
J A U N T : A C o n s t r a i n t Solver
for Disjunctive Feature Structures

Hiroshi M a r u y a m a
I B M Resea rch , Tokyo Resea rch L a b o r a t o r y

m a r u y a m a @ t r l . vne t . i bm.con l

A b s t r a c t

To represent a conlblnatorial nulnber nf ambigu
ous interpretatioas of a natural la'nguage sentence ef-
ficiently, a "packed" or "factorized" represeutath)n is
necessary. We propose a representatitm that comprises
a set of explicit value disjunctltms and constraints hn-
posed on them. New constraints are successively added
for disambiguation, dnrhtg which local consistencies
are maintained by an underlying mechanism. We have
developed a constraint solver called JAUNT that em
bodies this idea. The latest techniques, including con
straint propagation and forwa,vl checking, are employed
ms constraint satisfaction mechauisms. JAUNT also al-
lows an external recta-inference program tn intervene
in the constraint satisfaction process in order to control
the application of the constraints.

1 . I n t r o d u c t i o n

Certain natural language constructs, such as PP:
attachnmnt in English, are known to have a combinato-
rial number of syntactic parses (Church & Patil 1988).
For example, sentence (1) has 14 (= Catalan(4)) dif=
ferent parses because of the three consecutiw~ PPs:

Put the block on t}m floor on the table in the
room. (1)

Representing the set of parses in a compact way and
extracting a correct parse by using such knowledge as

A block cannot be on a thmr and on a table
at the same time

are keys to a practical natural language system.

The parsing method of Constraint Dependency
Grammar (Maruyama 1990) axldressed exactly these
issues. The essential ideas were

• to represent the set of parses by a constraint net-
work, which is emnposed of a set of explicit, vahm
disjunctions and constraints imposed on them,

• to apply constraint propagation in order to kee I)
the constraint network locally consistent, and

• to dynamically add new constraints for disam-
biguation.

In this paper, we describe a programming tool
named JAUNT that embodies the above ideas.
JAUNT is a constraint solver for disjmmtive feature
structure% whose constraint satisfaction mechanisms
are constraint propagation and forwar~l checking. In
the next secthm, we show]tow various ambiguities are
represented in our explicit vahm disjunction + con-
straints scheme. The constraint satisfaction algorithnls

S :~ {
[id=O,cat=v,head=put,gr=root,mod=nilJ,
[id=i,cat=np,hoad=block,gr=obj,mod~O],
[id=2,cat=pp,prep=on,head=floor,
gr={~loc,postmod~},mod={~O,l~}] ,
[id=S,cat=pp,prep=on,head=table,
gr={~ioc,postmod~},mod={~O,l,2~}],
[id=4,cat=pp,prep=in,head=room,
gr={~loc,postmodZ},mod={~O,l,2,3~} J

};

Figure 1: JAUNT representation of sentence (l)

adapted in JAUNT are explained in Section 3. Section
4 describes the rise /)f JAUNT's recta-inference capa-
bility. Section 5 concludes the paper.

2 . E x p l i c i t d i s j u n c t i o n + c o n s t r a i n t s

Let us emmlder sentence (1). In order to simplify
the following dlscussimt, we iL~stlnle that the sentence
is prepmcessed ms in Figure 1. This preprocessing can
be done [W a simple context-free grammar that does
not determhm PP-attachments. In the figur% [. . .]
is a featnre structure, { . . . } is a llst, and {~{...Y,}
is a disjunction. "Phus~ the variable S represents the
(packed) structure of sentence (1) as a list of five eom-
[}mmnts 1 each of whldl corresl)onds to a V: an NP, or
a PP. The grammatical relation (gr=) and the modi-
flee (meal=) of the three PPs are disjunctions, meaning
that one of the wdues shouhl be selected, but that the
correct candidate has not yet beat determined. For ex-
ample, the first PP "on the floor" has {~0,1~,} .'~s its
and= vahm, which means it can modify either phrase 0
(the verb "put") or phrase 1 (the NP "the block").

