A Stochastic Japanese Morphological Analyzer Using a
Forward-DP Backward-A* N-Best Search Algorithm

Masaaki NAGATA
NTT Network Information Systems Laboratories
1-2356 Take, Yokosuka-Shi, Kanagawa, 238-03 Japan

(tel)
(fax)

(e-mail)

Abstract

We present a novel method for segmenting the input
sentence into words and assigning parts of speech to
the words. It consists of a statistical language model
and an eflicient two-pass N-best search algorithm. The
algorithm does not require delimiters between words.
Thus it is suitable for written Japanese. The proposed
Japanese morphological analyzer achieved 95.1% recall
and 94.6% precision for open text when it was trained
and tested on the ATR Corpus.

1 Introduction

In recent years, we have seen a fair number of papers re-
porting accuracies of more than 95% for English part of
speech tagging with statistical language modeling tech-
niques [2-4,10,11]. On the other hand, there are few
works on stochastic Japanese morphological analysis
19,12, 14], and they don’t seem to have convinced the
Japanese NLP community that the statistically-hased
techniques are superior to conventional rule-based tech-
niques such as [16, 17].

We show in this paper that we can build a stochastic
Japanese morphological analyzer that offers approxi-
mately 95% accuracy on a statistical language model-
ing technique and an eflicient two-pass N-best search
strategy.

We used the simple tri-POS model as the tagging
model for-Japanese. Probability estimates were oh-
tained after training on the ATR Dialogue Database
[6], whose word segmentation and part of speech tag
assignment were laboriously performed by hand.

We propose a novel scarch strategy for getting the
N best morphological analysis hypotheses for the in-
put sentence. It consists of the forward dynamic pro-
gramming search and the backward A* search. The
proposed algorithm amalgamates and extends three
well-known algorithms in different fields: the Minimum
Connective-Cost Method [7] for Japanese morphologi-
cal analysis, Extended Viterbi Algorithm for charac-
ter recognition [§], and Tree-Trellis N-Best Search for
speech recognition [15].

+81-468-59-2796
+81-468-59-3428
nagata@untinly.ntt.jp

We also propose a novel method for handling un-
known words uniformly within the statistical approach.
Using character trigrams as the word model, it gener-
ates the N-best word hypotheses that match the left-
most substrings starting at a given position in the input
sentence,

Moreover, we propose a novel method for evaluat-
ing the performance of morphological analyzers. Un-
like Finglish, Japanese does not place spaces between
words. It is difficult, even {or native Japanese, to place
word boundarics consistently because of the aggluti-
native nature of the language. Thus, there were no
standard performance metrics. We applied bracketing
accuracy measures [1], which is originally used for Fn-
glish parsers, to Japanese morphological analyzers. We
also slightly extended the original definition to describe
the accuracy of the N-best candidates.

In the following sections, we first describe the tech-
niques used in the proposed morphological analyzer,
we then explain the evaluation metrics and show the
system’s performance by experimental results.

2 Tagging Model

2.1 Tri-POS Model and Relative Fre-
quency Training

We used the tri-POS (or triclass, tri-tag, tri-Ggram
cte.) model as the tagging model for Japanese. Con-
sider a word segmentation of the input sentence W =
wiwy ... wy, and a sequence of tags T = ity ... 1, of
the same length. The morphological analysis task can
be formally defined as finding a set of word segmen-
tation and parts of speech assignment that maximize
the joint probability of word sequence and tag sequence
P(W, 1Y), In the tri-POS model, the joint probability is
approximated by the product of parts of speech trigram
probabilities P(t;|t;_2,1;.1) and word output probabil-
ities for given part of speech P(w;|t;):

P(W,T) = H Ptiltioa, tic) P(wilts) (1)

201

In practice, we consider sentence boundaries as special
symbols as follows.

