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A B S T R A C T  
A new algorithm is presented for estimating the pa- 

rameters of a stochastic context-free grammar (SCFG) 
from ordinary unparsed text. Unlike the Inside/Outside 
I/O) algorithm which requires a grammar to be spee- 
fled in Chomsky normal form, the new algorithm can 

estimate an arbitrary SCFG without ally need for trans- 
formation. The algorithm has worst-case cubic com- 
plexity in the length of a sentence and the number of 
nonterminais in the grammar. Instead of the binary 
branching tree structure used by the i /O algorithm, the 
new algorithm makes use of a trellis structure for com- 
putation. The trellis is a generalization of that  used by 
the Baum-Welcb algorithm which is used for estimat- 
ing hidden stochastic regular grammars. Tile paper de- 
scribes tile relationship between the trellis and the more 
typical parse tree representation. 

I N T R O D U C T I O N  
This paper describes an iterative method for esti- 

mat ing the parameters of a hidden stochastic context- 
free grammar (SCFG). The "hidden" aspect arises from 
the fact that  ~ome information is not available when 
the grammar is trained. When a parsed corpus is used 
for training, production probabilities can be estimated 
by counting the number of times each production is 
used in the parsed corpus. In the case of a hidden 
SCFG, the characteristic grammar is defined but the 
parse trees associated with the training corpus are not 
available. To proceed in this circumstance, some ini- 
tim prohabilitie~ are assigned which are iteratively re- 
estimated from their current values, and the training 
corpus. They are adjusted to (locally) maximize the 
likelihood of generating the training corpus. The EM 
algorithm (Dempster, 1977) embodies the approach just  
mentioned; the new algorithm can be viewed as its ap- 
plication to arbitrary SCFG's. The use of unparsed 
training corpora is desirable because changes in the 
grammar rules could conceivably require manually re- 

parsing the training corpus several times during gram- 
mar development. Stochastic grammarsenable ambigu- 
ity resolution to performed on the rational basis of niost 
likely interpretation. They also acconnnodate the de- 
velopment of more robust grammars having high cover- 
age where the attendant ambiguity is generally higher. 

Previous approaches to the problem of estimating 
hidden SCFG's include parsing schemes ill which MI 
derivations of all sentences in the t ra ining corpus are 
enumerated (Fujisaki et al., 1989; Chitrao & Grishman, 
1990)). An efficient alternative is the Inside/Outside 
(I/O) algorithm (Baker, 1979) which like the new algo- 
rithm, is limited to cubic complexity in both the num- 
ber of nonterminais and length of a ~entence. The I /O 
algorithm requires that  tile grammar be in Chonmky 
normal form (CNF). Tile new algorithm hal the same 
complexity, but does not have this restriction, dispens- 
ing with the need to transform to and from GNF. 

T E R M I N O L O G Y  
The training corpus can be conwmiently segmented 

into sentences for puposes of training; each sentence 
compris inga  sequence of words. A typical one may 
consist o fY  + 1 words, indexed from O to Y: 

The lookup function W(y) returns the index k of the 
vocabulary entry vk matching tile word w~ at position 
y ill tile sentence. 

The algorithm uses a extension of the representa- 
tion and terminology used for "hidden Markov mod- 
eis '(hidden stochastic regular grammars) for which the 
Baum-Welch algorithm (Baum, 1972) is applicable (and 
which is also called the Forward/Backward (F/B)algo~ 
rithm). Grammar rules are represented as networks and 
illustrated graphically, maintaining a correspondence 
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Network NP  ou; 
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Det ADJP Noun 

0.2 0.4 

Figure 1: Networks for Lexical Ruh~ 

with the trellis s tructure on which the computat ion can 
be conveniently repre~nted.  The terminology is closely 
related to tha t  of Levinson, Rabiner & Sondhi (1983) 
and also Lari & Young (1990). 