Not all the value combhtations of the disjunctions
are allowed. In the above example, if a PP modifies
the main verb, the grammatical relation should be loc.
In JAUNT, constraints are introduced by addc state-
meats. The program fragment (2) applies constraints
between the moditlee and the grammatical relation of
a pp.

f o r W in S begin
addc W.cat==pp & S.(W?mod).cat in {pp,np} =>

W?gr==postmod ;
addc W.cat==pp ~ S. (W?mod) .cat==v =>

W?gr==loc;
end; (2)

[]ere~ dots and question marks are operators for me:

cessing components of bsts or feltture structurest. '].'he

?The difference between a (lot and a question mark is that a

Ac~.s DE COLING-92, NAIVI~S, 23-28 Ao(rr 1992 1 1 6 2 PRec. OF COLING-92, NANIES, AUG. 23-28, 1992

symbols t~ (logical and) an,I => (iml,ly) h~ve their or-
dinary logical meanings. In geuernl, ;tny first-order
logical formula without qnantifieation is allowed as a
ctmstraint. 'Fhe variable W is bonnd to ea~zh V~ NP~
and P P while the addc statelnen|,s lmtweee b e g i n and
end are executed. Tim lirst addc s ta tement reaxls ~s
ft)ll(,ws:

If tile category of W is PP aud the category of
the modifiee of W is either PP or NP, then the
grammatictd relation of W should be postmod.

The applied constraints are represented implicitly by
an internal da ta structure called a consltvdnt oeln,o'rk
(described t;tter).

in axlrlititlu~ tam p,'ojeclivity constrzdut, that modifi~
cation liuks do unt crossover, can be progranmmd ~s
h)llows:

for Y,X in S begin
addc (Y.id < Lid ~ X?mod < Y.Jd) =>

l?mod <= Y?mod;
end; (3)

We have now obtained a packed representation that
consists of explicit disjunctions, as in Figure 1, and
constraints at tached behind them. Each value conl--
bination of the disjunctions that globally sat, isfies tim
constraints exactly corresponds to one of the 14 parses
of sentence (1).

Every context-free parsing ,~lgorit.hnl timt ha.s a
polynomial time bound prodnees a pu~cketl represen
tation of the parsing results (for example, • chart ill
chart parsing (Kaplan 1973), a pa,'si.g mat,'ix in the
CKY nmthod (Yonnger 1967), and a .sha,~d-packed-
forest in qbmita ' s algoritlun (Tomita 1987)). These
representations take advantage of tile regularities of
syntactic ambiguities in context-free parslog. For ex-
ample, sillce it is known tha t 1~ consecutive P]'s ilave
Cutalan(n) different p~zrses, it is possible to encode
all PP-a t tachment ambiguities by renlemberiug only n
and the position of tile PPs (Church ~ Patil 1982).

However, once we try to extract ~ single illterpre
tation item these representations, we face a prubhml,
because such regularities may be vnid when new cun.-
straints ~re introduced for disnmbiguati,nl. Consider
the application of constraint (4):

A verll cannot have two h)eatives. (4)

Tiffs constraint viohttes the regularity of the PI '
att;miunent ambiguity and tl,ereh)r,~, the Cb'G be-led
packed representations nlentioned ailove cannot hall--
tile this new int~rmation properly without modifyiug
the g rammar significantly. Ill JAUNT~ this constraint
is ~pplied by a simple addc statement (5).

for X,¥ in S begin
adde not(X?mod==Y?mod ~ S. (X?mod) .cat==~ &

X?gr==i°c & Y?gr==l°c) ; (5)
end ;

lebrrnaliy~ it ha.s beea proven that Constraint De-
peudency Grammars: whose rules Ca~ b(! written a~s

q.estion mrtrk allows ~ disjunction as its value, w]mre~ a (lot
does not. The cllrretl t inl | l lel l lentat iOll generates more e|flclent
code for dots than for question m~rks.