P(W,T) = P(t1|#)P(wilt1) P(tald, t1) P(w2]t2)

TT Pl i) POt Pl 1) (2)

1=3

where “J£” indicates the sentence boundary marker. If
we have some tagged text available, we can estimate the
probabilities P(;|t;—2,ti—1) and P(w;|t;) by comput-
ing the relative frequencies of the corresponding events
on this data:"

N(tiia, tia, i)

P(tltica, ticy) = J{tiltize, tica) = N{toea. (11)
t—2y b1 —

N{w,t) (1)
N ()

where f indicates the relative frequency, N(w,t) is the
number of times a given word w appears with tagt, aad
N(t;_2,ti_1,1;) is the number of times that sequerce
t;_ol;_1t; appears in the text. It is inevitable to st ifer
from sparse-data problem in the part of speech tag tri-
gram probability!. To handle open text, trigram pcob-
ability is smoothed by interpolated estimation, wiich
simply interpolates trigram, bigram, unigram, and ze-
rogram relative frequencies[8],

P(wi!ti) = f(wilt) =

P(ti[tia,tiea) = q3f(Lilti—a,ti—1)
e f(tiltic1) + @ f () + 0oV (5)

where f indicates the relative-frequency and V is a
uniform probability that each tag will occur. The non-
negative weights ¢; satisfy ¢s + g2+ q1 +¢qo = 1, and
they are adjusted so as to make the observed data most
probable after the adjustment by using EM algorithm?,

2.2 Order Reduction
Tracing

and Recursive

In order to understand the search algorithm described
in the next gection, we will introduce the second order
HMM and extended Viterbi algorithm [6]. Considering
the combined state sequence U = wjua...u,, where
uy =ty and u; = t;_11;, we have

P(uiluia) = P(tilti_a,tizy) (6)
Substituting Equation (6) into Equation (1), we have

1 We used 120 part of speech tags. In the ATR Corpus, 26
parts of speech, 13 conjugation types, and 7 conjugation forms
are defined. Out of 26, 5 parts of speech have conjugation. Since
we used a list of part of speech, conjugation type, and conjuga-
tion form as a tag, there are 119 tags in the ATR Corpus. We
added the sentence boundary marker to them.

27To handle open text, word output probability I(w;|t;) must
also be smoothed. This problem is discussed in a later section as
the unknown word problem.

202

P(W,T) = HP(“:"UI‘—I)P(wilti) (7

Equation (7) have the same form as the first order

model. Consider the partial word sequence W; =
wy ... w; and the partial tag sequence T; = 11...4;,
we have

P(Wi, T7) = P(Wioy, Tic1) P(uiluie) P(wilts) - (8)

Equation (8) suggests that, to find the maximum
P(W;, Ti) for each u;, we need only to: remember the
maximum P(W;_1,7T;1), extend each of these prob-
abilities to every u; by computing Equation (8), and
sclect the maximum P(W;, 1;) for each u;. Thus, by
increasing ¢ by 1 to n, selecting the u, that maximize
P(W,,T,), and backtracing the sequence leading to
the maximum probability, we can get the optimal tag
sequence.

3 Search Strategy

The search algorithm consists of a forward dynamic
programming search and a backward A* search. First,
a linear time dynamic programming is used for record-
ing the scores of all partial paths in a table®. A back-
ward A* algorithm based trece search is then used to
extend the partial paths. Partial paths extended in the
backward tree search are ranked by their correspond-
ing full path scores, which are computed by adding
the scores of backward partial path scores to the cor-
responding best possible scores of the remaining paths
which are prerecorded in the forward search. Since the
score of the incomplete portion of a path is exactly
known, the backward search is admissible. That 1s, the
top-N candidates are exact.

3.1 The Forward DP Search

Table 1 shows the two data structures used in our al-
gorithm. The structure parse stores the information
of a word and the best partial path up to the word.
Parse.start and parse.end are the indices of the
start and end positions of the word in the sentence.
Parse.pos is the part of speech tag, which is a list of
part of speech, conjugation type, and conjugation form
in our system for Japanese. Parse.nth-order—-state
is a list of the last two parts of speech tags includ-
ing that of the current word. This slot corresponds
to the combined state in the second order HMM.
Parse.prob-so-far is the score of the best partial
path from the beginning of the sentence to the word.
Parse.previous is the pointer to the (best) previous
parse structure as in conventional Viterbi decoding,
which is not necessary if we use the backward N best
search,

>In fact, we use two tables, parse-list and path-map. The
reason is described later.

