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Abstract

To represent a combinatorial number of ambigu-
ous interpretations of a natural language sentence ef-
ficiently, a “packed” or “factorized” representation is
necessary. We propose a representation that comprises
a set of explicit value disjunctions and constraints im-
posed on them. New counstraints are successively added
for disambiguation, during which local consistencies
are maintained by an underlying mechanism. We have
developed a constraint solver called JAUNT that em-
bodies this idea. The latest techniques, including con-
straini propagation and forward checking, are employed
as constraint satisfaction mechanisms. JAUNT also al-
lows an external meta-inference program to intervene
in the constraint satisfaction process in order to control
the application of the constraints.

1. Introduction

Certain natural language constructs, such as PP-
attachment in English, are known to have a combinato-
rial number of syntactic parses {Church & Patil 1988).
For example, sentence (1) has 14 (= Catalan(4)) dif-
ferent parses because of the three consecutive PPs:

Put the block on the floor on the table in the
room. (1)

Representing the set of patses in a compact way and
extracting a correct parse by using such knowledge as

A block cannot be on a floor and on a table
at the same time

are keys to a practical natural language system.

The parsing method of Constraint Dependency
Grammar (Maruyama 1990) addressed exactly these
issues, The essential ideas were

® to represent the set of parses by a constraint net-
work, which is composed of a set of explicit, value
digjunctions and constraints imposed on them,

® to apply constraint propagation in order to keep
the constraint network locally consistent, and

¢ to dynamically add new constraints for disam-
biguation.

In this paper, we describe a programming tool
named JAUNT that embodies the above ideas.
JAUN'T is a constraint solver for disjunciive feature
structures, whose constraint satisfaction mechanisms
are constraint propagation and forward checking. In
the next section, we show how various ambiguities are
represented in our explicit value disjunction + coun-
straints scheme. The constraint satisfaction algorithms
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5 = {
{id=0,cat=v,head=put,gr=root,mod=nill,
[id=1,cat=np,head=block,gr=obj,mod=01,
[id=2,cat=pp,prep=on,head=floor,

gr={%loc,postmod}},mod={%0,1%} 1,
[id=3,cat=pp,prep=on,head=table,
gr={¥%loc,postmod}}, mod={%0,1,2%} 1,
[id=4,cat=pp,prep=in,head=room,
gr={%loc,postmod}},mod={%0,1,2,3%} 1]
};

Figure 1: JAUN'T representation of sentence (1)

adapted in JAUN'T are explaiued in Section 3. Section
4 describes the use of JAUNT’s meta-inference capa-

bility. Section 5 conciudes the paper.

2.  Explicit disjunction + constraints

Let us consider sentence (1). In order to simplify
the following discussion, we assume that the sentence
is preprocessed as in Figure 1. This preprocessing can
be done by a simple context-free grammar that does
not determine PP-attachments. In the figure, [...]
is a feature structure, {...} is a list, and {%...%}
is a disjunction. Thus, the variable S represents the
(packed) structure of sentence (1) as a list of five com-
ponents, cach of which corresponds to a V, an NP, or
a PP, The grammatical relation (gr=) and the modi-
fice (med=) of the three PPs are disjunctions, meaning
that one of the values should be selected, but that the
correct candidate has not yet been determined. For ex-
ample, the first PP “on the floor” has {%0,1%)} as its
mod= value, which means it can modify either phrase 0
(the verb “put”) or phrase 1 (the NP “the block”).