A set o fA  f different nonterminals are represented by 
A; networks. A component  network for the nontermi- 
nal labeled n has a parameter  set (A, B, I, N,F, Top, n). 
To uniquely identify an element of the parameter  set 
requires tha t  it  be a function of its nonterminal label 
e.g. A(n), l(n) etc.). However this notat ion has been 
topped to make formulae less cumbersome. A network 

labeled NP is shown in Figure 1 which represents the 
following rules: 

N P  ~ N o u n  (0 .2)  

N P  ~ Dee N o u n  (0 .2)  

N P  ~ Dee A D J P  N o u n  (0 .2)  

N P  ==~ A D J P  N o u n  (0 .4)  

N o u n  ==~ " c a t "  (0 .002)  

N o u n  ==~ " d o g "  (0 .001)  

D e t  ==~ " t h e "  (0 .5)  

Dee ~ " a "  (0 .2)  

The rule N P  =:~ N o u n  (0 .2)  means tha t  if the NP 
rule is used, the probabili ty is 0.2 tha t  it produces a sin- 
gle N o u n .  In Figure 1, states are represented by circles 
with numbers inside to index them. NonierminMstates 
• re shown with double circles and represent references 
to other networks, such as ADJP. States marked with 
single circles ate called terminal states and represent 
part-of-speech categories. When a transit ion is made to 
a terminal state,  a word of the current t raining sentence 
is generated. The word must  have the same category 
as the s ta te  tha t  generated it. Rules of the form N o u n  
=:~ " c a t "  (0 .002)  and N o u n  ==~ " d o g "  (0 .001)  are 
collapsed into a state-dependent  probabili ty vector b(j), 

Network NP 

ADJP Noun 

0 . 4 ~  F 
0.4 Det 

Figure 2: Equivalent Network 
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Figure 3: Reprelentatlon for Terminal Productions 

which is an element of the output  matr ix  B. Elements 
of the vector such as b(j W(y))represent the probabil- 
ity of seeing word wy in terminal s tate  j .  A transition 
to a nonterminal  state does not in itself generate any 
words, however terminal states within the referenced 
network will do so. The parameter  N is a matr ix  which 
indicates the label (e.g. n, NP, ADJP) of the net- 
work tha t  a nonterminal state refers to. The proba- 
bility of making a transit ion from state i to state j is 
labeled a(i, j )  and collectively these probabilities form 
the transit ion matr ix  A. The initial mat r ix  I contains 
the product ion probabilities for rules tha t  are modelled 
by the network. They are indicated in Figure 1 as num- 
bers beneath the state, if they are non-zero, l(i) can be 
equivalently viewed as the probabil i ty tha t  some sub- 
sequence of n is started at  s tate  i. The parameter  F 
is the set of final states; any sequence accepted by the 
network must  terminate on a final state. In Figure 1 fi- 
nal s tates are designated with the annota t ion  " F ' .  The 
boolean value Top indicates whether the network is the 
top-level network. Only one network may be assigned 
as the top-level network, which models productions in- 
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volving the root symbol of  a g rammar .  

An equivalent network for the same set of rules is 
shown in Figure 2. The lexical rules can be writ ten 
compact ly  as networks, with fewer states. The transi- 
tions from the determiner s tate  each have probabil i ty 
0.5 (i.e a(1, 2) : a(1 ,3)  = 0.5). It should be noted tha t  
the a lgori thm can operate on either network. 

TRELLIS  D I A G R A M  
"lYellis dia~rsans conveniently relate computat ional  

quantit ies to the network structure and a t raining sen- 
tence. Each network u has a set of Y + 1 trellises for 
subsequences of a sentence Wo...wy, star t ing at  each 
different position and ending a t  subsequent ones. A 
single trellis spanning positions 0...2 is shown ill Figure 
4 for network NP. Nonterminal  states are associated 
with a row of s tar t  nodes indicating where daughter  
constituents may s tar t ,  and a row of end nodes tha t  
indicate where they end. A pair  of s t a r t / end  nodes 
thus refer to a daughter  nonterminal  constituent. In 
Figure 4, the ADJP  network is referenced via the s tar t  
state a t  position O. An adjective is then generated by 
a terminal  state in the trellis for the ADJP  network, 
followed by a transit ion and another adjective. The 
ADJP  network is left at  position 1, and a transition is 
made to the noun state  where the word %at"  is gen- 
erated. Terminal  states are associated with a single 
row of nodes in the trellis (they represent terminal pro- 
ductions tha t  span only a single position). The pa th  
taken through the trellis is shown with broken a line. 
A path  through different trellises has a corresponding 
unique tree representation, as exemplified in Figure 5. 
In cases where p a r a ~  are ambiguous,  several paths  exist 
corresponding to the alternative derivations. We shall 
next consider the computa t ion  of the probabilities of 
the paths .  Two basic quantities are involved, namely 
alpha and beta probabilities. Loosely speaking, the al- 
phas represent probabilities of subtrees associated with 
nonterminals,  while the betas refer to the rest of the tree 
s tructure external to the subtrees. Subsequently, prod- 
ucts of these quantit ies will be formed, which represent 
the probabilities of productions being used in generat- 
ing a sentence. These are summed over all sentences 
in the training corpus to obtain the expected number 
of times each product ion is used, based on the current 
product ion probabilities and the training corpus. These 
are used like frequency counts would be for a parsed 
corpus, to form ratios tha t  represent new estimates of 
the production probabilities. The procedure is iterated 
several times until the estimates do not change between 
iterations (i.e. the overall likelihood of producing the 
training corpus no longer increases). 

