
From Detection/Correction to Computer Aided Writing

Damien GENTHIAL, Jacques COURTIN
Laboratoire de g~nie informatique - Imag Campus - BP53X

F~38041 GRENOBLE CEDEX - France
Phone: (33) 76 51 48 78
FAX: (33) 76 44 66 75

E-Mail: genthial@imagfr
courtin@imag f r

I~SUME

La plupart des textes actuels sont produits sous
forme 61ectronique h l 'aide de syst~mes
informatiques qui fournissent des facilit6s de
manipulation de chMnes mais aussi des outils
l inguistiques : correcteur d 'orthographe,
dictionnaire voire vErificateur grammatical.
Nous pensons qu'un syst~me d'aide ~t la
redact ion dolt 6tre conqu comme un
environnement complet pour la production, la
maintenance, l'Edition et la communication des
textes. Ceci suppose par exemple l'utilisation
d'un gestionnaire d'idEes et de dictionnaires
pour la production, d'un 6diteur de textes et de
vErificateurs linguistiques pour la maintenance,
d'un traitement de textes pour l'Edition et d'une
lbrme normalisde pour la communication.

A la suite de nos travaux sur la detection et la
correction des erreurs, nous proposons une
architecture Iogicielle capable d' intfgrer de
manibre uniforme nos outils linguistiques
(analyse et gEnEration morphologique,
techniques de correction lexicale, analyse et

verification syntaxique) ainsi que des outils de
traitement de texte, d'Edition et d'exportation de
documents. Ces outils sont conqus comme des
modules sp~cialisEs disposes autour d'une
structure de donnEes unique qui constitue la
representation interne du texte. Cette structure
est un treillis multi-dimensionnel qui traduit la
linEarit6 mais aussi la structure et les ambigu'ft~s
du texte. Elle est compMtEe par un lexique b a ~
sur des structures de traits typEes qui
contiennent les informations morphologiques,
syntaxiques et sEmantiques associEes aux mots.

La distribution de la competence globale du
syst~me dans des modules spfcialis~s facilite sa
maintenance et, surtout, permet le partage des
compEtences locales entre les modules, ce qui
est tr~s important pour les modules linguistiques
(le vErificateur syntaxique, par exemple,
requiert presque tous les autres modules
l inguistiques : morphologie, phon~tique,
syntaxe).

AcrEs DE COLING-92. NAIqlE.S. 23-28 AOt~'r 1992 1 0 1 3 PROC. OF COLING-92. NANTES, AUO. 23-28, 1992

A B S T R A C T

Most texts nowadays are produced in an
electronic form by the use of systems which
provide text processing facilities but also
linguistic facilities such as spelling checkers,
on-line lexicons and even syntactic checkers.
We think that a computer-aided writing system
must be designed as a complete environment for
the production, maintenance, edition and
communication of texts. This implies for
example the use of an ideas manager and on-line
lexicons for production, a text editor and
linguistic verifiers for maintenance, a text
processor for edition and a standardized form
for communication.

Following our work on detection and correction
of errors, we propose an architecture of a
system able to integrate in a uniform way our
linguistic tools (morphological parsing and
generation, lexical correction techniques,
syntactic parser and verifier) as well as tools for
text processing and document editing and
exporting. Tools are designed as specialized
modules disposed around a unique data
structure, which is the intemal representation of
the text. This structure is a multi-dimensional
lattice, coding the linearity but also the structure
and the ambiguities of the text. It is completed
by a lexicon based on typed feature structures
encoding morphological, syntactic and semantic
information on words.

The distribution of the competence of the
system in specialized modules permits an easier
maintenance of the system itself but, moreover,
allows competence sharing among the modules,
which is very important for the linguistic ones
(for example the syntactic verifier needs to use
ahnost every linguistic module: morphology,
phonetic, syntax).

1, I n t roduc t i on

In their life-cycle from creation to publishing,
all texts nowadays take an electronic form. Most
of them arc directly produced in this form and
take the paper form only for publishing. Thus a
lot of services can be provided to the writer who
uses a computer to produce his texts. This idea
is not new but, following our work on detection
and correction of errors, we think it must be
investigated more deeply than it has been.

We first introduce what we mean by computer
aided writing. We then propose an architecture
for a computer aided writing environment and
quickly describe its modules. We outline one of
its main characteristics (limited data structures),
and finally justify the second one (distribution
of services) in the light of our work on detection
and correction of errors.

