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Motivations

Les techniques stochastiques bénéficient aujourd’hui
d’un regain de popularité. Cependant, les modéles
stochastiques utilisés sont clairement inadéquats pour
Panalyse syntaxique des langues naturelles. Les for-
malismes probabilistes qui ont été proposés dans le do-
maine de la théorie de la communication (processus de
Markov et n-grammes) (Pratt, 1942; Shannon, 1948;
Shannon, 1951) ont éte rapidement réfutés en linguis-
tique. En effet, ces modéles sont incapables de décrire la
syntaxe de maniére hiérarchique (sous forme d’arbre).
De plus, les phénoménes portant sur de longues dis-
tances ne peuvent pas étre pris en compte par ces for-
malismes. Les grammaires stochastiques hors contexte
(Booth, 1969) permettent d’élaborer une description
hiérarchique de la syntaxe. Cependant, aucune ap-
proche utilisant les grammaires stochastiques hors con-
texte (Lari and Young, 1990; Jelinek, Lafferty, and Mer-
cer, 1990) est en pratique anussi efficace que les processus
de Markov ou les n-grammes. En effet, les régles hors
contexte ne sont pas directement sensibles au mot et
donc 4 une distribution de mots.

Grammaires Stochastiques Lexi-
calisées d’Arbres Adjoints

Les grammaires lexicalisées d’arbres adjoints consistent
d’un ensemble d’arbres, chacun associé 4 un mot. Elles
permettent de localiser la plupart des contraintes syn-
taxiques (par exemple, sujet-verbe, verbe-objet) tout
en décrivant la syntaxe sous forme d’arbres.

Dans ce papier, la notion de derivation des gram-
maires lexicalisées d’arbres adjoints (tree-adjoining
grammars) est modifiée au cas de derivations stochas-
tiques. Le nouveau formalisme, les grammaires stochas-
tiques lexicalisées d’arbres adjoints (stochastic lexical-
ized tree-adjoining grammars ou SLTAG) , a des pro-
priétés uniques car il maintient la notion de distribution
entre mot tout en manipulant la syntaxe de maniére
hiérarchique.

Algorithmes

Un algorithme pour calculer la probabilité d’une phrase
est présenter dans le papier.

Ensuite, un algorithme qui permet de réestimer les
paramétres d’une grammaire stochastique lexicalisée
d’arbres adjoints est décrit. Cette algorithme per-
met de réestimer les parametres de fagon a aug-
menter aprés chaque itération la probabilité du cor-
pus. Cette algorithme peut étre utilisé comme algo-
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rithme d’apprentissage. La grammaire initiale d’entrée
génére tous les mots de toutes les fagons possibles.
I.’algorithme permet ensuite d’inférer une grammaire
a partir du corpus.

Evaluation Expérimentale

Nous avons testé Palgorithme de réestimation sur un
corpus artificiel (Figure 1) et aussi sur les sequences
de parties du discours (Figure 2) du corpus ‘ATIS’
(Hemphill, Godfrey, and Doddington, 1990). Dans les
deux cas, l'algorithme pour les grammaires stochas-
tiques lexicalisées d’arbres adjoints converge plus rapi-
dement que celui pour les grammaires hors contexte
(Baker, 1979). Ces expériences confirment le fait que
les grammaires stochastiques lexicalisées d’arbres ad-
joints permettent de modeéliser des distributions entre
mots que les grammaires stochastiques hors contexte ne
peuvent pas exprimer.

~log (P (Corpus))
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Figure 1: Convergence avec un corpus de phrases du
language {a""|n > 0}
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Figure 2: Convergence sur le ATIS Corpus
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Abstract

The notion of stochastic lexicalized tree-adjoining
grammar (SLTAG) is formally defined. The parameters
of a SLTAG correspond to the probability of combining
two structures each one associated with a word. The
characteristics of SLTAG are unique and novel since it is
lexically sensitive (as N-gram models or Hidden Markov
Models) and yet hierarchical (as stochastic context-free
grammars).

Then, two basic algorithms for SLTAG are intro-
duced: an algorithm for computing the probability of a
sentence generated by a SLTAG and an inside-outside-
like iterative algorithm for estimating the parameters
of a SLTAG given a training corpus.

Finally, we should how SLTAG enables to define a
lexicalized version of stochastic context-free grammars
and we report preliminary experiments showing some of
the advantages of SLTAG over stochastic context-free
grammars.