Not all the value combinations of the disjunctions
are allowed. In the above example, if a PP modifies
the main verb, the grammatical relation should be loc.
In JAUNT, constraints are introduced by addc state-
ments. The program fragment (2) applies constraints
between the modifiee and the grammatical relation of
a PP,

for W in 8 begin
addc W.cat==pp & S.{(W?mod).cat in {pp,np} =>
W?gr==postmod;
addc W.cat==pp & §.(W?mod).cat==v =>
W?gr==loc;
end; (2)
Here, dots and question marks are operators for ac-

cessing compaonents of lists or feature structures!. The

tThe difference between a dot and a question mark is that a
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symbols & (logical and) and => (imply) have their or-
dinary logical meanings. In general, any first-order
logical formula without quantification is allowed as a
constraint. ‘The variable W is bound to each V, NP,
andl PP while the addc statements between begin and
and arc executed. The first adde statement reads as
follows:

If the category of W is PP and the category of
the modifiee of W is cither PP or NP, then the
grammatical relation of W should be postmod.

‘The applied constraints are represented implicitly by
an internal data structure called a constraint network
(described later).

In addition, the projectivity constraint, that modifi-
cation links do not crossover, can be programmed as
follows:

for Y,X in 8 begin
addc (Y.id < X.id & X?mod < Y.id) =>
X?mod <= Y?mod;
end;

(3)

We have now obtained a packed representation that
consists of explicit disjunctions, as in Figure 1, and
constraints attached behind them. Fach value com-
bination of the disjunciions that globally satisfies the
constrainty exactly corresponds to one of the 14 parses
of sentence (1).

Tivery context-free parsing algorithm that has a
polynomial time bound produces a packed represen-
tation of the parsing results (for example, a chart in
chart parsing (Kaplan 1973), a parsing matriz in the
CKY method (Younger 1967), and a shared-packed-
forest in Tomita’s algorithm (Tomita 1987)). 'These
representations take advantage of the regularities of
syntactic ambiguities in context-free parsing. For ex-
ample, since it is known that n consecutive PPs have
Cutalan(n) different parses, it is possible to encode
all PP-attachment ambiguities by remembering only n
and the position of the PPs (Church & Patil 1982).

However, once we try to extract a single interpre-
tation from these representations, we face a problem,
because such regularities way be void when new con-
straints are introduced for disambiguation. Consider
the application of constraint (4):

A verb cannot have two locatives, “4)

This constraint violates the regularity of the PP-
attachment ambiguity and therefore, the CFG-based
packed representations mentioned above cannot han-
die this new information properly without modifying
the gramimar significantly, In JAUNT, this constraint
is applied by a simple addc statement (5).

for X,Y in 5 begin

addc not{(X?mod==Y?mod & S5.(X7mod).cat==v &
X?gr==loc & Y7gr==loc); i
end; (")

Formally, it has been proven that Constraint De-
pendency Grammars, whose rules can be written as
question mark sllows u disjunction as its value, whereas a dot
does not. The current implementation generates more efficient
code for dots than for question marks.
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s = {

[1d=0,cat=v,head=put,gr=root ,mod=nill,
[id=1,cat=np,head=block,gr=obj,mod=0],
[id=2,cat=pp,prep=on,head=floor,
gr={%loc,postmodf},mod={%0,1%} 1,
[id=3,cat=pp,prep=on,head=table,
gr={%loc,postmod%},mod={%0,2%} 1,
{id=4,cat=pp,prep=in,head=room,
gr={%loc,postmodt},mod={%0,1,2,3%} ]

¥

Figure 2: JAUNT representation of sentence (1)

restricted  forms of JAUNT program, have a weak
generative power strictly greater than that of CFQ
(Maruyama 1991). This implies that certain types of
parsing results can be represented by constraint net-
works but not by CFG-based representations.

Seo and Simmons (1988) proposed syntactic yraphs
and discussed the advantages of having explicit dis-
Jjunctions in a packed data structure. Their represen-
tation is shmilar to ours in the sense that they have
constraints attached to the explicit disjunctive data
structure. However, they do not discuss how to ap-
ply disambiguation knowledge in order to reduce the
ambiguity effectively. In JAUNT, the underlying con-
straint satisfaction algorithin removes inconsistent val-
ues and keeps the constraint network locally consistent.
Consider, for example, the application of the new con-
straint (6):

An object cannot be on two distinet objects
at the swme time, (6)

