
JDIh Parsing I t a l i a n w i t h a Robust Constra in t G r a m m a r

ANDREA BOLIOLI LtJC'A DINI (; IOVANNI MALNATI

D i m s L o g i c
C .so T u r a t i 1 l / c , 10128 T o r i n o I ta ly

fax + + 3 9 - 1 1 - 5 0 1 6 1 8

A b s t r a c t
Italian is a language presenting a lot of syntactical

problems, sucb as a rather unrestricted word order,
unbounded agreement controls, long distance
structure checkings and so on. Things get worse and
worse if we pass from "sentences of linguists" to real
texts. In this paper we will present a system able to
retrieve and signal syntactic errors in real italian texts.

I In troduct ion
We are going to present a system by which

syntactical errors of Italian can be recognized and
signalled. This system is called JDII (James Dean the
second) and has been developed in Turin by DIMA
LOGIC.

JDII can accept wrong Italian sentences, even
long and complex ones, and it returns a comment
on the type of the detected mistake(s), if any. A
corpus of 400 grammatical sentences (from a
minimum of 4 words to a maximum of 40 words) and
possible ungrammatical variants has been used to
test the system. The sentences contain the
grammatical phenomena treated by the grammar
(see below). The system is implemented in PROLOG
and C. It runs on UNIX and DOS environments•

The modularity of the system is guaranteed by the
division of linguistic and software knowledge into
two indipendent modules. The linguistic module is
roughly made of a morphological component and a
syntactic one, while the computational framework
(DIMACheck, cf. chapter 3) is mainly based on a
parser and on a theorem prover. Software resources
are shared with another syntax checker, aiming at
an analogous system for the English.

2 P r o c e s s i n g e r r o r s

2.1 Error interpretatitm

An error is a violation of some constraint posed by
linguistic rules on the language The violation of
these constraints causes, according to standard
classification, spelling, morphological, syntactic
and semantic errors. This classification, which is still
useful in defining the nature of linguistic violations
from an informal point of view, poses some problems
in an authomatic treatment of errors. The fact is that
an error can be properly classified only on the basis
of writer's intentions. For example, in a sentence like
1) * Ho scritto una lettera a un ponte t

1 w r o [c a IcUcr to a bridge

We could assume:

a semantic error, since people generally do not
write letters to bridges;

- a syntactic error, since locative complements with
words l ike ponte are real ized by di f ferent
prepositions (sotto, su) :

- a spelling error, if the writer had not wanted to
write ponte, but conte ("earl").

The fact is that people correcting texts usually have
a pragmat ic context which allows mistakes
disambiguation. For "context" we mean all
the background information concerning the writer,
the external conditions when the text was written and
, above all, the kind of facts and things which tile text
deals with. (Consider , e .g . . the d i f fe rent
interpretations of a sentence like 1 if it were found
in the answer of a fool to a psychological test, in
a novel about ancient chivalry, or in some essay
titled 'Which is the best place for writing a letter?').

Since we are not able to handle contextual
knowledge for error disambiguation, we decided, for
our purposes, to drop the classification, and to make
use of the notion of error interpretation: "Given a
wrong sentence, an error interpretation is any
hypothesis of substitution in order to make the
sentence correct".

In correction performed by humans, the number
of error interpretations is constrained by
pragmatical and contextual data. In authomatic
detection this number is linked to the capacity of
ammitting constraint violations on the rules. In the
worst case (i.e. when all the constraints, including
lexical constraints, are allowed to be violated)the
set of error interpretations is infinite.

2,2 l Jerils rtf tilt' system

To get out from this empasse we chose to
constrain the possible violations allowed by our
grammar just to syntactic ones. We could also deal
with spelling corrections by including a small set
of incorrect variants for some words. This would
reveal meaningful only by tuning the system on the
specific linguistic background of the user (in fact
different mispellings are made by people speaking
different languages and with different degrees of
instruction). As for semantic errors we are not able to
deal with contexts, so they are simply ignored and

'~ English translations will be word by word In the last chapter

we d o n t provide any translation, since ill formed phrases and

sentences exempli fy ing the coverage are language specific

Acr~ DE COLING-92, NANTES, 23-28 AOUT 1992 l 003 PRec. OF COLING-92, NANTES, AUG, 23-28, 1992

sentences like 1 are considered correct (and in fact
they are, see e.g a context like Giovanni e'
impazzito: dice di aver scritto una lettera a un
ponte)..