S := {
[id=O, cat=v ,head=put, gr=root ,and=nil],
lid = i, cat=rip, head=block, gr=obj ,mod=O] ,
lid=2, cat =pp, prep=on, head=f leer,
gr={%loc,postmod~,},mod={%0, I%)] ,
[id=3, cat=pp, prop=on ,head=t able,
gr={%inc,postmod~},mod={%0,2~}] ,
lid=4, cat=pp, prep=in, huad=room,
gr={~Ioc, postmod%}, mod={%0, I, 2,3~}]

};

Figure 2: JAUNT rel,resent~tion of sentence (1)

restricted f(irms of JAUNT program: have ~ weak
generativr power strictly greater than that of CI"G
(Maruy~ma 1991), This implies that certain types of
pa~rsing results can be represenu..d by constraint net-
works but not by CFG based represmttatioos.

Sen and Simmons (1988) proposed syntactic 9~phs
and discussed the axlvantagos of having explicit, d i s
junctions in a packed da ta structure. Their represeu
tation is similar to ours in tile seuse th;tt they have
con~trahlts at tached to the explicit disjnnctive da ta
structure. However, they d . uot diseusa how to ~rp.
ply disam[liguation knowledge in order tn reduce the
ambiguity effectiwqy, lu JAUNT, the underlying con-
straint saris[action algorithm removes im:onsistmdl val-
IteS ~cnd keeps tim constrai/it uetwork locally consistent.
Consider, lot example~ the application of the new con
straint (6):

An object {:annot In! on two distinct objects
a,t the same tin,e. (6)

This constraint is written a~s follows:

for X,Y in S begin
addc X.prap~=on ~ Y.prep==on &

X?mod in {pp,np} => X?mod != Y?mod;17)
end;

After this coustraint [ta.s beet, evahl~ted~ tile and
at t r ibute of the t ' P "on the t~ble" becomes {~0,2Z},
n~ strewn it, Figure 2, because the vMue 1 is locally
inconsisteut ;mcnrtling to the coostraints applied su far,
and central, pneti(il,ate ill any of the remaining seveu
re;tdings.

There },ave been several ~Lttenlpts to incorporate dis
junctions in uniiicatinu-ba.sed grammars re.g. Karl
tuoen 1984). Constr.'tints ;ere introduced by ~t unifi-
cation between two disjuuctiw.' feature structures. A
nnificatio, succeeds only if there are combinations (ff
wducs of the disjunctions tha t s~tisfy tile equality con
straints implied by the u,lificatio.. It, order to clarify
the exl,ressiw~ power of fe~ture s tructures with gen-
eral disjunctions, Kasper ~ Rounds (1986) defined a
logic-be-led notation called FM1, A fornlula in FMI,
can be rewritteu as an addc statement in JAUNT, and
hence, constraints expre~ed hy a unification can also
be expr~ssed in JAUNT. In ~|di t ion, in unification-
based grammars, the nnly basic predicate is equality,
aud other useful predicates, such em inequalities and
set inclusion/membership, are diflicuh to represent. In

~If the secottd PP "on tile table" modifies the NP "the block,"
the first PP "on tim riot,r" ha.s no legal modifiee~.

ACRES DE COLING-92, Nam'l~s, 23-28 AOUX' 1992 1 1 6 3 I'koc. OV COLING-92, NANTES, AU(L 23-28, 1992

J A U N T , inequalities and set operations are built-in,
and user-defined predicates are also allowed.

3. C o n s t r a i n t - s a t i s f a c t i o n a l g o r i t h m

Since every disjunction in a J A U N T program has a
finite number of choices, its satisfiability problem can
be formulated as a constraint satisfaction problem over
a finite donlain (sometimes called a consi.~tenl-htbeling
problem (Men[snar l 1974)). Much effort has been d e
voted to developing efficient algori thms for this prob
l ea .