1 Motivations

Although stochastic techniques applied to syntax mod-
eling have recently regained popularity, current lan-
guage models suffer from obvious inherent inadequacies.
Early proposals such as Markov Models, N-gram mod-
els (Pratt, 1942; Shannon, 1948; Shannon, 1951) and
Hidden Markov Models were very quickly shown to be
linguistically not appropriate for natural language (e.g.
Chomsky (1964, pages 13-18)) since they are unable to
capture long distance dependencies or to describe hier-
archically the syntax of natural languages. Stochastic
context-free grammar (Booth, 1969) is a hierarchical
model more appropriate for natural languages, however
none of such proposals (Lari and Young, 1990; Jelinek,
Lafferty, and Mercer, 1990) perform as well as the sim-
pler Markov Models because of the difficulty of captur-
ing lexical information. The parameters of a stochas-
tic context-free grammar do not correspond directly to
a distribution over words since distributional phenom-
ena over words that are embodied by the application of

*This work was partially supported by DARPA Grant N0O14-
80-31863, ARO Grant DAAL03-89-C-0031 and NSF Grant IRI90-
16592. We thank Aravind Joshi for suggesting the use of TAGs
for statistical analysis during a private discussion that followed a
presentation by Fred Jelinek during the June 1990 meeting of the
DARPA Speech and Natural Language Workshop. We are also
grateful to Peter Braun, Fred Jelinek, Mark Liberman, Mitch
Marcus, Robert Mercer, Fernando Pereira and Stuart Shieber for
providing valuable comments.
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more than one context-free rule cannot be captured un-
der the context-freeness assumption. This leads to the
difficulty of maintaining a standard hierarchical model
while capturing lexical dependencies.

This fact prompted researchers in natural language
processing to give up hierarchical language models in
the favor of non-hierarchical statistical models over
words (such as word N-grams models). Probably for
lack of a better language model, it has also been ar-
gued that the phenomena that such devices cannot cap-
ture occur relatively infrequently. Such argumentation
is linguistically not sound.

Lexicalized tree-adjoining grammars (LTAG)! com-
bine hierarchical structures while being lexically sensi-
tive and are therefore more appropriate for statistical
analysis of language. In fact, LTAGs are the simplest
hierarchical formalism which can serve as the basis for
lexicalizing context-free grammar (Schabes, 1990; Joshi
and Schabes, 1991).

LTAG is a tree-rewriting system that combines trees
of large domain with adjoining and substitution. The
trees found in a TAG take advantage of the available ex-
tended domain of locality by localizing syntactic depen-
dencies (such as filler-gap, subject-verb, verb-object)
and most semantic dependencies (such as predicate-
argument relationship). For example, the following
trees can be found in a LTAG lexicon:

S
NPl VP vp
A\
‘V NPl Pil’ hlﬂ’ P+ ArV
eats John pranuts hungrily

Since the elementary trees of a LTAG are minimal
syntactic and semantic units, distributional analysis of
the combination of these elementary trees based on a
training corpus will inform us about relevant statistical
aspects of the language such as the classes of words
appearing as arguments of a predicative element, the
distribution of the adverbs licensed by a specific verb,
or the adjectives licensed by a specific noun.

This kind of statistical analysis as independently sug-
gested in (Resnik, 1991) can be made with LTAGs be-
cause of their extended domain of locality but also be-
cause of their lexicalized property.

1We assume familiarity throughout the paper with TAGs and
its lexicalized variant, See, for instance, (Joshi, 1987), (Schabes,
Abeillé, and Joshi, 1988), (Schabes, 1990) or (Joshi and Schabes,
1991).
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In this paper, this intuition is made formally precise
by defining the notion of a stochastic lexicalized tree-
adjoining grammar (SLTAG). We present an algorithm
for computing the probability of a sentence generated
by a SLTAG, and finally we introduce an iterative algo-
rithm for estimating the parameters of a SLTAG given
a training corpus of text. This algorithm can either
be used for refining the parameters of a SLTAG or for
inferring a tree-adjoining grammar from a training cor-
pus. We also report preliminary experiments with this
algorithm,

Due to the lack of space, in this paper the algorithms
are described succinctly without proofs of correctness
and more attention is given to the concepts and tech-

niques used for SLTAG.

2 SLTAG

Informally speaking, SLTAGs are defined by assigning
a probability to the event that an elementary trec is
combined (by adjunction or substitution) on a specific
node of another elementary tree. These events of com-
bination are the stochastic processes considered.

Since SLTAG are defined on the basis of the deriva-
tion and since TAG allows for a notion of derivation
independent from the trees that are derived, a precise
mathematical definition of the SLTAG derivation must
be given. For this purpose, we use stochastic linear in-
dexed grammars (SLIG) to formally express SLTAGs
derivations.

Linear Indexed grammar (LIG) (Aho, 1968; Gazdar,
1985) is a rewriting system in which the non-terminal
symbols are augmented with a stack. In addition to
rewriting non-terminals, the rules of the grammar can
have the effect of pushing or popping symbols on top of
the stacks that are associated with each non-terminal
symbol. A specific rule is triggered by the non-terminal
on the left hand side of the rule and the top element of
its associated stack.

The productions of a LIG are restricted to copy the
stack corresponding to the non-terminal being rewrit-
ten to at most one stack associated with a non-terminal
symbol on the right hand side of the production.?