To sum up, in our system the error checking works
as follows :

1) If a word is found the root of which is not
present in the vocabolary or which cannot be
properly inflected, the message "unkown word is
reported.

2) If a word is found which is included only in the
set of the uncorrect variants, the morphology will
return to the grammar the texical unit properly
inflected, but containing e violated constraint.

3)If all the words in a sentence have been
analized by the morphological module, the syntactic
processing starts.

4) As we will see, the syntactic parsing will
produce either a comment on the grammaticality of
the sentence or a general refuse of it (i.e. a generic
error such as "unknown grammatical structure").

Ha visto un crane - > Unknown word (crane)

A visto un cane - > Spelling error (a missing h)

Ha visto una cane - > Syntactic error (agreement)

Ha visto cane uno - > Unknown structure

2.~ Principles el' error diagnosis

In the previous paragraph we stated that our
attention will be drawn only to syntactic violations.
However, this limitation does not solve the problem
of multiple error interpretations at all, since,
even from a purely syntactic point of view, a sentence
can be wrong in different ways. Let us consider a
sentence like:

2) * 11 ragazzo e' slala af.fettt~oso.

Ihc(masc) hey(mast) has hccn(fcm) lovely(mac, c)

We have at least two hypotheses of correction:
2.a) I I ragaz2o c 's tatO ~f,J¢~llltoSO.
thc(masc) boy(mast) has bccn(masc) lovely(mast)

2.b) LA ragaz'Jt c'stata qffelluosA.

the(fern) girl(Ion) has bccrl(fctn) lovely(f tin)

If we take into account psychological plausibility,
we should signal only the error on the word stata.
This and other data support a principle in error
correction which states that "given a set of possible
error interpretations, the right error interpretation is
the one with the smallest number of violated
constraints ". This principle has been implemented as
a built-in preference mechanism over the set of
possible final interpretations, while the set itself is
restricted by the power of the grammar. The
restriction is obtained by implementing peculiar
linguistic statements that

i) impose linguistically plausible criteria rather than
statistical ones;

ii) prevent that the explosion of all the possible
error interpretations makes the system completely

inefficient.

An application of the above criteria is provided by
the sentence:

3) * It ragazzo chc c'slal(l picchiata dai fa,~cisti sla male.

the(mast) boy(mast) who has been(lore) hit(fen1) hy
t'ascisls is suffering

where we can hypothesize two agreement
violations either in the subject NP or in the VP of the
relative clause. In this case our system allows us to
state that agreement features of the head will win on
the ones of the modifiers, so that a gender
agreement error is signalled in the relative clause.

3 D I M A C h e c k f r a m e w o r k
DIMACheck is a general-purpose unification-based

natural language parser that, while retaining
computational effectiveness and linguistic expression
power, stresses the concepts of monotonicy,
declarativity and robustness. These goals are
achieved, on the one hand, introducing several
linguistic devices, like weak constraints, user-defined
operators and functions, and on the other hand
enforcing strict data-type checking and implementing
a t ime- independent evaluat ion funct ion (the
interpreter of the rules) that guarantees a high
express ive power in a to ta l ly dec lara t ive
environment.

In order to mantain readability and ease of use of
grammars, only two kinds of rules have been
introduced, namely structure building rules and
lexical rules.

3.1 User I)elined Operators

We think that a re-write system based only on
equality constraints is inadequate to express linguistic
knowledge, and the introduct ion of inequality
constraints does not always solve the problem. In
order to augment the linguistic expressive power
w i thou t incur r ing in r edundancy and
computation-ineffectiveness we introduced the
following tool. Formally a User Defined Operator
(UDO) is function of the form

Boolean < - DataTypcl '~ DalaTypc2

i.e. a UDO is a function mapping pairs of values
belonging respectively to DataTypel and DataType2
onto boolean values. The composition rule (the rule
that associates the relevant boolean value to each
pair) is given explicitly, by listing all the value pairs that
map onto true (all the other ones are mapped
automatically onto false).