The algori thm makes use of one set of trellis dia- 
grams to compute alpha probabilities, and another for 
beta  probabilities. These are both split into termi- 
nal, nonterminal-start and nontermiual-end probabili- 
ties, corresponding to the three different types of nodes 
in the trellis d iagram.  The alpha set are labeled a t ,  
c~,~t, and ante respectively. The algori thm was origi- 
nally formulated using solely the trellis representation 
(Kupiec, 1991) however the definitions that  follow will 

Network NP 

= a .  

ADJP ' 
and ( ~  

Det ( ~  

Noun Q 

big black cat 
Figure 4: A Path through a Trelli= Diagram 

NP 

ADJP / 

AdJ AdJ Noun 
big black cat 

Figure 5: The EquivMent Tree 
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also be related to the consituent structures used in the 
equivalent parse trees. In the following equations, three 
sets will be mentioned: 

1. Term(n) The set of terminal  states in network n. 

2. Nonterm(n) This is the set of nonterminal states 
in network n. 

3. Final(n) The set F of final s tates in network n. 

at(z, y, j, n): The probabili ty tha t  network n gener- 
ates the words w,. . .w~ inclusive and is a t  the node for 
terminal  s tate  j at  position y. 

~,(~, v,  J, n )  = 

[ ~ a , ( x , y - 1 ,  i,n)a(i,j)] b(j, W(y)) 

+ [ E  an t , ( x ,Y -  l,q,n)a(q,j)] b(j, W(Y)) 
i. q 

O < y < Y  j, iETerm(n)  
O < x < y q E Nonterm(n) 

trt(z, x, j ,n)  = I(j)b(j, W(x)) 
O< z < Y j E Term(n) 

and whose next extension will involve trees dominated 
by N(p, n), the nonterminal  referred to by s tate  p. 

elate(z, y, p, n): The probabil i ty tha t  network n gen- 
erates the words w~:...wy inclusive, and is at  the end 
node of nonterminal  s tate  p at  position y. 

a . , . ( r ,  y,  p, n )  = 

E a,ts(z,  v,p, n)t~totat(v, y, N(p, n)) 
~<v<_~ 

0 <_ y < Y p E Nonterm(n) 
0 < x < y (5) 

~,,.,.,(~, y, n) = ~ , ( ~ , ~ , i , n )  + ~ . , . ( ~ , y , p , n )  
i p 

0 < y < Y i ~_ Term(n) &: i E Final(n) 
0 < v < y p E gontcrm(n) & p e Final(n) (6) 

crnte(x,y,p, n) represents the probabil i ty of a con- 
( l)  sti tuent for n tha t  spans x...y, formed by extending the 

various constituents ctnts(x,v,p,n) (ending at  v - 1) 
with corresponding completed constituents s tar t ing at 

(2) v, ending at  y and dominated by N(p, n). 

at(: : ,  y, j ,  n) represents a consti tuent for nontermi- 
hal n spanning positions x...y. It is formed by extend- 
ing an incomplete constituent for n, by addition of the 
terminal w v at  s tate  j .  The two terms indicate cases 
where the constituent previously ended on either a ter- 
minal or another  constituent completed a t  y - 1 (as 
in Figure 5, where the complete ADJP  constituent is 
followed by the noun "eat").  If j is a final state the 
extended consti tuent is complete. 

antJ (z ,  y, p, n): The probabili ty tha t  network n gen- 
erates the words wr...wv_l inclusive, and is at  the s tar t  
node of nonterminal  state p a t  pc~ition y. 