In the following, [--p) refers to a possibly unbounded
stack whose top element is p and whose remaining part
is schematically written as ‘. [$] represents a stack
whose only element is the bottom of the stack. While it
is possible to define SLIGs in general, we define them for
the particular case where the rules are binary branching
and where the left hand sides are always incomparable.

A stochastic linear indexed grammar, G, is denoted
by (Vw, Vr, V1, S, Prod), where Vy is a finite set of non-
terminal symbols; V7 is a finite set of terminal symbols;
Vi is a finite set of stack symbols; S € Vy is the start
symbol; Prod is a finite set of productions of the form:

Xo[$po] — a

Xo[+po] — Xi[-p1] X2[8p2]
Xo[-po) — Xi[8p1] Xs[-pa]
Xo[8p0) — Xa[S$pm1] X2[$p2)

where X; € Vv, a € Vr and po € Vy, p1,p2 € VI, P a
probability distribution which assigns a probability, 0 <
P(X[-z] — A) < 1, toarule, X[-z] — A € Prodsuch

2LIGs have been shown to be weakly equivalent to Tree-
Adjoining Grammars {Vijay-Shanker, 1987).
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that the sum of the probabilities of all the rules that can
be applied to any non-terminal annotated with a stack
is equal to one. More precisely if, VX € Vy,Vp € V!

Yo P(X(-0] = A) =1

A
P(X[-p] — A) should be interpreted as the probability
that X[--p] is rewritten as A.

A derivation starts from S associated with the empty
stack (S{8]) and each level of the derivation must be
validated by a production rule. The language of a SLIG
is defined as follows: I, = {w € V¥ | S[$]Sw}.

The probability of a derivation is defined as the prod-
uct of the probabilities of all individual rules involved
(counting repetition) in the derivation, the derivation
being validated by a correct configuration of the stack
at cach level. The probability of a sentence is then com-
puted as the sum of the probabilities of all derivations
of the sentence.

Following the construction described in (Vijay-
Shanker and Weir, 1991), given a LTAG, Gyag, we con-
struct an equivalent LIG, G,iiy. The constructed LIG
generates the same language as Gy and cach deriva-
tion of G,y corresponds to a unique LIG derivation
corresponds to a unique derivation in G,y (and con-
versely). In addition, a probability is assigned to each
production of the LIG. For simplicity of explanation
and without loss of generality we assume that each node
in an elementary tree in Giag is either a leaf node (i.e.
either a foot node or a non-empty terminal node) or
binary branching.® The construction of the equivalent
SLIG follows.

‘The non-terminal symbols of G,y are the two sym-
bols ‘top’ () and ‘bottom’ (b), the set of terminal sym-
bols is the same as the one of Gygg, the set of stack
symbols is the set of nodes (not node labels) found in
the elementary trees of (5, augmented with the bot-
tom of the stack ($), and the start symbol is ‘top’ (t).

For all root nodes 7, of an initial tree whose root is
labeled by S, the following starting rules are added:

18] 2 tfsn] o)
These rules state that a derivation must start from the
top of the root node of some initial tree. P is the prob-
ability that a derivation starts from the initial tree as-
sociated with a lexical item and rooted by n,.

Then, for all node 5 in an clementary tree, the fol-
lowing rules are generated.

o If 1,7, are the 2 children of a node 5 such that 7, is
on the spine (i.e. subsumes the foot node), include:
] "= Sl (2)
Since (2) encodes an immediate domination link de-
fined by the tree-adjoining grammar, its associated
probability is one.

Similarly, if 1,1, are the 2 children of a node 5 such
that », is on the spine (i.e. subsumes the foot node),
include: o

S} = tfomyJt[$n,) (3)
Since (3) encodes an immediate domination link de-
fined by the tree-adjoining grammar, its associated
probability is one.

3The algorithms explained in this paper can be generalized to
lexicalized tree-adjoining gramnars that need not be in Chomsky
Normal Form using techniques similar the one found in (Schabes,
1991).
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o If 75,15 are the 2 children of a node y such that none
of them is on the spine, include:
bSn] "= 1[8n,]1[8n,] ®)
Since (4) also encodes an immediate domination link
defined by the tree-adjoining grammar, its associated
probability is one.

If n is a node labeled by a non-terminal symbol and
if it does not have an obligatory adjoining constraint,
then we need to consider the case that adjunction
might not take place. In this case, include:

ifor] 2 b ®)
The probability of rule (5) corresponds to the proba-
bility that no adjunction takes place at node 7.

o If 5 is an node on which the auxiliary tree g can
be adjoined, the adjunction of g can be predicted,
therefore (assuming that 5, is the root node of 8)
include:

i 5 tfgn,] (6)
The probability of rule (6) corresponds to the proba-
bility of adjoining the auxiliary tree whose root node
is 1., say 3, on the node 5 belonging to some elemen-
tary tree, say a.*

If n, is the foot node of an auxiliary tree § that has
been adjoined, then the derivation of the node below
n; must resume. In this case, include:
=1
8[-ny] = B[] N
The above stochastic production is included with

probability one since the decision of adjunction has
already been made in rules of the form (6).