Two such algorithms are employed in J A U N T . Ore,
is the constrainl propagation algorithm (Mackworth
1977), which is activated when a new constraint is
added by addc s ta tements . The constraint propaga-
tion algori thm runs in polynomial time, and el iminates
locally inconsistent vMues from the choice points and
propagates the results to the neighboring constraints.
The constraint propagation algori thm usually reduces
the size of the search space significantly.

The other algorithm used in J A U N T is the forward-
checking Mgorithm (Haralick & E l l i o t t 1980), which
is tr iggered by the execution of a special f i n d s t a t ~
meat . It is essentially a back-tracking algorithm, but
it prunes unpromising branches whenever temporal
choices are made, thus significantly reducing the size
of the remaining search space.

This section describes in detail the constraint propa-
gation Mgorithm used in J A U N T . Re'0ders are referred
to Hentenryck (1989) for the forward-checking algo-
rlthm.

3.1 Internal r e p r e s e n t a t i o n o f constraints

Bob)re describing the Mgorithm in detail, let us ex-
plain the internal representation of the constraints, hi
a compiled [nodule of a J A U N T program, a disjunc-
tion is represented by a da t a s t ruc ture called a Choice
Point (CP). A CP maintains a list of ptJssible values
(called a domain) at the t ime of program execution.
When a new constraint is added by a addc s ta tement ,
the constraint is represented internally ms a conslrrint
ms[lisa For example~ assume tha t W is bound to

[gr={~loc ,posttaod~}, mod--{Y,0, lY,}].

W?gr and W?mod are represented internMly a.~ CPs
whose domain size is two. Then, when the constraints
(2) are evaluated, a new two-dlmensional constraint
matr ix is created between the two CPs, as shown in
Figure 3.

Each dimension of the constraint matr ix corresponds
to a CP. The elements indicate whether the particn-
lar combination of the CP vMues is legal (1) or illegal
(0). For example, W?gr= loc and W?mod=O satisfies the
constraint and hence the corresponding element in the
matr ix is 1.

If another adds s ta tement is then executed declar-
ing tha t ttm value combination of W?gr=pontraod and
W?mod=l is illegal, the corresponding element in the
matr ix is changed to 0, yielding the matr ix shown in
Figure 4.

W?g(W?rnod

Figure 3: Constraint matr ix

W?~lr W?rnod

[{~IoC pOS

Figure 4: Upda ted constraint matr ix

Suppose that the executioll of art adde s ta tement
referring to 7t different CPs XhX2, . . . ,Xn reveals
tha t the value combhtat ion < xl,x~,...:x,~ > is il-
legal. J A U N T first locates an n dimensional con
straint matr ix connected to X1,X2,...,X=, and set
its element corresponding to the value combination
< xi, x2, ..., x,~ > to 0. If there is no such constraint
matrix, J A U N T creates a new one whose elements are
all 1 except for the element of < xl ,x~, . . .~x, , > that
is set to 0.

8.2 Constraint propagation

The ba.sie idea of constraint propagat ion is to re
mow~' locally inconsistent values from the, choice points
and to reduce their domain size before a back tracking
search is performed.

[n the example ~d)ove, let us consider the row
af W?gr=postraod in the constrah[t matrix. When
i~?gr=postmod~ the elements of the matr ix are zero,
whatew~r value W?mod Lakes. This means tha t there are
no glnbal solutions with W?gr=postmod, and therefore
this value can be safely removed fronl tim domain of
the CP W?gr. Similarly, Id?rnod=l ca.n be removed from
the domain of the CP W?raod.