2. C o m p u t e r Aided W r i t i n g (C A W)

A computer system for a writer is basically a
personal computer which runs a text processor,
the power increase of personal computers has
been followed by the growth of services
provided to the user. Some of these services
aim to increase the writers productivity but most
of them aim to obtaining a better quality of
produced documents. We will distinguish here
between two categories of services: presentation
services and production services. The fwst o n e s
concern the way the paper form of the text
looks: justification, formating, multi-column...
They are very powerful in modem systems,
especially if you add to your text processor a
graphic processor and a page maker, but they
have little to do with linguistics and so we will
not discuss them here.

The second ones concern the text itselt, in its
content and in its form. The best known and
most achieved service in this category is the
spelling checker, which can be found in every
modern text processor. Recently, other services
have emerged:
• on-line lexicons with synonym and antonym

links;
• idea managers which help the user to build the

plan of his document;
• syntactic checkers in the spirit of the IBM

system CRITIQUE [6].
In most cases, these new services are a dd-o ns
to an existing text processor and CAW s y s t e m s
are stacks of tools, lacking the coherence of an
integrated approach.

Our idea is that CAW must be thought of as a
goal in itself and our aim is to build an
environment for the production, maintenance,
edition and communication of texts. Such a
system will be based on a coherent set of
software tools reflecting the state of the art in
string manipulation and linguistic treatment. At
a first glance, the system should include classic
and well-known tools such as those cited above
and more sophisticated tools like:
• morphological analysis and generation, which

can for example be used for lemmatization of
words or groups of words. The idea here is to
use these lemmatized groups as keys to access
external knowledge bases or document bases
[91.

• syntactico-semantic analysis and generation to
allow operations like: changing the tense of a
paragraph, changing the modality of a
sentence, help in detecting ambiguous phrases
and in disambiguation by proposing
paraphrases. There is also the possibility of
generating a definition of a word on the basis
of its formal description in the lexicon.

ACRES DE COLING-92, NANTES. 23-28 AOtYr 1992 l 0 i 4 PROC. OF COLING-92, NANTES. AUG. 23-28, 1992

• lexical and syntactic checkers , which mus t
also be able to propose corrections, by the use
of all the linguistic knowledge included in the
system.

• structural manipulations of the text in the spirit
of idea managers but also some verifications
on the structure by the use o f a g rammar of
the text, which depends on the type o f
document created. For example , a software
documentation will include a user manual and
a reference manual , the user manua l will
include an instal lat ion chapter , a tutorial
introduction chapter

• interface with the outside world: that includes
of course the production of a paper form of
the text but also, at least as important as the
former, the production o f the text in some
s tandardized form (for example the form

caracteristics are the use of a minimal number o f
data structures and a distr ibuted architecture.
We will here quickly describe the role of each
module , leaving for the next two sections the
d i s c u s s i o n a b o u t da t a s t r u c t u r e s a n d
architectural choices.

The proposed sys t em is pr imari ly buil t for
French but every module has been designed to
be as general as possible, and is complete ly
configurable, so that it can be used for other
languages.

Each module is viewed as a server which is able
to provide some service. Following our work
on detection and correction o f errors, m a n y
modules are dedicated to this sort o f task.
Given an incorrect word, the similarity key
module is able to produce a list of correct words

Fi[ure 1: Architecture of a C AW environment

r e c o m m e n d e d by the TEl [8]) which can
travel on networks and be legible by most
software. This lorm can also be used to store
the text in databases or to pass it on to other
software. A very interesting type of software
could be an automatic translator, so that a text
could be c rea ted in one l anguage and
published in one or more other languages.

Such a system is a long term objective and we
will see in the next section an architecture which
m a k e s p o s s i b l e a s h o r t t e r m ful l
implementat ion, while being open for future
extensions.

3. A r c h i t e t ~ u r e o f a C A W e n v i r o n m e n t

Figure 1 describes the architecture of tile C AW
sys tem under deve lopment in our team. Its

which are possible corrections of the incorrect
one. It is well-suited for typographic errors.
The phonetic graphic transducer plays the same
role by using the phonetic invariant of words. It
is well-suited for spelling errors.
The morphological module can also be used for
lexical correction [3] but its main purpose is to
produce an input for the syntactico-semantic
parser, which is in charge o f bu i ld ing a
decorated structure of the sentences o f the text.
T he parser we use is a dependency - t r ee
transducer designed as a robust parser [4, 5].
The syntactic checker is in charge of verifying
agreement rules in sentences [7].
The multi-purpose lexicon contains all lexical
information and furnishes access tools (see next
section).