Tinally, if 9, is the root node of an initial trec that
can be substituted on a node marked for substitution
7, include:

Usn] 5 1fsny] (8)
Here, p is the probability that the initial tree rooted
by n;, is substituted at node n. It corresponds to
the probability of substituting the lexicalized initial
tree whose root node is 1), say 6, at the node 5 of a
lexicalized elementary tree, say a.®

The SLIG constructed as above is well defined if the
following equalities hold for all nodes »:

P([-n] — bf-nl) + Y P[] ~ tnny)) = 1 (9)

N
> P(tsn) — tsm]) =1 (10)
m
> P(US) — t[$ng]) = 1 (11)
Mo

4Since the grammar is lexicalized, both trees a and 3 are as-
sociated with lexical items, and the site node for adjunction »
corresponds to some syntactic modification. Such rule encapan-
lates S modifiers (e.g. sentential adverbs as in “apparently John
left”), VP modifiers (e.g. verb phrase adverbs as in “John left
abruptly)”, NP modifiers (e.g. relative clauses as in “The man
who left was happy”), N modifiers (e.g. adjectives as in “pretiy
woman”), or even sentential complements (e.g. John thinks that
Harry is sick).

% Among other cases, the probability of this rule corresponds to
the probability of filling some argument position by a lexicalized
tree. It will encapsulate the distribution for selectional restriction
since the position of substitution is taken into account.
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A grammar satisfying (12) is called consistent.®

Y. PSS w) =1 (12)
weDY
Beside the distributional phenomena that we mentioned
earlier, SLTAG also captures the effect of adjoining con-
straints (selective, obligatory or null adjoining) which
are required for tree-adjoining grammar.”

3 Algorithm for Computing the
Probability of a Sentence

We now define an bottom-up algorithm for SLTAG
which computes the probability of an input string. The
algorithm is an extension of the CKY-type parser for
tree-adjoining grammar (Vijay-Shanker, 1987). The ex-
tended algorithm parses all spans of the input string
and also computes their probability in a bottom-up
fashion.

Since the string on the frontier of an auxiliary is bro-
ken up into two substrings by the foot node, for the
purpose of computing the probability of the sentence,
we will consider the probability that a node derives two
substrings of the input string. This entity will be called
the tnside probability. Its exact definition is given be-
low.

We will refer to the subsequence of the input string
w = ay -+ an from position i to j, w}. It is defined as
follows: oy

jdef | asp1--ray i<y
wf = { € ! Jafi> g
Given a string w = a; ---ay and a SLTAG rewritten
as in (1-8) the inside probability, I (pos,n, i, 4, k,1), i8
defined for all nodes 5 contained in an elementary tree
a and for pos € {t,b}, and for all indices 0 < i < j <
k <1< N as follows:

(i) If the node n does not subsume the foot node
of a (if there is one), then j and k are un-

bound and:
19(pos, 0,4, —, =)' Ppos{Sn] > i)
(i) If the node n subsumes the foot node 1, of o,
then:

I*(pos,m,i,j, k, 1) P( pos(n]> wlb[$n,lw})

In (ii), only the top element of the stack matters since
as a consequence of the construction of the SLIG, we
have that if pos[$n]> w]b[$n,Jw} then for all string
7 € V} we also have pos[$yy]= w]b[3yn,Jw} ®

Initially, all inside probabilities are set to zero. Then,
the computation goes bottom-up starting from the pro-
ductions introducing lexical items: if 7 is a node such

that 8{8n] — a, then: .
1 ifl=it+1Aa=wt!

W s — —
reteymi, =, =) 0 otherwise.
Then, the inside probabilities of larger substrings are
computed bottom-up relying on the recurrence equa-

9We will not investigate the conditions under which (12) holds.
We conjecture that the techniques used for checking the consis-
tency of stochastic context-free grammars (Booth and Thompeon,
1973} can be adapted to SLTAG.

7For example, for a given node 1 setting to zero the probability
of all rules of the form {6) has the effect of blocking adjunction.

87This can be seen by observing that for any node on the path
from the root node to the foot node of an auxiliary tree, the stack
remains unchanged.

Proc. oF COLING-92, NANTES, AUG, 23-28, 1992



tions stated in Appendix A. This computation takes
in the worst case O(|G|? N5)-time and O(|G|N*)-space
for a sentence of length N.

Once the inside probabilities computed, we obtain
the probability of the senlence as follows:

P(w)™ P8} w) = 1Y@, 8,0,—,—, |w)  (14)

We now consider the problem of re-estimating a

SLTAG.