. . . .  (~,y,p,n) = ~ ~ , ( x , y -  l,i ,n)a(i,p) 
i 

+ E o e , t , ( x , y  - 1,q,n)a(q,p) 
q 

0 < y < Y p,q ~. Nonterm(n) 
0 < x < y i e Te rm(n)  (3) 

. . . .  (~, ~,p,  n) = 1(p) 
0 < x < Y p e Nonterm(n) (4) 

an t ,  (x, y, p, n) represents an incomplete constituent 
for nonterminal  n whose left subtrees span z . . . y -  1, 

The quant i ty  Oqot,a(v, y, n) refers to the probability 
that  network n generates the words w~...w~ inclusive 
and is in a final state of n at  position y. Equivalently 
it is the probabili ty tha t  nonterminal  n dominates all 
derivations tha t  span positions v...y. The Cttotat prob- 
abilities correspond to the "Inner" (bot tom-up)  proba- 
bilities of the I /O  algori thm. If a network correspond- 
ing to Chomsky normal  form is subst i tuted in equation 
(6), the reeursion for the inner probabilities of the I /O 
algori thm will be produced after further substi tutions 
using equations (1)-(6). 

In the previous equations (5) and (6) it can be seen 
tha t  the a,,~, probabilities for a network are defined 
recursively. They will never be self-referential if the 
g r ammar  is cycle-free, (i.e. there are no derivations 

A =:~ A for any nonterminal  production A). Although 
only cycle-free g rammars  are of interest here, it is worth 
mention tha t  if cycles do exist (with associated proba- 
bilities less than unity),  the recursions form a geometric 
series which has a finite sum. 

The a lpha probabilities are all computed first be- 
cause the beta  probabilities make use of them. The 
latter are defined recursively in terms of trees tha t  are 
external to a given constituent,  and as a result the re- 
cursions are less obvious than those for the a lpha prob- 
abilities. The basic recursion rests on the quant i ty  '6,,~ 
which involves the following functions .6above and fl, la,: 
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r E Nonterm(m)  

fl.ide(X,y,l,n) = 

Z; Z: Z ...,.(o, r, ., r, m) 
mE.IV " r:N(r,m)=n O<v<x 

(7) 

m 

a(l, i)Bt(z, y + 1, i, n)b(i, W ( y  + 1)) + 
i 

a(l,q) ~ cqotaa(y.1- 1, w, N(q, n)),Snte(x, w, q, n) 
q II<w<Y 

i e Term(n)  
q e Nonterm(n)  (8) 

Given a constituent n spanning x...y, fla6ove(~, Y, n) 
indicates how the constituents spanning v...y mid la- 
beled m tha t  immediately dominate  n relate to the con- 
st i tuents tha t  are in turn external to m via flute(v, y, r ,m).  
This  si tuation is shown in Figure 6, where for simplic- 
ity ~nte(v,y, r, m) has not been graphically indicated. 
Note tha t  m can dominate  x.. .y as well as left subtrees. 

fl.ide(X, y, l, n) defines another reeursion for a con- 
st i tuent labeled n tha t  spans x...y, and is in s tate  I at  
t ime y. The recursion relates the addition of right sub- 
trees (spanning y +  1...w) to the remaining external tree, 
via flnt~(x, w, q, n). This is depicted in Figure 7 (again 
the external trees repret~nted by time(x, w, q, n) are not 
shown). Also omit ted from the figure is the first term 
of Equat ion 8 which relates the addition of a single ter- 
minal  at  position y + 1 to an external tree defined by 
fit(x, y + 1,i, n). fir and the various other probabilities 
for a beta  trellis are defined next: 

fit (x, y, j ,  n): The probabil i ty of generating the pre- 
fix wo...w~-i and suffix w~+l...wY given that  network n 
generated wz...wy and is in terminal state j at  position 
y. The indicator function Ind 0 is used in subsequent 
equations. Its value is unity when its argument  is true 
and zero otherwise. 