In general, when a part icular row or column (or
plane or hyperplaue, if the dimension is greater th~n
two) contains all zero elements, the corresponding
vMne zl of CP X c a n never part icipate in ~ solutimt
(see Figure 5). Therefore, a'i can be el iminated frmn
the domaitt of X. Whenever a constraint matr ix is
updated~ J A U N T searches for a. hyperplane whose ele~
ale/Its are all zero aud relnoves the corresponding v~thle
from its domain. This may updrrte other constraint
matrices conllected to l he C.P~ and may cause rabies
in other CPs to be elhninated. Thus, updates are prop-
agated ow~r the network of constraints until the entire
network reaches a stable state.

For every hyperplane in a constraint matrix, J A U N T

ACTUS DE COLING-92. NAbrrES, 23-28 AO(Yr 1992 1 l 6 4 PROC. OF COLING-92, NANIES, AUG. 23-28, 1992

X \ Y ...

xi 0 (I 0 ... 0

Figure 5: Locally innonsistent value a:i

suppo.[~3[]

Numtmr of I's
ill the plal~

[~ 3/~ ~
suppo~[Xl[l

Figurt+ 6: Support

keeps the current number of t's on that plane, called
the support (see Figure 6). When a certain element
of a constraint matrix apl)ears to be inconsistent a,s a
result of the evaluation of addc statement, the curre
sponding support in each dimensiun is decremented.
When a value in a CP is removed by constraint prop
station, the carrespondlng hyperplaue of every con
straint matrix connected to the (11' is removed, attd
the result is reflected i~(all tt~e support values in the
matrix. This algorithm is a uatnral extension of Mohr
and Henderson's arc-c(msistency algorithm (Mohr &
Henderson 1986) for allowing n:ary constraints.

The cmnputathmal complexity of our constralut
propagation algorithm is hounded by O(eIMD, where
IMI is the siz,~ of the constraint matrices and e is the
number of the cunstraint matrices, becattse at lemst
oue element in st)me matrix is changed to 0 from I for
every iteration of constraint propagatiom If the con
str~ints are Iocal~ that is, if the arity of each ennstraint
is bounded by a small integer, this time bound is a
polynomial of the number of disjunctions.

Our algorlthnr tries to maintain h,cal consistency
ix(the sense that i t runs(tiers only one eonstr+dnt ma
trix at. +t time. This is a generalization of the notion
called am consistency (Mackworth 1977) or pair-wise
cousisteucy, and is equlva]ent tn the flrst two steps
of Ka.sper's (1987) successive aptnvximatimL Algo
rithms for achieving more global consistency by look:
ins at mnltlple constraint matrices are possibh+, but as
Carter (1990) argues in his paper on the experimen.
tal Propane parser, once pair-wise consistencies have
been achieved, peffurnling a backtrack search is usu-
ally more efficient than using higher-level consistency
algorithms. In JAUNT, a forward:checking algorithm,
which is far better than the traditional backtracking
a lgori thms (Haraliek & Elliot 1980), is provided for
generating global solutions, if necessary, although th[~
intended use of JAUNT is to combine constraint prop
agation with the recta-inference described in the uexl

section~ rather than t() perfornl a search.

There hay,' t~en attl!nlpts to formulate natural lan-
guage pro,:essing as a cunstraiut satisfaction prob-
lenl with broader don~ains (fl~r example, the Herbraud
domain). CIL (Mukai 1988) and cu=Pmh)g (Tsuda,
ltasida & Sirai 1(.189) are examples of such atteuipts.
There is a trade-off between the expressive power and
the COmlmtatiunal complexity, aml we argue that linite
donlaius have sutticient expressive power while retain:
ing the couqmtational eflicieucy implied by the algu+
rithms described above.