ACRES DE COLING-92, NAMES, 23-28 hOt~q 1992 1 0 1 5 PROC. ov COLING-92, NAr~'rl.;s, AUG. 23-28, 1992

The text processor provides s t r ing Every module can read or write in this lattice;
manipulations while the edition communication for example, the corrections prOduced by lexical
module gives a paper or communicable form of correctors can be added as mult iple
the text.
The structure manager is in charge of global interpretations of a word.
manipulations on the surface structure of the
text (chapter, sections,...) and of the much
more difficult task of verifying the internal
coherence (there is an introduction, a
development, a conclusion,...).
Finally, the control and user interface module
a s s u m e s the s y n c h r o n i s a t i o n and
communication between modules and the
transmission of user orders.

The correctors, the syntactic checker, the
morphological parser and generator, the
syntactico-semantic parser are all operational on
micro-computers. At the moment, the lexicon is
a roots and endings dictionary (35,000 entries,
generat ing 250,000 forms) with only
morphological information on words, but its
extension is under development.

Figure 2: Example of a lattice

4. Data S t r u c t u r e s 4.2. Lexicon
4.1. Blackboard

A main caracteristic of our system is the use of
an internal representation of the text in the form
of a multi-dimensional lattice (inspired by [2])
which play the role of a blackboard for all the
modules.

Each node of the lattice bears information on a
piece of text, and we propose that they all have
the same structure: each node bears a tree
(sometimes limited to the root) and each node of
the tree bears a typed feature structure (a ~t'-
term, see §4.2). We can imagine that the lattice
is initiated by the flow of characters which come
from the text processor, thus the word "Time"
will become:

For performance problems, it seems more
reasouable to initiate the lattice with the lexical
units resulting from the morphological parsing
of the text. With the sequence of characters
"Time flies...", we will obtain the bottom four
nodes of the figure 2 lattice.

We can see two dimensions of the lattice on this
example: a sequential dimension ("time" is the
first word and is followed by the second word
"l]ies"), and an ambiguity dimension (both
words have two possible interpretations).

A third dimension appears when the syntactic
parser starts its work. It produces new lattice
nodes which bear dependency trees. With the
lattice above, the syntactic parser will add the
two top nodes (figure 2).

We think it is very important, for the coherence
of the knowledge embedded in the system, that
all lexical information be contained in a unique
dictionary. Multiple access and adapted
software tools will extract and present the
information to the user in different forms, for
example the natural language form of a formal
entry may be computed by the syntactic
generator.

To represent knowledge associated with words,
we have chosen typed-feature structures called
w-terms [1]. With these structures, basic
concepts are ordered in a hierarchy which can
be extended to whole structures. Thus we can
determine if a 'e-term is less than another and
the unification of two hU-temls is the biggest ~t'-
term which is less than both unified ones. In
other words, the unification of two terms is the
most general term which synthesizes the
propert ies of both unified ones. This
caracteristic is very interesting for the
implementation of paradigms: a paradigm is the
representative of a class of words and contains
the information which describes the behaviottr
of a word. We distinguish three types of
paradigms: morphological , syntactic and
semantic.

Morphological paradigms bear the category of
the word and a few linguistic variables such as
gender and number. Syntactic paradigms
contain information about the function of the
word within its context. The aim is to code sub-
categorization of words, and it is very important
for verbs but also for nouns and some

Ac'r~ DE COLING-92, NANrES. 23-28 Ao(;r 1992 1 0 1 6 P}toc. OF COLING-92. NANTES. AUG. 23-28. 1992

adjectives. A semantic paradigm is the semantic
concept associated with the word or the logical
structure in the case of predicate words.
Examples of paradigms:
I,U stand for Lexical Unit, NP for Nominal
Phrase and P tar Proposition.

baby: morphological
LU(cat -> cnoun;

gender => {masuculin ; feminine];
number > singular)

baby: syntactic
LU(syn => NP)
baby: semantic
LU(sent > HUMAN)
choose: morphological
LU(cat => verb)
choose: syntactic
LU(syn :> P(subject =>