4 Inside-Ouside Algorithm for
Reestimating a SLTAG

Given a set of positive example sentences, W =
{w; - -wg}, we would like to compute the probabil-
ity of each rule of a given SL.TAG in order to maximize
the probability that the corpus were generated by this
SLTAG. An algorithm solving this problem can be used
in two different ways.

The first use is as a reestimation algorithmm. In this
approach, the input SLTAG derives structures that are
reasonable according to some criteria (such as a linguis-
tic theory and some a priori knowledge of the corpus)
and the intended use of the algorithm is to refine the
probability of each rule.

The second use is as a learning algorithm. At the first
iteration, a SLTAG which generates all possible struc-
tures over a given set of nodes and terminal symbols is
used. Initially the probability of each rule is randomly
assigned and then the algorithm will re-estimate these
probabilities.

Informally speaking, given a first estimate of the pa-
rameters of a SLTAG, the algorithm re-estimates these
parameters on the basis of the parses of each sentence in
a training corpus obtained by a CKY-type parser. The
algorithm is designed to derive a new estimate after
each iteration such that the probability of the corpus
is increased or equivalently such that the cross entropy
estimate (negative log probability) is decreased:

Z logy(P(w))
nwe) = &% __ (15)
2 Il
weW
In order to derive a new estimate, the algorithm
needs to compute for all sentences in W the in-
side probabilities and the outside probabilities. Given
a string w = a;---ay, the outside probability,
0¥ (pos,n,1,j, k,1), is defined for all nodes 7 contained
in an elementary tree & and for pos € {¢,b}, and for all
indices 0 < i < j <k <I<N as follows:

(1) If the node n does not subsume the foot node
of a (if there is one), then j and k are un-
bound and:

0*(pos, n,i, -, —, )’/
P(3y € V¥ st t[8]S w) posiSyn] wl')

(i) If the node n does subsume the foot node n,
of a then:

0% (pos, n,i .k, 'S
Py eV st
18} wh pos[Syn] wl¥ and b[Syn,}Dwk)

Once the inside probabilities computed, the outside
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probabilities can be computed top-down by consider-
ing smaller spans of the input string starting with
0"(t,$,0,—,—, N) = 1 (by definition). This is done
by computing the recurrence equations stated in Ap-
pendix B.

In the following, we assume that y subsumes the foot
node 7, within a same clementary tree, and also that n/
subsumes the foot node 75,/ (within a same elementary
tree). The other cases are handled similarly. Table 1
shows the reestimation formulae for the adjoining rules
(16) and the null adjoining rules (17).

(16) corresponds to the average number of time that
the rule t{--n} — t[-ny] i3 used, and (17) to the aver-
age number of times no adjunction occurred on . The
denominators of (16) and of (17) estimate the average
number of times that a derivation involves the expan-
sion of {[--7]. The mumnerator of (16) estimates the aver-
age number of times that a derivation involves the rule
t[--n] — t[-n). Therefore, for example, (16) estimates
the probability of using the rule t{--n] — t[--gy].

The algorithm reiterates until H(W, ) is unchanged
(within some epsilon) between two iterations. Each it-
eration of the algorithm requires at most O(|G|N¢)-
timne for each sentence of length N.

5 Grammar Inference with

SLTAG

The reestimation algorithmm explained in Section 4 can
be used both to reestimate the parameters for a SLTAG
derived by some other mean or to infer a grammar from
scratch. In the following, we investigate grammar In-
ference from scratch.

The initial grammar for the reestimation algorithm
consists of all SLIG rules for the trees in Lexical-
ized Normal Form (in short LNF) over a given set
L = {a;]l <1 < T} of terminal symbols, with suit-
ably assigned non zero probability:®

S5 s,

/N /N ‘
(ﬂf“)sl’ GO T (@) ¥

a » a

The above normal form is capable not only to de-
rive any lexicalized tree-adjoining language, but also
to impose any binary bracketing over the strings of the
language. The latter property is important as we would
like to be able to use bracketing information in the in-
put corpus as in (Pereira and Schabes, 1992).

The worst case complexity of the reestimation algo-
rithm given in Section 4 with respect to the length of
the input string (O(NS)) makes this approach in gen-
eral impractical for LNI' grammars.

However, if only trees of the form S and «f* (or
only of the form g% and a}'), the language generated
is a context-free language and can be handled more
efficiently by the reestimation algorithm.