4 . M e t a : i n f e r e n c e

A cuns iM, (~n t -] a t) e l l iLg p r () b l (! n l uLay or nlay n o t have
a solution. I f it ha_s role, i t is most probable that there
are multiple solutions. In fax:l, it+ the glven constraints
are lint ' t ight' enough tu narrow down the uumber uf
s o h l t i t l l i S t o (Hit? o r a f e w ! t h e prohhml Ill~l,y h a v e a n e X
ponential number of solntions. This situatlon is com-
mon hL natural language processing. Strict grammars
canse analysis failures for grammatical sentelt{;(~s~ i)n
the other hand, lnose graulmars pruduce a combinato
rially explosive number oF parse trees fin' certain types
of sentence. 'lb avoid this situation, cnnstrahits shouhl
be dynamically added aud remuw~d according to the
size of the stdul.iut(space+ hi uther words, a constraint
solver shunhl tm provided with a means of watching
its own infl~rence process and changing its strategy ac=
cord(us to tim observati<m.

To set>purl the metaAnference capability~ JAUNT
provides the following built in functions:

1. i n c o u s i s t e n t p () ... Non-NULl, wilen JAUNT
detects i n c D l t s l s t e n c i e s bf~tweell c o l t s t r a i n t s

2. s a v e S (a t e () ... Save the current status of con-
straint sat(slant(us

g. l o a d S t a t e () ... lLestore the saved status of con-.
straint satisfactiuu.

lu JAUN'I'~ tire state of the constraint:satisfaction
process is deJined ms the set of all choice points and all
cosstraint nlatrices. Oth,~r statuses bUlC]I mS global aud
local variables, the prograln couuter+ ;utd the coutrol
stack are l i n t saved I sn applications (If cmlstraints nan
be uadone without distilrbing the c<uttrul ll.w.

Meta inh~renc,~ is nonletlntes perh~rmed in an exter
hal nlodule. JAUNT has interqm)cess crassus(ca-
tion primitiw~s hmm~d on UNIX so<:kets. With these
met;uinference capalfilities, an independent inference
process timing ext.ernal knuwh~dge can tilt)ill(or and iIi-
terveneln a JAUNT progra.nt. If it detects an incon-
sistency, it instructs the JAUNT i>rogram to go b.'u:k
tu the previous inferenc[~ state and try another set of
constraints; if it finds thai the solution spa~:e is not
small enough+ i t may giw~ new constraints from its own
knowledge source. By separating the rneta-inference
module from tile object-level JAUNT program, modu-
larity [)f knowledge is ;whieved.

As an application <>f the meta:inference capability,
let us describe the interactive Japanesp parser of the
Japanese t<FEnglish m;u:hine translation system JETS
(Maruyama, Watanabe, & Oginn 1990). The systmn
structure is shown in Figure 7. Tim morphological

A(:rl~s BE COL1NG+92, NANTES, 23-28 ^O(JT 1992 1 1 6 S Pron. oi: COLING-92, Nm,n'zs, AUG. 23-28, 1992

Fignre 7: Analysis p~rt of JETS

[~ord_id=O,
string="ANATh",
modifieeffi{~1,2,3,4~},
lex={~, [part_of_speech=pronoun, sf={hum}],

[part _of _speech=noun, sf={loc}]
%),

Figure 8: Input feature structure

analyzer analyzes an input sentence using a type-3
grarl'lln&r and creates a feature structure that COll-
talus disjunctions for lexieal and attachment ambigu-
ities (Figure 8). The syntactic analysis program writ-
ten in JAUNT applies grammatical constraints based
on Constraint Dependency Grammar to these choice
points and sends the result to a user-interlace run-
ning on a separate machine. The amblguons choice
points (those with domain size> 1) are highlighted on
the screen, and the end user can select an appropri-
ate value for some of them. This information is sent
back to the JAUNT program through the inter-process
communication channel and applied in the form of new
constraints. This iteration is written in JAUNT as fed-
lows;

Uif := opon(Client~ame,"socket") ;
while true begin

send(U/f ,S) ;
X := r e a d (U i f) ;
if X==goAhead then break;
saveStato() ;
addc S. (X.id)?mod==X.mod;
if /nconsistentp() then begin

send(Uif,"inconsistency detected") ;
l o a d S t a t e O ;

end;
end;

Thus, h* JETS, the end nser acts as an external know[
edge source to guide the inference process of the pro-
gram.