3.2 User I)elieed Functions
User Defined Funct ions (UDFs) have been

introduced to stress the locality of computation. The
basic idea is that each value inside a constraint (be it
an equality constraint or not) may, in principle, be
replaced by a function that computes it on the basis
of some given parameters. So, whenever one must
compute the value of an attribute which is known to
depend on and only on a finite set of other features,

AcrEs DE COLING-92, NANTES. 23-28 AOl~rr 1992 1 0 0 4 PROC. OF COLING-92. NANTES, AUt]. 23-28. 1992

instead of writing lots of rules which embed (and hide)
this piece of knowledge into a larger description, it is
possib le to dec lare a UDF that manages the
computation, thus reducing the number of rules from
many to one.

Formally, a UDF is a function that maps values from
N data types into values of a given data type. in
symbols:

TargetDataType - - O a t a T y p e l * *DataTypeN

UDFs are declared explicitely, more or less like
UDOs: for each n-tuple of relevant values the result
value is stated. UDFs need not to be deterministic: a
given pair of input parameters may map into more
than one target value.

3.~ Cons t ra in t and cons t ra in t bundle~

As stated above parsing is, in our view, applying
cation a finite set of constraints over an input list of
words. We may therefore dist inguish between
structural constraints (the ones that deal with the
order, the occurrences, etc. of parse trees) and
feature constraints, that put restrictions on the value
of a given variable (the value of an attribute inside the
parse tree), The former kind is described in paragraph
34, while the latter, is described here.

3.3.1 I)elinition of I, 'eatm'e Cons t ra in t

A feature constraint, or simply a constraint, is a triple
of the form:

< Operator, At |r ibuteName, ValueExpression -,

Opcralor is the name of either a system defined
operator (' -, ' and - ') or the name of a user-definod
one (e.g. 'is a ') .

AttribulcNamc is a legal name for an attribute, the
type of which matches the type foreseen by the
operator for its left- hand side.

ValucExprcssion may be

an atomic value

- a single variable

- a disjunction of atomic values

- a user-defined function

In our formalism a constraint is stated in an infix
form (e.g. 'tense =, pres' or 'tense agreem tense' T or
'tense compute tense(M,T)').

When a constraint is applied 1o an object it may
evaluate either to true or to false: we can therefore say
that a constraint is a boolean function. The way in
which the result of the application of the constraint is
handled by the system leads to the dist inct ion
between strong and weak constraints.

3.].2 S t rong and weak conMrainls

A strong constraint is a constraint that, if it fails,
causes a strong failure, i.e. the object to which it
appl ied is rejected, When a strong constra in t
succeeds noth ing happens, apart f rom some
possible variable binding. Strong constraints are used
mainly to prevent useless overgenerat ion over
i rrelevant paths. (Usually, but not necessari ly,

constraints that involve the major syntactic categories
are strong). They are also used to propagate values
from lower nodes to upper ones.

A weak constraint is a constraint that behaves like
a strong one if it evaluates to true , but which
otherwise produces a soft failure. A soft failure
simply consists in recording in the object the
information that a weak constraint has failed, without
rejecting it. In order to mantain trace of the failed
constraints, they are annotated by the user with a
number which is used at the end of parsing to
generate a proper error message irrdicating which
constraint failed and where. Apart from annotation,
the syntax of weak constraints is the same of the
strong ones, and the same restriction applies.