NP (sere => ANIMATE) ;

object ->
NP (sere -> OBJHCT))

choose: semantic
LU (sere -> CHOOSE (agent => ANIMATE;

choice => OBJECT))
For a verb like rain, we can be more precise in
the syntactic paradigm:
rain: syntactic
hU{syn => P(subject: ->

NP (cat -> [~ers pronoun;
person :> 3;
nunJoer -> singular;
lex -> "it"))

Each entry in the lexicon contains a key, which
is used to access the entry, and a reference to a
paradigm of each type. In order to allow
information sharing between "v-terms, we add
to the entry an optional list of equational
constraints. For example, for ehoose, we have :
syn. subject, sere - sem. agent: and

syn.object.sem = sere.choice sayingthat

usually the subject of the verb is its agent and
the object is the choice. The result of
morphological parsing of a form is the
unification of the three paradigms of each
lexicon entry used. For example, for the form
chooses, we use the root choose and the ending
s (which add the features person and number to
the paradigms of the verb) thus we obtain:
LU(cat => verb;

person -> 3;
number > singular;
syn > P(subject: ->

NP (sem > @S :ANIMATE) ;
object ->
NP (sem => @O:OBJECT) ;

sere -> CHOOSE(agent :=> @S;
choice => @O))

where the notation @X is used to write
reference links (equational constraints).

The idea behind paradigms is to allow a great
factorization of knowledge: it is obvious for

morphological paradigms (in the actual
dictionary, we have only 400 paradigms for
250,000 forms) and for syntactic paradigms
(the number of possible sub-categorizations for
verbs is far less than the number of verbs). It is
less obvious for semantic paradigms, especially
if you want a very f'me description of a word: in
this case, there is almost a paradigm for each
word.

So the lexicon is essentially built around three
,v-term bases, one for each set of paradigms.
The bases are accessed by the roots and endings
dictionary used by morphological tools (parser
and generator), and we can easily add synonym
and antonym links to this dictionary. The key-
form correspondence table, required by the
similarity key correction technique cannot easily
be embedded in this lexicon structure, but we
propose to append it to the lexicon so that any
module requiring iexical information must use
the mult i-purpose lexicon module. This
constraint is imposed in view of coherence: each
time a root is added to the main dictionary, all
key-form pairs obtainable from this root must
be added to the table.

5. Distribution

Each module in our system must be viewed as a
server which responds to requests sent by any
other module. Such an architecture has the
classical advantages of modular StlUctures: you
can add or remove a module very easily, you
can modify a module in a transparent manner as
long as you do not change its interface

But this structure has another advantage which
is very important in the context of linguistic
treatments: the linguistic competence of each
module can be exploited by the others. We will
use two examples to illustrate our purpose.

First, in detection and correction of lexical
errors, we have implemented classical tools
(similarity key and phonetic). Then we decided
to implement syntactic checking, so we needed
the services of a morphological parser. We
added to the system (a prototype called
DECOR) our morphological tools, and the
availability of these tools gave the idea of using
them for detection and correction, so we
inrplemented a third technique of correction :
morphological generation.
Example of correction using morphological
g , ~ m m m :
loots, although incorrect, may be parsed as foot
+ s, and the root foot, plus the variables (plura/)
associated with the s, when passed on to the
morphological generator, give the correct form
feel.

ACRES DE COLIN'G-92, NANTES, 23-28 AObq' 1992 l 0 I 7 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

As a second example, consider the problem of
proposing correct ion for ag reemen t errors:
when an error occurs, it means that at least two
words do not agree so there are at least two
possible corrections depending on which of the
two words you choose to correct. The solution
for the system is to propose both corrections to
the user and let him choose one. Even this
s imple method requires l inguistic service: a
morphological generator is necessary to produce
each correction.

But we think that in mos t cases the good
correct ion can be choosen au tomat ica l ly ,
a c c o r d i n g to c r i t e r i ons I such as those
considered by [10]:
• number of errors in a group: l i t t le ca t are

f u n n y pe t s must be corrected l i t t le cats are
f u n n y pe t s rather than little cat is f u n n y pet;

• it is better to correct in a way which does not
modify the phonetic of the phrase, We give
here a F r ench e x a m p l e 2 : L e s c h i e n s
d r e s s ~ e s . . , will be corrected Les c h i e n s
dresses . . , rather than Les ch iennes dress~es. ..