SHALT2, an experimental English-to-Japanese ma-
chine translation system currently being developed at
IBM's Tokyo Research Laboratory, has a similar sys-
tem structure (Nagao 1990). Instead of user interac-
tion, an external example ba.~e built from an exist-
ing corpus is used for resolving attachment amblgui-

ties in SHAUF2. Thus, clear modularization of general
syntactic/semantic knowledge from domain-dependent
example-based knowledge is achieved.

5. C o n c l u s i o n

We have described a constraint solver for efficiently
processing ambi~nlties in natural language sentences.
Disambignation is dntm by dynamically adding new
constraints while the constraint satisfaction algorithm
mainteoius local consistency. The system is actually
bnldemented and used in two macl6ue translatiun sys-
tems.

Refe rences

1. Carter, I}., 1990. "Efficient Disjunctive Unification for
Bottom-Up Parsing," COLING '90.

2. Church, K. and Patti, R., 1982 "Coping with Syntactic
Ambiguity, or llow to Put the Block m the Box on the
Table." Arne*-tcan d. of Compulattonal Linguistics 8.

3. llaralick, M. and Elliott, G. 1,., 1980, "lnerea~sing Tree
Search Efficiency for Constraint Sittisfaction Prob-
lems," Arhficial Intelligence 1~.

4. llentenryck~ P. V., 1989, Constraint Satisfaction In
Logic Programming, MIT Press.

5. Karttunen, L., 1984, "FcaUtres and Values~" COL1NG
'8q.

6. Ka.sper, R. T., 1987, "A Unification Method for
Dis.Inactive Feature I}escriptions," 25lh ACL Annual
Meeting.

7. Kasper, IL T., and Rounds, W. C., 1986, "A Logical
Semantics for Feature Structures," 2Jth ACL Annual
Meeting.

8. Mackworth~ A. K., 1977, "Consistency m Networks of
ll.elation," Artificial lntelhgence 8.

9. Maruyama, 11., 1990, "StmlcUtral l)isambiguation
with Constraint Propagation," 28th ACL Annual
Meelin 9.

10. Maruyama, H., 1991, "Constraint I)ependency Gram
mar and Its Weak Generative Capacity," Advances in
Software Science and Technology 3.

11. Maruyama, H., Watanabe, 11., and Ogino, S., 1990,
"An Interactive Japanese Parser for Machine 'lYansla-
tion," COLING '90.

12. Montanari, U., 1974, "Networks of Constraints: Fun-
damental Properties and Applications to Picture Pro
cessing," Information Science 7.

13. Mohr, R. and llenderson, T., 1986, "Arc and Path
Consistency Revisited," Artificial Intelligence 28.

14. Mukai, K. 1988, "Partially Specified Term in Logic
Programming for IAnguistic Analysis," International
Conference on Fifth Generation Computer Systems,
Tokyo.

15. Nagao, K, 1990~ "Constraints and Preferences: In-
tegrating Grammatical and Semantic Kimwledge for
Structural l)isambiguation," Pacific Rim Interna-
tional Conference on Al, Nagoya.

16. Se,, J. and Simmons, R. 1988, "Syntactic Graphs: a
Representation for the Union of All Ambiguous Parse
Trees," Computational Linguistics 15

17. Tsuda, 11., llasida, K., and Sirai, I1., 1989, "JPSG
Parser on Constraint Logic Programming," 4th ACL
European Chapter.

18. Younger, D. H., 1967, "Recognition and Parsing of
Context-Free Languages in time nO, '' Information and
Control 10.

ACRES DE COLING-92, NANTEs, 23-28 Ao~r 1992 I 1 6 6 PRec. OF COLING-92. NANTES, AUG. 23-28, 1992