flt(~c,y,j,n) = ~slde(x,y , j ,n)  

q- l nd ( j  E Finul(n))fla,ov.(x, y, n) 

O <  y < Y  j E T e r m ( n )  
O < x < y  (9) 

13,(~:,Y,j,n) = flO, ov , (x ,Y,n)  

O _ . v . . .  x y 

Figure 6: Part of ~obo¢~(x,y, n) 

A 
/ :  

g 

/ 
Y 

Y 
Y 

Y 2 I ,, 

/ 

x y y + l  .... w ... Y 

Figure Y: Part of//,,ne(x.y,l,n ) 

0 < x < Y j E Term(n)  
j c r i .a t (n)  ,~ ~ "top(n) 0o) 

3t (O,Y , j ,n )  : 1.0 
j G Term(n)  
j c F i . . t ( . )  ~ ~'op(n) (11) 

Tile first term in Equation 9 describes tile relationship 
of the tree external to x...y + 1 to tile tree external to 
x...y, with r~pec t  to state j generating the terminal 
wv4. l at  time y + 1. If the constituent n spamfing x...y 
is complete, the second term describes the probability 
of the external tree via coastituents that  immediately 
dominate  n. 
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flnte(x, y,p, n): The probability of generating the 
prefix wo...w,,_~ and suffix w~+x...wy given that  net- 
work n generated wr...w~ a n d t h e  end node of state p 
is reached at position y. 

flnt.(x, y, p, n) = fl.ia.(z, y, p, n) 

+ lnd(p • Finnl(n))#,**~,(~, U, n) 

0 < y < Y i • Term(n) ,  p • Nonterm(n)  
0 < x < y (12) 

f ln t . (x ,Y ,p ,n)  = ~at .~ . (z ,Y ,n)  
0 < • < Y p ~ Nonterm(n)  

p ~ Final(n)  & ~ Top(n) ( l a )  

fl.,.(0, Y,v ,n)  = Lo 
p ~. Nonterm(n)  
p • Final(n)  & Top(n) (14) 

/3,t~(x, y, p, n) has the same form as the previous for- 
mula for fit, but  is used with nonterminal states. Via 
fla~,ov~ mad/3slae i t  relates the tree external to the con- 
stituent n (spanning x...y) to the trees external to v...y 
and z...w. During the recursion, the trees shown in 
Figures 6 and 7 are substituted into each other (at the 
positions shown with shaded areas). Thus the exter- 
nal trees are successively extended to the left and right, 
until the root of the ou t e rm~t  tree is reached. It  can 
be seen that  the values for j3nt~(x,y,p, n) are defined in 
terms of those in other networks which reference n via 
/3~bo~e. As a result this computation has a top-down or- 
der. In contrast, the cunte(z,y,p , n) probabilities involve 
other networks that  are referred to by network n and 
so assigned in a bottom-up order. If the network topol- 
ogy for Chomsky normal form is substituted in equa- 
tion (12), the reeur~ion for the "Outer" probabilities 
of the I /O  algorithm can be derived after further sub- 
stitutions. The ~ntt probabilities for final states then 
correspond to the outer probabilities. 

13,to(X,y,p, n): The probability of generating the 
prefix wo...w~-i and suffix w~...wy given that  network 
n generated w~...ww_ x and is at the start  node of state 
p at position y. 

/3.,.(~,~,p,n)= 
ot tot , t (y ,v ,N(p,n))~n, t (z ,v ,p ,n)  

~<v<_Y 

O < x < Y p • Nonterm(n)  
x _< y 5 Y (15) 

R E - E S T I M A T I O N  F O R M U L A E  
Once the alpha and beta probabilities are available, 

it is a straightforward matter  to obtain new parame- 
ter estimates (A, B, I).  The total  probability P of a 

sentence in found from the top-level network nTop. 