9 Adjoining constraints can be used in this normal form, They
will be reflected in the SLIG equivalent grammar. Indices have
been added on S nodes in order to be able to uniquely refer to
each node in the grammar.
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3 x Q¥ (t]-n] — t[-ny1)
w(—:W P( ) (16)
> Fo P( 5 x [R“'(n)+ZQ‘”(t[ o) — tl-nmi))

weW

P(t[-n} — tf-nml) =

> 77 XU+ L QU] — )]
weW 17/

P(t[-n) — b)) =

Qw(t[n] - t['l'l’]) = Z P(t[n] - t["""’]) x I"‘(t,r;l,:',r,s,l) x Iw(b|77|7‘7jvk:5) x Om(tinvi:j’kil) (18)

ir.d.k,8\

R(n) =
Gk

D P(Ln] = B[y x I°(¢,n,4,5,k,0) x O%(b,n,4,5,k,1) (19)

Table 1: Reestimation of adjoining rules (16) and null adjoining rules (17)

It can be shown that if, only trees of the form ;" and
a® are considered, the reestimation algorithm requires
in the worst case O(N3)-time.1°

The system consisting of trees of the form 8¢ and o
can be seen as a stochastic lericalized context-free gram-
mars since it generates exactly context-free languages
while being lexically sensitive.

In the following, due to the lack of space, we report
only few experiments on grammar inference using these
restricted forms of SLTAG and the reestimation algo-
rithm given in Section 4. We compare the results of
the TAG inside-outside algorithm with the results of
the inside-outside algorithm for context-free grammars
(Baker, 1979).

These preliminary experiments suggest that SLTAG
achieves faster convergence (and also to a better solu-
tion) than stochastic context-free grammars.

5.1 Inferring the Language {a"b"|n > 0}

We consider first an artificial language. The train-
ing corpus consists of 100 sentences in the language
L = {a"b"|n > 0} randomly generated by a stochastic
context-free grammar.

The initial grammar consists of the trees 87, ﬂ,,
and o’ with random probability of adjoining and null
adjoining.

The inferred grammar models correctly the language
L. Its rules of the form (1), (5) or (6) with high prob-
ability follow (any excluded rule of the same form has
probability at least 1033 times lower than the rules
given below). The structural rules of the form (2), (3),
(4) or (7) are not shown since their probability always
remain 1.

10This can be secen by observing that, for example in
I(paa,n, {,3,k,1), it is necessary the case that k = 1, and also
by noting that & is superfluous.
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18] =% t[snl)

tlnd] 2 t[-nhng]
1$73] =2 1[sning]
t[8nt] 5 eSnnd]
e85 %2 1[Snlng)
t[sn3] 5 ¢$nind]
tlngl = b[-ng]
£[3n3) ‘~°° b[$n3)
i '12] b[ 03]

t[nh] S 8[n3]

In the above grammar, a node S; in a tree «® or g/
associated with the symbol « is referred as n§, and a
node Sy in a tree associated with b as n}.

We also conducted a similar experiment with
the inside-outside algorithm for rontext-free grammar
(Baker, 1979), starting with all possible Chomsky Nor-
mal Form rules over 4 non-terminals and the set of ter-
minal symbols {a,b} (72 rules). The inferred grammar
does not quite correctly model the language L. Fur-
thermore, the algorithm does not converge as fast as in
the case of SLTAG (See Figure 1).

H(W,G}

5 6
iteration

Figure 1: Convergence for the Language {a"6"|n > 0}

5.2 Experiments on the ATIS Corpus

We consider the part-of-speech sequences of the spoken-
language transcriptions in the Texas Instruments sub-
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set of the Air Travel Information Systern (ATIS) corpus
(Hemphill, Godfrey, and Doddington, 1990). This cor-
pus is of interest since it has been used for inferring
stochastic context-free grammars from partially brack-
eted corpora (Pereira and Schabes, 1992). We use the
data given by Percira and Schabes (1992) on raw text
and compare with an inferred SUTAG.

The initial grammar consists of all trees (96) of the
form B¢, o for all 48 terminal symbols for part-of-
speech. As shown in Figure 2, the grammar converges
very rapidly to a lower value of the log probability
than the stochastic context-free grammar reported by
Pereira and Schabes (1992).

E(¥,G)

10 15
iteratlon

20

Figure 2: Convergence for ATIS Corpus

6 Conclusion

A novel statistical langnage model and fundamental al-
gorithms for this mode! have been presented.

SLTAGs provide a stochastic model both hierarchi-
cal and sensitive to lexical information. They combine
the advaniages of purely lexical models such as N-gram
distributions or Hidden Markov Models and the one
of hierarchical modes as stochastic context-free gram-
mars without their inherent limitations. The parame-
ters of a SLTAG correspond to the probability of com-
bining two structures each one associated with a word
and therefore capture linguistically relevant distribu-
tions over words.

An algorithm for computing the probability of a sen-
tence generated by a SLTAG was presented as well as
an iterative algorithm for estimating the parameters of
a SLTAG given a training corpus of raw text. Simi-
larly to its context-free counterpart, the reestimation
algorithm can be extended to handle partially parsed
corpora (Pereira and Schabes, 1992).