The structure word represents the word information
in the dictionary including its lexical form, part of
speech tag, and word output probability given the part
of speech.

Table 1: Data structures for the N best algorithin

perse structure —T
start the beginning position of the word
end the end position of the word
pos part of speech tag of the word

nth-order-state | a list of the last two parts of speech

prob-so-far the best partial path score from the start
previous a pointer to previous parse structure

word structure
forin lexical form of the word -]
pos part of speech tag of the ward
prob word output probability

Before explaining the forward search, we will de-
fine some functions and tables used in the algo-
rithm. In the forward scarch, we use a table called
parse-list, whose key is the end position of the
parse structure, and whose value is a list of parse
structures that have the best partial path scores for
each combined state at the end position. "unction
register-to-parse-list registers a parse structure
against the parse-list and maintains the best par-
tial parses. Iunction get-parse-list returns a list
of parse structures at the specified position. We also
use the function leftmost-substrings which returns
a list of word structures in the dictionary whose lexical
form matches the substrings starting at the specified
position in the input sentence.

function forvard-pass(string)
begin
initial-step(); # Pads special aymbolzs at both ends.
for i=1 to length(string) do
foreach parse in get-parse-1list(i) do
foreach word in leftmost-substrings(string,i) do
pos-ngram :@ append(parse.nth-order-stata,
list(word.pos))
if (transprob(pos-ngram) > 0) then
new-parse :~ make-parse();
new-parse.start := i;
new~parse.end := i + length{word.form);
new-parse.pos ™ yord.pos;
new-parse.nth~order~state := rest(pos-ngram);
new-parse.prob-so-far := parse.prob-so-far
transprob(poa-ngram) * word.prob;
new-parse.previous := parne;
registexr-parse-to-parsae-~list(nev~parse);
register-parse~to~path-map(new-parse);
endif
end
end
end
final-step(); ¥ Handles transition to the end symbol.
end

Figure 1: The forward DP search algorithm

IMigure 1 shows the central part of the forward dy-
namic programming search algorithm. Tt starts from

the beginning of the input sentence, and proceeds char-
acter by character. At each point in the sentence, it
looks up the combination of the best partial parses
ending at the point and word hypotheses starting at
that point. If the connection of a partial parse and
a word hypothesis is allowed by the tagging model, a
new continuation parse is made and registered in the
parse-list. Thie partial path score for the new con-
tinuation parse is the product of the best partial path
score up to the point, the trigram probability of the
last three parts ol speech tags and the word output
probability for the part of speech?.

3.2 The Backward A* Search

The backward search uses a table called path-map,
whose key is the end position of the parse structure,
and whose value is a list of parse structures that have
the best partial path scores for each distinct combina-
tion of the start position and the combined state. The
difference between parse-list and path-map is that
path-map is classified by the start position of the last
word in addition to the combined state.

This distinction is crucial for the proposed N best
algorithm. LFor the forward search to find a parse that
maximizes Fquation (1), it is the parts of speech se-
quence that matters, For the backward N-best scarch,
however, we want N most likely word segmentation and
part of speech sequence. Parse-list may shadow less
probable candidates that have the same part of speech
sequence for the best scoring candidate, but differ in
the segmentation of the last word. As shown in Figure
1, path~map is made during the forward search by the
function register-parse-to-path~map, which regis-
ters a parse structure to path-map and maintains the
best partial parses in the table’s criteria.

Now we describe the central part of the backward
A* search algorithm. But we assume that the readers
know the A* algorithm, and explain only the way we
applied the algorithm to the problem.

We consider a parse structure as a state in A*
search. T'wo states are equal il their parse structures
have the same start position, end position, and com-
bined state. The backward search starts at the end of
the input sentence, and backtracks to the beginning of
the sentence using the path-map.