A constraint bundle (CB) is a list of conjuncted
constraints (both weak and strong). Notationally, a
CB is delimited by braces, single constraints are
separated by commas; a slash ('/') splits the list in two
parts: the strong one and the weak one. If the weak
part is empty', the slash is omitted. Here are some
examples of legal CB's:

{ cat- np / (1) nb ~ N, (2) gd G}
{ cat v:aux vlype .V/(81} cat v}

{ cat = pp t

3.3.3 Con,,,lJ'ainls s. lul ion

During parsing, the parse trees which are built are
labelled with a list of pending constraints - i.e. of
constraints that have not yet proved to be true or
false- and a score .. i.e. an indication of how many
weak constraints associated to the tree have already
proved to be false, Intuitively, the lower is the score,
the better is the object. The constraint solver applies
to the list of pending constraints of each final tree,
t ry ing to min imize the number of fai led weak
constraints. The constraint solver selects, as final
result the tree with the smallest associated error It's
worth noting that this is a global strategy, not a local
one. All parse trees, independently of their score are
carried or] up to the end of parsing, and only then the
selection is made. There are two reasons for this
choice. The first one is theoretical: it is not possible to
assume that a locally well formed subtree will lead to
a better global tree than that produced by a locally
ill-formed one. The second reason is pragmatical:
since constraints are solved only when the variables
they involve get instantiated, partial trees tend to
contain few or no failed weak constraints but long lists
of constraints still to be evaluated. Applying the
constraint solver in the middle of parsing would be a
waste of time, and making the choice disregarding the
;)ending constraints is definitely wrong.

3.4 (; r amma t i c a l rules

The system operates or] the input data driven by
rules. Rules mix together structure and feature
constraints in order to produce a quasi-well-formed
(sub)tree (the 'quasi' is there because the subtree may
contain failed weak constraints: it would not be proper

At'firs I)E COL1NG-92, NANTI~.S. 23-28 Ao~,r 1992 l 0 0 5 PRec. ov COLING-92, N^N'I'I~S, Auo. 23-280 1992

to call it a well.formed one). Rules are handled by a
parser in order to produce all possible results.
Currently the system uses a bottom-up, left to right
algorithm. However the result is totally independent
of the parsing strategy,

Structure building rules (sb-rules) are augmented
rewrite rules used to describe the structure of quasi
well-formed subtrees.A sb-rule has the following form:

<RuleName> = <TopConstrainteundle> = >

< SubTreeExpre~sion 1 >.

"< SubT reeExp re~s ionN > .

where:

< RuleNamc > iS a legal unique identifier,

< TopConslraintBundle > is a legal CB,
< SubTrccExprcssion I.,N > are one of the following:

- aCB ,

- a SubTree description (of any depth)

- a regular expression over CBs like:
' * 'Exp : 0 or more occurrences of Exp

' + 'Exp : 1 or more occurrences of Exp
' ^ 'Exp : 0 or 1 occurrences of Exp

TExp : 0 or 1 occurrences of Exp

(if 0 signal weak error)

'?'Exp : 0 or 1 occurrences of Exp

(if 1 signal weak error)

Expt ,Exp2 : Expl followed by Exp2
Exp l ;Exp2 : Exp! or Exp2

The error associated to the newly built tree is the sum
of the errors contained in all its subtrees plus the
errors or ig inated by the appl icat ion of all the
constraints of the current rule, both in feature and in
structure. Here is an example of sb-rule:

cNP i n t e r r = { ca t = npp ,q t ype = QT ,wh = yes .wh nb - N.

wh_gender = G,nb = N,gender = Gquant = no,ntype = inter,}
=>

{cat = detp, ntype = interr/(2)gender = G(1)nb = N},
?(81) + {cat = detp},

{cat = np,wh = no.nb = N,gender = G,qtype = QT/

(67)ntype - = proper_not art;proper}

Lexical rules are the interface between the external
representations of words (i.e, strings) and the internal
ones (i.e. CBs). A lexical rules has the general form:

<RuleName> = <ConstraintBundle>.

where < RulcName > is a legal unique identifier and
< CenstraintBundle > is a legal CB

3.5 Merphuleg i~ l Rules

In the morphological rules, each root is associated
to a morphological class and to a lexieal rule. Before
the syntactical parsing starts every word in a sentence
has to be processed by the morphological module.
The resulting CB is the union of the CB associated to
the ending of the word and the CB defined in the

lexical rule associated to the root.