This coustraint is written as follows:

for X,Y in S begin
addc X.prep==on & Y.prep==on &

X7mod in {pp,np} => X7mod !'= Y?mod;
end; (7)

After this coustraint has been evaluated, the mod
attribute of the PP “on the table” becomes {%0,2%},
as shown in Figure 2, because the value 1 is locally
inconsistent according to the constraints applied so far,
and cannot participate in any of the remaining seven

r(!udings.f

There have been several attempts to incorporate dis
junctions in unification-based grammars (e, Kart-
tunen 1984). Constraints are introduced by a unifi-
cation between two digjunctive feature structures. A
unification st Is only if there are combinations of
values of the disjunctions that satisfy the equality con-
straints implied by the unification. In order to clarify
the expressive power of feature structures with gen-
eral disjunctions, Kasper & Rounds (1986) defined a
logic-based notation called FM1. A formula in FMI,
can be rewritten as an adde statement in JAUN'T, and
hence, constraints expressed by a unification can also
be expressed in JAUN'T. In addition, in unification-
based grammars, the only basic predicate is equality,
and other useful predicates, such as inequalities and
set inclusion/membership, are difficult to represent. In

the first PP “on the floor” has no legal modifices.
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JAUNT, inequalities and set operations are built-in,
and user-defined predicates are also allowed.

3. Constraint-satisfaction algorithm

Since every disjunction in a JAUNT program has a
finite number of choices, its satisfiability problem can
be formulated as a constraint satisfaction problem over
a finite domain (sometimes called a consistent-labeling
problem (Montanari 1974}). Much effort has been de-
voted to developing efficient algorithms for this prob-
lem,

Two such algorithms are employed in JAUNT, One
is the constrainl propagation algorithm (Mackworth
1977), which is activated when a new constraint is
added by addc statements. The constraint propaga-
tion algorithm runs in polynomial time, and eliminates
locally inconsistent values from the choice points and
propagates the results to the neighboring constraints.
The constraint propagation algorithm usually reduces
the size of the search space significantly.

The other algorithm used in JAUNT is the forward-
checking algorithin (Haralick & Elliott 1980), which
is triggered by the execution of a special find state-
ment. It is essentially a back-tracking algorithm, but
it prunes unpromising branches whenever temporal
choices are made, thus significantly reducing the size
of the remaining search space.

This section describes in detail the constraint propa-
gation algorithm used in JAUNT. Readers are referred
to Hentenryck (1989) for the forward-checking algo-
rithm.

3.1 Internal representation of constraints

Before describing the algorithm in detail, let us ex-
plain the internal representation of the constraints. In
a compiled module of a JAUNT program, a disjunc-
tion is represented by a data structure called a Choice
Point (CP). A CP maintains a list of possible values
(calied a domain) at the time of programn execution.
When a new constraint is added by a addc statement,
the constraint is represented internally as a construing
matriz. For example, assume that W is bound to

[gr={%loc,postmod’}, mod={%0,1%}].

W?gr and W?mod are represented internally as CI’s
whose domain size is two. Then, when the constraints
(2) are cvaluated, a new two-dimensional constraint
matrix is created between the two CPs, as shown in
Figure 3.

Each dimension of the constraint matrix corresponds
to a CP. The elements indicate whether the particu-
lar combination of the CP values is legal (1) or illegal
(0). For example, W?gr=1oc and W?mod=0 satisfies the
constraint and hence the corresponding element in the
matrix is 1.

If another addc statement is then executed declar-
ing that the value combination of W?gr=postmed and
W?mod=1 is illegal, the corresponding element in the
matrix is changed to 0, yielding the matrix shown in
Figure 4.
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Wage W?mod

{%0,1%}

Figure 3: Constraint matrix

wagr Wemod
| (%0,1%} !

l {Yaloe, postmods) I

Figure 4: Updated constraint matrix

Suppose that the execution of an addc statement
referring to n different CPs Xy, X,,..., X, reveals
that the value combination < zy,@g, . @, > is il
tegal. JAUNT first locates an n-dimensional con-
straint matrix connected to X, Xs,..., X,, and set
its element corresponding to the value combination
< Tp, 29 ., &y > to 0. I there is no such constraint
matrix, JAUNT creates a new one whose elements are
all 1 except for the element of < z1,zq,..., 2, > that
is set to 0.