Tnitial states are obtained by looking up the entries
of the sentence end position of the path-map. The suc-
cessor states are obtained by first, looking up the en-
iries of the path-map at the start position of the cur-
rent parse, then checking whether they satisfy the con-
straint of the combined state transition in the sccond
order MM, and whether the transition is allowed by
the tagging model. The combined state transition con-
straint means that the part of specch sequence in the
parse.nth~order-state of the current parse, ignor-

4In Figure 1, function transprob returns the probability of
iven trigram, Functiony initial-step and final-step treat
g g P P
the transitions at sentence boundaries,

203

204

ing the last element, equals that of the previous parse,
ignoring the first element.

The state transition cost of the backward search is
the product of the part of speech trigram probability
and the word output probability. The score estimate
of the remaining portion of a path is obtained from the
parse.prob-so~far slot in the parse structure.

The backward search generates the N best hypothe-
ses sequentially and there is no need to preset N. The
complexity of the backward search is significantly less
than that of the forward search.

4 Word Model

To handle open text, we have to cope with unknown
words. Since Japanese do not put spaces between
words, we have to identify unknown words at first. To
do this, we can look at the spelling (character sequence)
that may constitute a word, or look at the context to
identify words that are acceptable in this context.

Once word hypotheses for unknown words are gener-
ated, the proposed N-best algorithm will find the most
likely word segmentation and part of speech assignment
taking into account the entire sentence. Therefore, we
can formalize the unknown word problem as determin-
ing the span of an unknown word, assigning its part of
speech, and estimating its probability given its part of
speech.

Let us call a computational model that determines
the probability of any word hypothesis given its lexi-
cal form and its part of speech the “word mode!”. The
word model must account for morphology and word for-
mation to estimate the part of speech and the probabil-
ity of a word hypothesis. For the first approximation,
we used the character trigram of each part of specch as
the word model.

Let C = c1e3... ¢, denote the sequence of n charac-
ters that constitute word w whose part of speech is t.
We approximate the probability of the word given part
of speech P(wlt) by the trigram probabilities,

P(wlt) = P(C) = Pulcdl#,) Pelealdt, o)
HPl(Ci|C:'—~2yCi-—l)l)l(#lcn—~l,Cn) (9
=3

where special symbol “#” indicates the word boundary
marker. Character trigram probabilitics are estimated
from the training corpus by computing relative fre-
quency of character bigram and trigram that appeared
in words tagged as ¢.

Ne(ciog iy, i)
Ne(ciza,einn)

(10)

where Ny(ci_2,¢;_1,¢;) is the total number of times

character trigram ¢;_o¢;_1¢; appears in words tagged

as t in the training corpus. Note that the character

Pi(eileizg, cic1) = fuleileiza, cim1) =

trigram probabilities reflect the frequency of word to-
kens in the training corpus. Since there are more than
3,000 characters in Japanese, trigram probabilities are
smoothed by interpolated estimation to cope with the
sparse-data problem.

It is ideal to make this character trigram model for
all open class categories. l{owever, the amount of train-
ing data is too small for low frequency categories if we
divide it by part of speech tags. Therefore, we made
trigram models only for the 4 most frequent parts of
specch that are open categories and have no conju-
gation, They are common noun, proper noun, sahen
noun®, and numeral.

> (estimate~part-of-spaech ’ ¥fkF2) ; Hiyako Hotel
((TA4# 2.7621915641723623E-7) ; proper noun
O¥afi4 31 6.3406095003694205E-9) ; Coxmon noun
(v &43%] 5.840424519473811E-19) ; sahen moun
(W#] 5.7364195413101E-29)) ; numeral

> (estimate-part-of-speech * 199 4)
COMGH 1. 8053860295767367E-6)
(G431 6.512248681640477E-17)
Oafigidl 2.288684007246524E~17)
(Y2431 7.50515322380211E-20))

; numeral

3} proper noun
; common moun
; sahen noun

Figure 2; N-best Tags for Unknown Words

Tigure 2 show two examples of part of speech estima-
tion for unknown words. Each trigram model returns
a probability i the input string is a word belonging to
the category. In both examples, the correct category
has the largest probability.