Preliminary experiments with a context-free subset
of SLTAG confirms that SLTAG enables faster conver-
gence than stochastic context-free grammars (SCFG).
This is the case since SCFG are unable to represent
lexical influences on distribution except by a statisti-
cally and computationally impractical proliferation of
nonterminal symbols, whereas SLTAG allows for a lexi-
cally sensitive distributional analysis while maintaining
a hierarchical structure.

Furthermore, the techniques explained in this paper
apply to other grammatical formalisms such as combi-
natory categorial grammars and modified head gram-
mars since they have been proven to be equivalent to
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tree-adjoining grammars and linear indexed grammars
(Joshi, Vijay-Shanker, and Weir, 1991).

Due to the lack of space, only few experiments with
SLTAG were reported. A full version of the paper will
be available by the time of the meeting and more exper-
imental details will be reported during the presentation
of the paper.

in collaboration with Aravind Joshi, Fernando
Pereira and Stuart Shieber, we are currently investigat-
ing additional algorithms and applications for SLTAG,
methods for lexical clustering and automatic construc-
tion of a SLTAG from a large training corpus.

References

Aho, A. V. 1968. Indexed grammars —- An extension
to context free grammars. J. ACM, 15:647-671.

Baker, J.K. 1979. Trainable grammnars for speech
recognition. In Jared J. Wolf and Dennis H. Klatt,
editors, Speech communicalion papers preseniaed al
the 97" Meeting of the Acoustical Society of Amer-
ice, MI'T, Cambridge, MA, June.

Booth, Taylor R. and Richard A. Thompson. 1973.
Applying probability measures to abstract languages.
IEEE Transactions on Compulers, C-22(5):442-450,
May.

Booth, T. 1969. Probabilistic representation of formal
languages. In Tenth Annual IEEE Symposium on
Switching and Automata Theory, October.

Chomsky, N., 1964. Syntactic Structures, chapter 2-3,
pages 13~18. Mouton.

Gazdar, G. 1985. Applicability of indexed grammars
to natural languages. Technical Report CSLI-85-34,
Center for Study of Language and Information.

Hemphill, Charles T., John J. Godfrey, and George R.
Doddington. 1990. The ATIS spoken language sys-
tems pilot corpus. In DARPA Speech and Natural
Language Workshop, Hidden Valley, Pennsylvania,
June.

Jelinek, F., J. D. Laflerty, and R. L. Mercer. 1990. Ba-
sic methods of probabilistic context free grammars.
Technical Report RC 16374 (72684), IBM, Yorktown
Heights, New York 10598.

Joshi, Aravind K. and Yves Schabes. 1991. Tree-
adjoining grammars and lexicalized grammars. In
Maurice Nivat and Andreas Podelski, editors, Defin-
ability and Recognizability of Sels of Trees. Elsevier.
Forthcoming.

Joshi, Aravind K., K. Vijay-Shanker, and David Weir.
1991. The convergence of mildly context-sensitive
grammatical formalisms. In Peter Sells, Stuart
Shieber, and Tom Wasow, editors, Foundational Is-
sues in Natural Language Processing. MIT Press,
Cambridge MA.

Joshi, Aravind K. 1987. An Introduction to ‘Iree Ad-
joining Grammars. In A. Manaster-Ramer, editor,
Mathemaltics of Language. John Benjamins, Amster-
dam.

Lari, K. and S. J. Young. 1990. The estimation of
stochastic context-free grammars using the Inside-
Outside algorithm. Computer Speech and Language,
4:35-56.

Proc. ok COLING-92, NANTES, AUG. 23-28, 1992



Pereira, Fernando and Yves Schabes. 1992. Inside-
outside reestimation from partially bracketed cor-
pora. In 20** Mceting of the Association for Compu-
tational Linguistics (ACL’92), Newark, Delaware.

Pratt, Fletcher. 1942. Secret and urgent, the story of
codes and ciphers. Blue Ribbon Books.

Resnik, Philip. 1991. Lexicalized tree-adjoining gram-
mar for distributional analysis. In Penn Review of
Linguistics, Spring.

Schabes, Yves, Anne Abeillé, and Aravind K. Joshi.
1988. Parsing strategies with ‘lexicalized’ grammars:
Application to tree adjoining grammars. In Proceed-
ings of the 12** International Conference on Compu-
tational Linguistics (COLING’88), Budapest, Hun-
gary, August.

Schabes, Yves. 1990. Mathematical and Compulational
Aspects of Lexicalized Grammars. Ph.D. thesis, Uni-
versity of Pennsylvania, Philadelphia, PA, August.
Available as technical report (MS-CIS-90-48, LINC
LAB179) from the Department of Computer Science.

Schabes, Yves. 1991. An inside-outside algorithm
for estimating the parameters of a hidden stochastic
context-free grammar based on Earley’s algorithm.
Manuscript.

Shannon, C. E. 1948, A mathematical theory of
communication. The Bell System Technical Journal,
27(3):379-423.