3.2 Constraint propagation

The basic idea of constraint propagation is to re-
move locally inconsistent values from the choice points
and to reduce their domain size before a back-tracking
search is performed.

In the example above, let us consider the row
of W?gr=postmod in the constraint matrix. When
W?gr=postmod, the elements of the matrix are zero,
whatever value W?mod takes. This means that there are
no global solutions with W?gr=postmod, and therefore
this value can be safely removed from the domain of
the CP W?gr. Similarly, W?mod=1 can be removed from
the domain of the CP W7mod.

In general, when a particular row or column (or
plane or hyperplane, if the dimension is greater than
two) contains all vero elements, the corresponding
value a; of CP X can never participate in a solution
(see Figure 5). Thereflore, x; can be elininated from
the domain of X. Whenever a constraint matrix is
updated, JAUNT searches for a hyperplane whose ele-
ments are all zero and removes the corresponding value
from its domain. This may update other constraint
matrices connected to the CP, and may cause values
in other CPs to be eliminated. Thus, updates are prop-
agated over the network of constraints until the entire
network reaches a stable state.

For every hyperplane in a constraint matrix, JAUNT
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Figure 5: Locally inconsistent value 2;
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Figure 6: Support

keeps Lhe current number of 1’s on that plane, called
the support (see Figure 6). When a certain element
of a constraint matrix appears to be inconsistent as a
result of the evaluation of addc statement, the corre
sponding support in cach dimension is decremented.
When a value in a CP is removed by constraint prop-
agation, the correspouding hyperpiane of every con-
straint matrix connected to the CP is removed, and
the result is reflected in all the support values in the
matrix. This algorithm is a natural exteusion of Mohr
and Henderson’s arc-consistency algorithm (Mohr &
Henderson 1986) for allowing n-ary constraints.

The computational complexity of our constraint
propagation algorithm is bounded by O(¢|M|), where
|M] is the size of the constraint matrices and e is the
number of the constraint matrices, because al least
one element in some matrix is changed to 0 from 1 for
every iteration of constraint propagation. If the con
straints are local, that is, if the arity of each constraint
is bounded by a small integer, this time bound is a
polynomial of the number of disjunctions.

Qur algorithm tries to maintain local consistency
in the sense that it considers only one constraint ma-
trix at a time. This is a generalization of the notion
called are consistency (Mackworth 1977) or pair-wise
consistency, and is equivalent to the first two steps
of Kasper’s (1987) successive approzimation. Algo-
rithms for achieving more global consistency by look-
ing at multiple constraint matrices are possible, but as
Carter (1990) argues in his paper on the experimen-
tal Propane parser, once pair-wise consistencies have
been achieved, performing a backtrack search is usu-
ally more efficient than using higher-level consistency
algorithms. In JAUNT, a forward-checking algorithm,
which is far better than the traditional backtracking
algorithms (Haralick & Elliot 1980), is provided for
generating global solutions, if necessary, although the
intended use of JAUNT is to combine constraint prop
agation with the meta-inference described in the next
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section, rather than to perform a search.

There have been attempts to formulate natural lan-
guage processing as a constraint satisfaction proh-
lem with broader domains (for example, the Herbrand
domain). CIL (Mukai 1988) and cu-Prolog (Tsuda,
Tasida & Sirai 1989) are examples of such attempts.
There is a trade-off between the expressive power and
the computational complexity, and we argue that finite
domains have sufficient expressive power while retain-
ing the computational efficiency implied by the algo-
rithms described above.