> (get-leftmost-substrings-with-word-model
"EELTY Do TFEWN, ™)

C(ifig v H 2.519457597358691E-7)

(i [#3 2.3449215070189967E-8)

Gl W43 7.0243990747133745E~9)

(i WG 2.375650975098567E~9)

GEDR 2443 5.706874990251415E-10)

(2 Wali4d) 4.735628004876359E~13)

(gzi% 4408 8.928942348107183E~14)

EX L 243 7.266613344265452E-14)

Gf7) Ml 6.86649949613207E-16)

(EREL Wili4hdil 2.4530239052513518E-17))

Figure 3: N-Best Word Hypotheses

Figure 3 shows the N-best word hypotheses gener-
ated by using tlie character trigram models. A word
hypothesis is a list of word boundary, part of speech
assignment, and word probability that matches the left-
most substrings starting at a given position in the input
sentence. In the forward search, to handle unknown
words, word hypotheses are generated at every posi-
tion in addition to the ones generated by the function
leftmost-substrings, which are the words found in
the dictionary. Ilowever, in our system, we limited the
number of word hypotheses generated at each position
to 10, for efficiency reasons.

5A noun that can be used as a verb when it is followed by a
formal verb “sury”,

5 Evaluation Measures

We applied the performance measures for English
parsers [1] to Japanese morphological analyzers. 'The
basic idea is that morphological analysis for a sentence
can be thought of as a set of labeled brackets, where a
bracket corresponds to word segmentation and its la-
bel corresponds to part of speech. We then compare
the brackets contained in the system’s output to the
brackets contained in the standard analysis. Tor the
N-best candidate, we will make the union of the brack-
ets contained in each candidate, and compare them to
the brackets in the standard.

For comparison, we count the number of brackets
in the standard data (Std), the number of brackets in
the system output (Sys), and the number of match-
ing brackets (M). We then calculate the measures of
recall (= M/Std) and precision (= M/Sys). We also
count the number of crossings, which is the nnmber of
cases where a bracketed sequence from the standard
data overlaps a bracketed scquence from the system
output, but neither sequence is completely contained
in the other.

We defined two equality criteria of brackels for
counting the number of matching brackets. ‘T'wo brack-
ets are unlabeled-bracket-equal if the boundaries of the
two brackets are the same. Two brackets arc labeled-
brackel-equal if the labels of the brackets are the same
in addition to unlabeled-bracket-equal. In comparing
the consistency of the word segmentations of two brack-
etings, which we call struclure-consistency, we count
the measures (recall, precision, crossings) by unlabeled-
bracket-equal. In comparing the consistency of part
of speech assignment in addition to word segmenta-
tion, which we call label-consistency, we count them by
labeled-bracket-equal.

> (morph-n-best "t CcHURIMLINLIRLET,
-31.90894138309038
hoet / BEE UR/ BAM A/ FalidiR

& TR 37 WO %D /AR - T -

ML /M < 8UH - R ¥/ BRhE - ML o /HCY
-38.,594338366582356

T/ ACEE C /I L/ I B Wl

@ t T REVE T Gl U N r DR R

BL /WS < MUT - R ¥ /IR - MUk o /Y
~-43,10567483646801
thetd / Ss Bt/ WA K/ wilid

%/ WBhE o/ ENAR R D / ACRDE - WUT] - MR

L/ ANH T - TR X/ WhEhE - Mtk o /HE

Figure 4: N-Best Morphological Analysis hypotheses

For example, Figure 4 shows a sample of N-best anal-
ysis hypotheses, where the first candidate is the correct
analysis®. For the second candidate, since there are 9
brackets in the correct data (Std=9), 11 brackets in the
second candidate (Sys=11), and 8 matching brackets
(M==8), the recall and precision with respect to label
consistency are 8/9 and 8/11, respectively. For the top

8 Probabililies are in natural log base e.

two candidates, since there are 12 distinet brackets in
the systems output and 9 matching brackets, the re-
call and precision with respect to label consistency are
979 and 9/12, respectively. For the third candidate,
since the correct data and the third candidate differ
in just one part of speech tag, the recall and precision
with respect to structure consistency are 9/9 and 9/9,
respectively.