4 L i n g u i s t i c s
JDII does not make strict use of any linguistic

theory , even if the gu ide l ines of the
implementation are, in a large number of cases, taken
from theoretically well founded works (such as
Burzio (1986) for the verbal system, Gazdar (1981)
for comparative structures, Cinque (1988) for
relative clauses and so on). On this respect we fully
agree with Dietmar Roesner when he says that
"Theorist tend to restrict their approaches to the
very techniques available within their theories. In
practical NLP systems it may be fruitful to freely
combine elements from distinct "linguistic schools","

Structurally a binary recursive X- BAR schema is
followed. The reason why a binary grammar is used
is that we lack of a dedicated kind of rule for
performing structural checking. As a consequence
the computation of constraints depending either on
the occurrence or on the linear precedence of
optional constituents would reveal very difficult.
Indeed, since UDOs and UDFs are not allowed to
contain optional parameters, a non binary grammar
could handle strings like

X[agreem oper(V1 V2)}- > Y *B ^ A[sa = V1] *B ^ A[s_a = V2]
(where 'agreem' depends on the values of 'VI ' and

'V2' and on the presence of 'A') only by exploding
all the possible cases. This huge and inefficient
explosion is avoided in a system of rules where 'X'
is right recurslve and the 'agreem' value is
updated by an UDF when every new projection
is built:

X[agreem = default]. > Y

X[agreem = VAR0] - > X[agreem = VAR0] B

X[ag teem = funct(VAR1 ,VAR2)]- > X[agreem = VARt]
A[agreem = VAR2]

As for ambigui t ies, we are not interested in
producing all possible interpretations of a
sentence, Indeed the production of all semantically
plausible parses would be out of the scope of a
syntax checker, which is supposed to handle only
ambiguities relevant for error retrivial.

4,1 Tlne coverage
The coverage of JDII includes:

- main sentences, both affirmative or negative

- argumental clauses playing the role of either
subject or object

- hypothetical clauses

- comparative and consecutive clauses

- prepositional clauses
- relative clauses

- participial clauses

- gerundive clauses

As for the other constituents, we have a complete
treatment for each possible phrasal projection (AP's,

ACr~DECOI.JNG-92, NAm'ES, 2.3-28 AOtTn" 1992 1006 PRec. OF COLING.92, NANTES, AUG. 23-2.8, 1992

NP's, VP's ...)

Particular attention has been drawn to the following
phenomena:

- quantification (e.g. * tutte ragazze, * indite di
ragazze, * nessuno delle ragazze, ...)

- determination (e.g. * la Maria, * i cromi, * della
ragazza verra', ...)

- coordination (e.g. * la ragazza bells e sensuali, *ta
ragazza e la sua arnica e' venuta, ...)

- movements

wh-movement (e.g. * la ragazza che Andrea
area Maria, * la ragazza che dicono che e' state
amato, * la ragazza che dicono che dovrebbe
essere state amato, ...)

clitic climbing (e.g. * fi ha amato, * li deve
aver amato, * deve averh' amato, ...)

- dislocations

topicalization in coordinate structure (eg.
• e' venuta Maria ma Moans, * Maria e' venota ma
Moans vs. non e' venota Maria ma Moans, 17011
Maria e ' venuta ma Moana, ...)

comparative structure (e.g. * he date tanti
baci ieri a Maria che a Moans vs. he date piu' baci
iefl a Maria che a Moana, ...)

In particular the last four phenomena worked as a
test bench in order to check the power and the
efficency of the formalismw.r.t, hard tasks, such as
unbounded distance structure checking, long
distance agreement, discontinuous patterns and so
on.On the contrary the formalism proved to be
inadequate to tackle context sensitive phenomena
such as ellipsis in coordination and comparison, when
more than one constituent is bound by the deleted
element. In these cases a principle does apply
w h i c h i m p o s e s a c o n t e x t sens i t i ve
corrispondence (X Y Z W... X Y Z W....) between the
constituents in the second conjunct / comparative
clause and the ones in the main clause:

4)Da'lfitt ' baci Maria a Ugo chc schit([[i Era a /_ , ca
NP NP PP ... NP NP PP

4.2 The e r r o r s

In the following we give a description of the main
kinds of errors that our system is able to d iagnose

42.1 Spel l ing e r r o r s

If a word is found whose root is not present in the set
of roots or whose inflection is not in the proper
inflectional class, the message "unknow word' is
given. Unfortunately, if a word is mispelt in such a
way that the morphology will recognize it as a word
of another category (e.g. ha visto un corro, where
corro is mispelt for carro, but it is however present
in the morphology as the first singular person of
the verb correre) the system is likely to produce a
generic "Unknown grammatical structure" message
(indeed there are no grammatical rules able to deal
wi th comp le te l y w rong st ructures, such as
"Verb-det-Verb'). Just in a few cases we have

specific morphological rules which g u e s s a wrong
interpretation of the input word (e.g. e is interpreted
also as e' and a as ha).

4.2.2 Inflect ional violat ions .

* agreement on number, gender, person: e.g.
sub j < - > ve rb , d e t e r m i n e r < - > nbar ,
c l i t i c < - > p a s t par t ic ip le , past p a r t i c i p l e < - >
displaced quantifiers

* case: it is controlled just when personal
pronouns are involved

* tense and mood agreement: main v e r b < - >
subu rd ina te ve rb in hypo the t i ca l c lauses,
consecutio temporum, adverbials < - > main verbs.

4.2.3 S t r u c t u r a l violat ions

* missing elements: determiners in particular
constructions (*tutti documenti, *molti di letter[),
negation with particular adverbs (' t lo visto nessuno)

* exceeding elements: repetition of determiners,
wrong number of NP's with certain kinds of verbs
(*Veronica collabora Veronica), repetition of
certain adverbs (*collabora neppure solo)

* wrong word order: position of the AP w.r.t, the
noun (*il chirurgico intervento), position of the
quantifier w.r.t, the verb (*molto collabora),
position of the adverb w.r.t, to the verb (*Veronica
neppure lavora)

* wrong head-argument selection: selection of
the complementizer in objective clauses (*Is voglia
che amare), selection of the preposition in
head-shifting constructions...

r t ' t ' l ? I ' t ' l l~ '¢~,

eCarhonclLJ.,Haycs,P,"Rccevcry Strategies hu
pars ing Kxtragranufi 'al ical L a n g u a g e ' , in
A,I(' t . ,1983.

eDic tn :a r Rocsnc r "Why i lnp lcmcntors e l pracli-
cal N L P systems can not wail for lingub.lic
thc,.~rics", in Colir~g 88, 1988.

eBtlr : , io ,L, "Italian Syntax", 1986.
oCinquc , (L , "La frasc rclativa", in (; r a n d c G r a m -

mat ica I tal iana di Consul taz ionc . t0~4S.
e (; a z d a r , (; . , ' A Phrase S l ruc le rc Synlax hlr ('pre-

parat ive Clau.'.,c'-.', in Hocks t ra , T., van dc r
t luls l , [I . . Moor tga t ,M. ,cd: Lcxical (; ra ln-
nla r, I ~;'S 1.

e Jcnscn ,K, cl al., "Parse fitling and Prose Fixing:
(;cUing a Hold er. I l l -[ormcdncss", in A.I('L,
,hf lv-Dcccmhcr 1983.

eMcnzcI ,W, , "Er ror diagrmsis and sclcclhw: in a
t ra ining system l~.~r second language Icarlfillg", in
(. 'tding 88, 1988.

oShwiml , C.,"Scnsitivc pars ing :e r ror analysis and
explanat ion in an intcll igcnl language tu le r ing
:.,yslcm", in Coling 88, 1988.

eThurmalr,('J.,"Parsing for G r a m m a r and Slylc
('hocking", in Coling I;0, liF){I.

ACTES DE COLING-92, NAturES, 23-28 ^Ot~T 1992 1 O 0 7 PRec. OF COLING-92, NANTES, AUG. 23-28, 1992