4. Meta-inference

A consistent-labeling problem may or may not have
a solution. If it has one, it is most probable that there
are multiple solutions. In fact, if the given constraints
are not ‘tight’ enough to narrow down the number of
solutions to one or a few, the problem may have an ex-
ponential number of solutions. This situation is com-
mon in natural language processing. Strict grammars
cause analysis failures for grammatical sentences; on
the other hand, loose grammars produce a combinato-
rially explosive nunmiber of parse trees for certain types
of sentence. To avoid this situation, constraints should
be dynamically wlded and removed according to the
size of the solution space. In other words, 4 constraint
solver should be provided with a means of watching
its own inference process and changing its strategy ac-
cording to the observation.

To support the meta-inference capability, JAUNT
provides the following built-in functions:

1. inconsistentp() Non-NULIL when JAUNT
detects inconsistencies between constraints

2. saveState() ... Save the current status of con-
straint satisfaction

3. loadState() ... Restore the saved status of con-
straint satisfaction.

In JAUNT, the state of the constraint-satisfaction
process is defined as the set of all choice points and all
constraint matrices. Other statuses such as global and
local variables, the program counter, and the control
stack are not saved, so applications of constraints can
be undone without disturbing the control flow,

Meta-inference is sometimes performed in an exter-
nal module. JAUNT has inter-process communica-
tion primitives hased on UNIX sockets. With these
meta-inference capabilities, an independent inference
process using external knowledge can monitor and in-
tervene in & JAUNT program. If it detects an incon-
sistency, it instructs the JAUNT programn to go back
to the previous inference state and try another set of
constraints; 1f it finds that the solution space is not
small cnough, it may give new constraints from its own
knowledge source. By separating the meta-inference
module from the object-ievel JAUNT program, modu-
larity of knowledge is achieved.

As an application of the meta-inference capability,
let us describe the interactive Japanese parser of the
Japanese-to-Inglish machine translation system JETS
(Maruyama, Watanabe, & Ogino 1990). The system

structure is shown in Figure 7. The morphological
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Figure 7: Analysis part of JETS

{ [word_id=0,
string="ANATA",
modifiee={}%1,2,3,4%},
lex={} [part_of_speech=pronoun, sf={hum}],
[part_of_speech=noun, sf={loc}]
%3},

Figure 8: Input feature structure

analyzer analyzes an input sentence using a type-3
grammar and creates a feature structure that con-
tains disjunctions for lexical and attachment ambigu-
ities (Figure 8). The syntactic analysis program writ-
ten in JAUNT applies grammatical constraints based
on Constraint Dependency Grammar to these choice
points and sends the result to a user-interface run-
ning on a separate machine. The ambiguous choice
points (those with domain size> 1) are highlighted on
the screen, and the end user can select an appropri-
ate value for some of them. This information is sent
back to the JAUNT program through the inter-pracess
communication channel and applied in the form of new
constraints. This iteration is written in JAUNT as fol-
lows:

Uif := open(ClientName,"socket");
while true begin
send(Uif,3);
X := read(Uif);
if X==goAhead then break;
saveState();
addc S.(X.id)?mod==X.mod;
if inconsistentp() then begin
send(Uif,"inconsistency detected");
loadState();
end;
end;
Thus, in JETS, the end user acts as an external knowl-
edge source to guide the inference process of the pro-
gram.

SHALT2, an experimental English-to-Japanese ma-
chine translation system currently being developed at
IBM’s Tokyo Research Laboratory, has a similar sys-
tem structure (Nagao 1990). Instead of user interac-
tion, an external example base built from an exist-
ing corpus is used for resolving attachment ambigui-
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ties in SHALT2. Thus, clear modularization of general
syntactic/semantic knowledge from domain-dependent
example-based knowledge is achieved.

5. Conclusion

We have described a constraint solver for efficiently
processing ambiguities in natural language sentences.
Disambiguation is doune by dynamically adding new
constraints while the constraint satisfaction algorithm
maintains local consistency. The system is actually
implemented and used in two machine translation sys-
tems.
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