6 Experiment

Table 2: T'he amount of training and test data

training texts | closed test | open test
Sentences 10945 1000 1000
Words 149059 13176 13899
Characters 267422 94221 98997

We used the ATR Dialogue Database[5)] to train and
test the proposed morphological analysis method. It is
a corpus of approximately 800,000 words whose word
segmentation and part of speech tag assignment were
lahoriously performed by hand. In this experiment, we
only used one fourth of the ATR Corpus, a portion of
the keyboard dialogues in the conference registration
domain. First, we selected 1,000 test sentences for an
open test, and used the others for training. The corpus
was divided into 90% for training and 10% for test-
ing. We then selected 1,000 sentences from the train-
ing set and used them for a closed test. The number of
sentences, words, and characters for each Lest set and
training texts are shown in Table 2.

The training texts contained 6580 word types and
6945 tag trigram types. There were 247 unknown
word types and 213 unknown tag trigram types in the
open test sentences. ‘Thus, both part of speech tri-
gram probabilities and word outpul probabilities must
be smoothed to handle open texts.

Table 3: Percentage of words correctly segmented and
tagged: raw part of speech bigram and trigram

bigram (closed text) trigram (closed text)

rv(:n“- |)l'l!(,‘. CTOS8S, n:(:u“])l'lt(l. Crous,
117 96.2% |7 06.6% | 0001 | 97.5% | 97.8% | 0.001
2| 98.0% | 89.7% | 0.004 | 99.0% | 90.7% | 0.007
31 98.0% | 83.5% | 0.010 | 99.5% | 84.3% | 0.012
4| 99.2% | 78.5% | 0013 | 99.7% | 79.6% | 0.015
S| 99.4% | 74.2% | o017 | 99.8% | 76.0% (| 0.015

First, as a preliminary experiment, we compared the
performances of part of speech bigram and trigram.,
Table 3 shows the percentages of words correctly seg-
mented and tagged, tested on the closed test sentences,
The trigram model achieved 97.5% recall and 97.8%
precision for the top candidate, while the bigram model
achieved 96.2% recall and 96.6% precision. Although
both tagging models show very high performance, the

20

trigram model outperformed the bigram model in every
metric.

We then tested the proposed system, which uses
smoothed part of speech trigram with word model, on
the open test sentences. Table 4 shows the percentages
of words correctly segmented and tagged. In Table 4,
label consistency 2 represents the accuracy of segmen-
tation and tagging ignoring the difference in conjuga-
tion form.

For open texts, the morphological analyzer achieved
95.1% recall and 94.6% precision for the top candidate,
and 97.8% recall and 73.2% precision for the 5 best
candidates. This performance is very encouraging, and
is comparable to the state-of-the-art stochastic tagger
for English [2-4, 10, 11].

Since the segmentation accuracy of the proposed sys-
tem is relatively high (97.7% recall and 97.2% precision
for the top candidate) compared to the morphologi-
cal analysis accuracy, it is likely that we can improve
the part of speech assignment accuracy by refining the
statistically-based tagging model. We find a fair num-
ber of tagging errors happened in conjugation forms.
We assume that this is caused by the fact that the
Japanese tag set used in the ATR Corpus is not de-
tailed enough to capture the complicated Japanese verl
morphology.

Morphological Analysis Accuracy for N-Best Sentences
T T T

raw trigram (closed cext) -#—
raw bigram d—te

35} smoothed trigram with
smoothed trigram wi

(open text) -0 |
word model {open text) -W--
(open Lext) ~a--

Sentence Accuracy

60 L t L

Figure 5: The percentage of sentences correctly seg-
mented and tagged.