Shannon, C. E. 1951. Prediction and entropy of printed
english. The Bell System Technical Journal, 30:50—
64.

Vijay-Shanker, K. and David J. Weir. 1991. Parsing
constrained grammar formalisms. In preparation.
Vijay-Shanker, K. 1987. A Study of Tree Adjoining
Grammars. Ph.D. thesis, Department of Computer
and Information Science, University of Pennsylvania.

A Computing the Inside Prob-
abilities
In the following, the inside and outside probabilities are
relative to the input string w. ¥ stands for the the set of
foot nodes, 8 for the set of nodes on which substitution can
occur, R for the set of root rodes of initial trees, and A for
the set of non-terminal nodes of auxiliary trees. The inside
probability can be computed bottom-up with the following
recurrence equations. For all node n found in an elementary
tree, it can be shown that:
1. I b[89] — a, I(b,m,4,~, —, 1) =dlif I =4+ 1and if
a=wt, 0 otherwise.
2. lin, € F, Ib, Y],,i skl =1i4=7andif
k =1,0 otherwise.

3. M0pn] = thomJSnal: 1(bm, 5 k,1) =
S It 04k m) % It 90 m, —, )

m=k

4. T080-n] — oS Jtlona), I(byw,iy 5, k1) =
J

3 Itm i =, = m) x (g, m, 5, k1)

mmitl

5. I b[8n] — #[Sn,}t[8n,), I (b, m,5,—, -, 1) =
-1

3 I i == m) X It ng,m,—, =, 1)

ma=i41
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6. For all node 5 on which adjunction can be performed:
I(t,n,5,4, k1) =
I(b,my4, 5, k1) x P(4[-n] — b[-n])
I(t,ny,4,7,8,1)
+ZEZ( s 1(b,n, 5.k, 5) )

% P([-g} — tl-qn])

rioa=k 1y
7. For all node y € S: I(t, .4, —,—, 1) =
Do It = 1) x P(t[50] — t[8m,])
i
8. 1(t,8,4,— — ) = Y T(t,mi,—, =, ) P(1[8] — ¢[3n])

Y
B Computing the Outside

Probabilities
The outside probabilities can be computed top-down recur-

sively over smaller spans of the input string once the in-
side probabilities have been computed. First, by definition

we have: O(1,8,0,—,~, N) = 1. The following recurrence
equations hold for all node 5 found in an elementary tree.
1. Ifn€ R, Ot,n,0,—,— N)= P([$] — t[$n)).

And for all (i,7) # (O, N), O(ns——i) =
O(t, 1,1, —, —, 1) % P(t[8n,] — t[$n])
2. If is an interior node which subsumes the foot node
of the elementary tree it belongs to, O(t, 9,1, 5, k1) =
N ( O(b, 0y, 1,5, %, )
x It =~ q)
q=141 % P{b[,] —’;[ t[$n,])
= O, no,p,J k1
+Z( X I(t,qy,p—,—,5) >
p=o \ X P(b[ 'lo] = U$m Jef-9])
3. If n is an interior node which does not subsume the
foot node of the elementary tree it belongs to, we have:

Oty n,i,—, =, 1) =
N O(b, ng, 1, “1 q)
x I(t,n,,

.,;;, ( x P (b[$flo] - 1[3'7]1[3’72 ) )

=1/ Ofb,y,,p, -, —,1
+Z(x( I’Etp,p,—,l i) )

x  P(b(Sno] — U[Sn]¢[8n])

L N [ O@, 'lo,l.J,k,q) )
+ x l(t 'lz; ,3, k)

2 Z Z( % P(b[--no] — U[$9]t[-n.))

=t k=j+1 q=k b, b
! O(b, 16, p, 5, K, 1
+ZZZ(X I 11,9,5,k, 1) )
p=0 j=p k=j x P(bl-no) — t[--nyJt[$n])
4. HqE.A then O(t,n,1,5, k1) =
Ld O(t, 1g,i,p,9,1)
ZE > ( % I(t,n0,5,p,9, k) )
Mo p=3a=p+l X P(t[-ne] — t[-non})
Ot 0,5, — — 1)
+Z(>< I(t,ne, 7, — =, k) )
o \ X P(tf87,] — t[$noﬂ])
5. If 1 is a node which subsumes the foot node of the ele-

mentary tree it belongs to, we have: O(b,n,1,5,k,1) =
O(' mi, 5k, I) x PE'[ ”] - b[ 77])
N [ OQmp.ikq)
+zzz( <
o =0 g=i X (t[ Ao} — t-mem])

6. And finally, if # is a node which does not subsume
the foot node of the elementary tree it belongs to:
O(b,,i,=,~, ) =

o(t, my3,~—,—, 1) x P(t[Sq] — b[$v;])
Nkl (tmp—~ g
+zzz( i

Ny p=0 g=! X P(t[8no] — t[$non])

p=0
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