Japanese morphological analysis to look up

every possible prefix at every character position.

Hidaka et al. {1984) used a modified B-tree
instead of a simple TRIK. Altough a B-tree has
much less nodes than a TRIY and thus the num-
ber of secondary storage accesses can be signif-
icantly reduced, it still backiracks to the next
character position and duplicate matching is in-
evitable.

3 Constructing TRIE with fail
pointers

A TRIT index with fail pointers is created in

the following two sleps:
1. Create a T'RIF index, and

2. Calculate a [ail pointer of each node in the
TRIE.
Since Step 1 is well known, we will describe only
Step 2 here.

For each rnode n, Step 2 gives the
value fail(n). In the following algorithm,
forward(n, ¢) denotes the child node of the node
n whose associated character is ¢. If there is no
such node, we define forward(n,c) = nil. Root

is the root node of the TRII.
2-1 fail(Root) «~ Root
2-2 for each node nof depth |, fail(n) « Rool
2-3 for each depth d = 1,2, ...,
2-3-1 for each node n with depth d,
2-3-1-1 for each child node m of n (where

m = forward(n,c)),

Jaillm) « [(fail(n),c).
Iere, f(n,c) is defined as follows:

Jail(n)
f(fail(n),c)

il forward(n,c) # nil
if forward(n,c) = nil
& n # Root

Root otherwise

f(n, (f) =z

211

212

If the node corresponds to the end of some
word, we record the length [of the word in the
node. For example, at the node that corresponds
to the end of the word “AKXJE 8% (mainframe)”,
! =5 and | = 3 are recorded because it is the end
of both of the words “AXIFI## (mainframe,
1 =5)" and “FI4i# (computer, [=3).” *

Figure 6 shows the complete TRIE with the
fail pointers.

4 Dictionary access

The algorithm for consulting the dictionary

is quite simple:
1 n + Root
2 for each character position i = 1,2, ...k,

2-1 while n # Root and Jorward(n,¢;) =
nil do n « fail(n)

2-2 n = forward(n,¢;)

2-3 if n is the end of some word(s), output
them

where ¢; is the character at position 1.

5 Experimental results

We applied the TRIIZ with fail pointers to
our 70,491-word dictionary for Japanese mor-
phological analysis (in which the average word
length is 2.8 characters) and compared it with
a conventional TRIE-based system, using two
sets of data: newspapers articles (44,113 char-
acters) and computer manuals (235,104 charac-
ters). The results are shown in Table 1.

The tables show both the number of node ac-
cesses and the actual CPU time. For the news-
paper articles, our method (marked as TRIE w/
FP) had 25% fewer node accesses than than the

*This information is redundant, because one can look
up every possible word by following the fail pointer. How-
ever, if the nodes are in secondary storage, it is worth hav-
ing the length information within the node to minimize
the disk access.

traditional TRIT and was 27% faster in CPU
time, The CPU time was measured with all the
nodes in the main memory.

For the computer manuals, the reduction rate
was a little larger. This is attributable to the fact
that computer manuals tend to contain longer,
more technical terms than newspaper articles.
Our method is more effective if there are a large
number of long words in a text.

6 Conclusion

We have proposed a new method of dictio-
nary lookup for Japanese morphological anal-
ysis. The idea is quite simple and easy to
implement with a very small amount of over-
head (a fail pointer and an array of length !
to each node). For large terminology dictionar-
ies (medical, chemical, and so on), this method
will greatly reduce the overhead related to dic-
tionary access, which dominates the efliciency
of practical Japanese morphological analyzers.
Fast Japanese morphological analyzers will be
crucial to the success ol statistically-based lan-
guage analysis in the near fulure (Maruyama et
al. 1993).

References

1. Aho, A. V., 1990: “Algorithms for Finding
Patterns in Strings,” in Leeuwen, J.V. ed.,
Handbook of Theorvetical Computer Sci-
ence, Volume A - Algorithms and Com-
plexity, pp. 273-278, lilsevier.

2. Hidaka, T., Yoshida, S., and Inanaga, I1.,
1984: “Fxtended B-Tree and Its Applica-
tions to Japanese Word Dictionaries,” (In
Japanese) Trans. of IFICE, Vol. J67-D,
No. 4.

3. Hisamitsu, T. and Nitta, Y., 1991: “A
Meth-
ods for Morphological Analysis of Written

Uniform Treatment of [euristic

Iig. 6: TRID index with fail pointers

TRIN

TRIE w/ 1P

Reduction rate

Node accesses 104,118
CPU time (sec.) 64.77

78,706
40.92

25%
27%

(a) 14,113 characters in newspaper

articles

TRIL

TRIE w/ FP

Reduction rate

Node accesses 542,542
CPU time (sec). | 372.47

383,176
228.63

30%
28%

(b) 235,104 characters in compuler manuals

Table 1: lixperimental results

Japanese,” Proc. of 2nd Japan-Australia
Joint Workshop on NLP.

. Maruyama, II., Ogino, S., and Ilidano, M.,
1993: “The Mega-Word Tagged-Corpus
Project,” Proc. of 5th International Con-
Jerence on Theoretical and Melhodological
Issues in Machine Translation (1'MI-93),
Kyoto, Japan.

. Maruyama, H. and Ogino, S., 1994
“Japanese Morphological Analysis Based
on Regular Grammar,” (In Japanese),
Transactions of IPSJ, to appear.,

. Morimoto, K. and Aoce, J., 1993: “Two
Trie Structures for Nalural Language Dic-
tionaries,” Proc. of Natural Language Pro-
cessing Pacific Rim Symposium (NLPRS
’98), Fukuoka, Japan.

213