Figure 5 shows the percentage of sentences (not
words) correctly segmented and tagged. For open texts,
the sentence accuracy of the raw part of speech trigram
without word model is 62.7% for the top candidate and
70.4% for the top-5, while that of smoothed trigram
with word model is 66.9% for the top and 80.3% for the
top-5. We can see that, by smoothing the part of speech
trigram and by adding word model to handle unknown
words, the accuracy and robustness of the morpholog-
ical analyzer is significantly improved. However, the
sentence accuracy for closed texts is still significantly

206

better that that for open texts. It is clear that more
research has to be done on the smoothing problem.

7 Discussion

Morphological analysis is an important practical prob-
lem with potential application in many areas including
kana-to-kanji conversion”, speech recognition, charac-
ter recognition, speech synthesis, text revision support,
information retrieval, and machine translation.

Most conventional Japanese morphological analyzers
use rule-based heuristic searches. They usually use a
connectivity matrix (part-of-speech-pair grammar) as
the language model. To rank the morphological anal-
ysis hypotheses, they usually use heuristics such asg
Longest Match Method or Least Bunsetsw’s Number
Method [16].

There are some statistically-based approaches to
Japanese morphological analysis. The tagging models
previously used are either part of speech bigram [9, 14]
or Character-bhased HMM [12].

Both heuristic-based and statistically-based ap-
proaches use the Minimum Connective-Cost Method
[7], which is a linear time dynamic programming algo-
rithm that finds the morphological hypothesis that has
the minimal connective cost (i.e. bigram-based cost)
as derived by certain criteria,

To handle unknown words, most Japanese morpho-
logical analyzers use character type heuristics [17],
which is “a string of the same character type is likely to
constitute a word”. There is one stochastic approach
that uses bigram of word formation unit [13]. However,
it does not learn probabilities from training texts, but
learns them from machine readable dictionaries, and
the model is not incorporated in working morphologi-
cal analyzers, as [ar as the author knows,

The unique features of the proposed Japanese mor-
phological analyzer is that it can find the exact N most
likely hypotheses using part of speech trigram, and it
can handle unknown words using character trigram.
The algorithm can naturally be extended to handle any
higher order Markov models. Morcover, it can nat-
urally be extended to handle lattice-style input that
is often used as the output of speech recognition and
character recognition systems, by extending the func-
tion (leftmost-substrings) so as to return a list of
words in the dictionary that matches the substrings in
the input lattice starting at the specified position.

For future work, we have to study the most effective
way of generating word hypotheses that can handle un-
known words. Currently, we are limiting the number of
word hypotheses to reduce ambiguity at the cost of ac-
curacy. We have also to study the word mode! for open
categories that have conjugation, because the training

"Kana-to-kanji conversion is a popular Japanese input
method on computer using ASCI! keyboard. Phonetic transcrip-
tion by Roman (ASCII) characters are input and converted first
to the Japanese syllabary hiragane which is then converted to
orthographic transcription including Chinese chavacter kanji.,

Table 4: The percentage of words correctly segmented and tagged: smoothed trigram with word model

smoothed trigramn with word model (open text)
label consistency label consistency 2 structure consistency
recall | precision | crossings | recall | precision | crossings | recall | precision | crossings
1]951% 04.6% 0.013 1 95.9% 95.4% 0.013 1 97.7% 97.2% 0.013
2 1 96.5% 88.0% 0.023 | 97.0% 90.3% 0.023 | 98.2% 94.4% 0.022
3) 97.3% 82.1% 0.031 | 97.6% 85.1% 0.031 | 98.5% 91.7% 0.029
41 97.6% 77.4% 0.046 | 97.9% 80.7% 0.046 | 98.7% 89.6% 0.044
5197.8% 73.2% 0.061 | 98.1% 77.1% 0.060 | 98.8% 87.9% 0.056
data gets too small to make trigrams if we divide it by [7] Wisamitsn, T. and Nitta, Y.: “Morphological

tags. We will probably have to tic some parameters to
solve the insufficient data problem.