• one can give priority to the head of the phrase:
cat which are.., becomes cat which is...;

• writer laziness: a writer somet imes omit an s
where one is necessary, but rarely add one
where it is not.

Such criterions are sometimes contradictory and
we propose to use an evaluation method which
gives a relative weight to each criterion so that
each possible correction has a probability o f
being correct. The user is asked for a choice
only in cases where both correct ions have
equivalent probability.

But, whatever strategy is implemented, it needs
the cooperation of various linguistic modules in
order to per form the evaluat ion: phonet ic
transducer, morphological parser and generator,
and our architecture permits the use of the
available ones.

Finally, beyond linguistic justifications, one can
find computational justifications: each module
o f the sys tem can work in parallel with the
others and they can even work on different
computers, putting the distribution at a physical
level.

INote that these criterions are pertinent for French,
where there are a lot of agreement rules (between noun,
adjectives and detenniner, between subject and verb,...)
2An similar english example might be The skis slides
wich is corrected The ski slides rather than The skis
slide.

6. C o n c l u s i o n

As sophis t ica ted l inguis t ic t rea tments are
expenswe in time and space, we think it is very
important, that a C A W system should integrate
all treatments and knowledge in a uniform way.
It makes it easier to take advantage of the whole
knowledge in each service involved in order to
provide very powerful services. This power o f
the services is a mean to compensate , for a
potential user, the lack o f ergonomy due to poor
performance: a sys tem which can build the
mult i -dimensional lattice in real-time does not
seem a realistic goal for the near future.

As a typical applicat ion for our sys tem, we
th ink of the product ion o f the technica l
documentation of an industrial product: as there
are for e x a m p l e so f twa re e n g i n e e r i n g
e n v i r o n m e n t s , we p r o p o s e l i n g u i s t i c
eng inee r ing ones. In such a con tex t it is
poss ib le to add s t ruc ture serv ices , more
powerful services at the semant ic level and
interface with other sof tware such as an
automatic translator.

R e f e r e n c e s

[1] Ait Kaci (H.), A Lattice-Theoretic Approach to
Computation Based on a Calculus of Partially-Ordered
Type Structures. Ph.D. Thesis - Computer and
Information Science, Univ. of Pennsylvania,
Philadelphia, USA, 1984

[2] Boitet (C.), Representation and computation of units
of translation for Machine Interpretation of spoken
texts. GETA & ATR Tech. Report TR-1-0035, August
88

[3] Cohard (B.), Logiciel de d~tection et de correction des
erreurs lexicales. Th~se CNAM, Grenoble, Mars 88

[41 Genthial (D.), Courtin (J.), Kowarski (I.),
Contribution of a Category Hierarchy to the
Robustness o f Syntactic Parsing. 13 th CoLing,
Helsinki, Finland, August 1990, Vol. 2, pp 139-144

[5] Genthial (D.), Contribution d la construction d'un
systdme robuste d'analyse du franfais. Th~se de
I'universit~ Joseph Fourier, Grenoble i, Janvier 1991

[61 Richardson (S.D.), Enhanced Text Critiquing using a
Natural Language Parser: the CRITIQUE System.
IBM Research Report RC 11332, Yorktown Heights,
USA, 1985

[7] Strube de Lima (V.L.), Contribution d 1'ttude du
traitement des erreurs au niveau lexico-symaxique dons
un texte 6crit en franfais. Th~se de l'Universitt~ Joseph
Fourier, Grenoble I, Mars 1990

[8] TEl (Text Encoding Initiative), Guidelines for the
Encoding and lnterchange of Machine Readable Texts.
Computer Center MC135, University of Illinois at
Chicago and Oxford University Computing Services.

[9] Tomasino (1.), ODILE : Un Outil d'lnt~gration
Extensible de Dictionnaires et de Lemmatiseurs.
CNAM. Grenoble, l~c. 90.

[10] V~ronis (J.), Morphosyntactic correction in natural
language interfaces. 12th CoLing, Budapest, Hungary,
August 1988, pp 708-713

AC'TES DE COLING-92. NANTES, 23-28 AO~q' 1992 1 0 1 8 PROC. OF COLING-92. NANTES, AUG. 23-28, 1992