Moreover, we have to study the method to adapt the
system to a new domain. To develop an unsupervised
learning method, like the forward-backward algorithm
for IMM, is an urgent goal, since we can’t always ex-
pect the availability of manually segmented and tagged
data. We can think of an EM algorithm by replacing
maximization with summation in the extended Viterbi
algorithm, but we don’t know how to handle unknown
words in this algorithm.

8 Conclusion

We have developed a stochastic Japanese morphologi-
cal analyzer. It uses a statistical tagging model and an
efficient two-pass search algorithm to find the N best
morphological analysis hypotheses for the input sen-
tence. Its word segmentation and tagging accuracy is
approximately 95%, which is comparable to the state-
of-the-art stochastic tagger for English.

References

[1] Black, E. et al.: “A Procedure for Quantita-
tively Comparing the Syntactic Coverage of n-
glish Grammars”, DARPA Speech and Natural
Language Workshop, pp.306-311, Morgan Kaul-
mann, 1991.

Charniak, L., Hendrickson, C., Jacobson, N.,
and Perkowitz, M.: “Equations for Part-of-Speech

Tagging”, AAAL-93, pp.784-789, 1993.

Church, K.: “A Stochastic Part of Speech Tagger
and Noun Phrase Parser for Fnglish”, ANLP-88,

pp.136-143, 1988.

Cutting, D., Kupiec, J., Pedersen, J., and Sibun,
P.: “A Practical Part-of-Speech Tagger”, ANLP-
92, pp.133-140, 1992,

Ehara, T., Ogura, K. and Morimoto, T.: “ATR
Dialogue Database,” ICSLP-90, pp.1093-1096,
1990.

He, Y.: “Extended Viterbi Algorithin for Second
Order Hidden Markov Process”, ICPR-88, pp.718-
720, 1988.

[3]

(4

(5]

(6]

(8]

9

(10

(11

(12

(13

[14

= =

]

=

[asn’

Analysis by Minimum Counnetive-Cost Method”,
Technical Report SIGNLC 90-8, IEICE, pp.17-24,
1990 (in Japanese).

Jelinek, F.: “Self-organized language modeling for
speech recognition”, IBM Report, 1985 (Reprinted
in Readings in Speech Recognilion, pp.450-506).

Matsunobu, 5., Hitaka, T., and Yoshida, S.: “Syn-
tactic Analysis by Stochastic BUNSETSU Gram-
mar”, Technical Report SIGNT, 656-3, TPSJ, 1986
(in Japanese).

Merialdo, B.: “Tagging Text with a Probabilistic

Model”, ICASSP-91, pp.809-812, 1991.

Meteer, M. W., Schwartz, . and Weischedel, R.:
“POST: Using Probabilities in Language Process-
ing”, IJCAL-9L, pp.960-965, 1991.

Murakami, J. and Sagayama, S.: “Hidden Markov
Model applied to Morphological Analysis”, 45th
National Meeting of the IPSJ, Vol.3, pp.161-162,
1992 (in Japanesc).

Nagai, II. and Hitaka, I'.; “Japanese Word For-
mation Model and Its FEvaluation”, Trans 1PSJ,
Vol.34, No.9, pp.1944-1955, 1993 (in Japanese).

Sakai, S.: “Morphological Category Bigram: A
Single Language Model for both Spoken Language
and Text”, ISSD-93, pp.87-90, 1993.

Soong, I'. K. and Tluang 15 “A "I'ree-Trellis
Based Fast Search for Finding the N Best Sen-
tence Hypotheses in Continuoug Speech Recogni-

tion”, ICASSDP-01, pp.705-708, 1991,

Yoshimura, K, ITitaka, T, and Yoshida, S.: “Mor-
phological Analysis of Non-marked-off Japanese
Sentences by the Least BUNSETSU’s Number
Method”, “Lrans. IPSJ, Vol.24, No.l, pp.40-46,
1983 (in Japanese).

Yoshimura, K., Takeuchi, M., Tsuda, K,
and Shudo, K. “Morphological Analysis of
Japanese Senlences Containing Unknown Words”,
Trans. IPSJ, Vol.30, No.3, pp.294-301, 1989 (in
Japanese).

207