P = atot.s(O,Y, nT~)  

Top(nTop) (16) 

There are four different kinds of transition: 

1. Terminalnode i to terminal node j .  

2. Terminal node i to nonlerminal start node p. 

3. Non~erminal end node p to nonierminal start q. 

4. Nonterminal end node p to terminal node i. 

The expected total  number of times a transition is made 
from state i to state j conditioned on the observed sen- 
tence is E ( ¢ i j ) .  The following formulae give E(¢)  for 
each of the above eases: 

1 E(¢,j) = ~ , ( ~ , ~ , ~ , n ) n ( ~ , j )  × 

b ( j , W ( y +  1))f / t (x,y+ 1 , j ,n )  (17) 

1 E(¢,,~) = ~ ~ ]  ~ ~,(~, y, i, n)a(i,p) × 

&is(x ,  y +  1,p, n) (18) 

1 
Z ~ c6. . (x,  y, p, n)a(p, q) × E(¢p,d  = 

x It 
/3nt.(x, y + 1,q,n) (19) 

1 y ~ a . , . ( z , y , p , n ) a ( p , i )  × E(¢, , , )  = 

b ( i , W ( y +  l ) ) f l t ( x , y+  l , i , n )  (20) 

0 = x Top(n) 
0 <_ x < Y ~ Top(n) 
x < y < Y  

A new estimate 5(i, j )  for a typical transition is then: 

E(¢~,A (21) 
h( i , j )  - ~ j  E ( ¢ i j )  

Only B matrix elements for terminal states are used, 
and are re-estimated as follows. The expected total 
number of times the k'th vocabulary entry vk is gener- 
ated in state i conditioned on the observed sentence is 
E(yl,k). A new estimate for b(i, k) can then be found: 

1 E(~:,k) = ~ ~ ~,(~,y,i, nl/~,(~,y,i,n) 
¢ y:W(y)=k 

o = • i • T e r m ( n )  & Top(n) 
O < x < Y i • Term(n)  & ~ Top(n) 
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x<_u<_Y 

~(~, k) - 
~k E(~i,D 

The initial s tate matr ix  I is re-estimated as follows: 
1 

i(i) = ~ a t ( ~ , ~ , i , n ) ~ t ( z , z , i , n )  

0 = z i 6 Term(n) & Top(n) 
O < x < Y i e Term(n) & ~Top(n) (24) 

1 ~ . . , . ( ~ ,  ~,p, n)Z.,.(~, ~,p, n) 
i (p )  = - f  

0 = x p e Nonterm(n) & Top(n) 
0 < • < r p e lVonterm(n)  ~ ~ Top(n)  (25) 

DISCUSSION 
The preceding equations have been implemented as 

a computer program and this section de~cribe~ some 
practical issues with regard to a robust implementa- 
tion. The first concerns the size of the B matrix. For 
pedagogical reasons individual words were shown as el- 
ements of this matrix. A vocabulary exeeeding 220,000 
words is actually used by the program so it is not practi- 
cal to try to reliably estimate the B matrix probabilities 
for each word individually. Instead, only common words 
are represented individually; the rest of the words in the 
dictionary are partitioned into word equivalence classes 
(Kupiec, 1989) such that  all words that  can function as 
a particular set of part-of-speech categori~ are given 
the same label. Thus "type", "store" and "dog" would 
all be labelled as singular-noun-or-nninflected-verb. For 
the category set that  is used, only 250 different equiva- 
lence elasees are necessary to cover the dictionary. 

It  is important  that  the initial guesses for param- 
eter values are well-informed. All productions for any 

~i iven nonterminal were intially assumed to be equally 
kely, but the B matrix values were conveniently copied 

from a trained hidden Markov model (HMM) used for 
text-tagging. The HMM was also found very useful 
for verifying correct program operation. The algorithm 
has worst-case cubic complexity in both the length of a 
sentence and the number of nonterminal states in the 
grammar. An index can be used to efficiently update 
terminal states. For any word (or equivalence class) 
the index determines which terminal states require up- 
dating. Also when all probabilities in a column of any 
trellis become zero, no further computation is required 
for any other columns in the trellis. Grammars are 
currently being developed, and initial experiments have 
typically used eight training iterations, on training cor- 
pora comprising 1O,000 sentences or more (having an 
average of about 22 words per sentence). 

To eomphment  the training algorithm, a parser has 
also been constructed which i s  a corresponding ana- 
logue of the Cocke-Younger-Kasami parser. The parser 

(22) is quite similar to the training algorithm, except that 
maximum probability paths are propagated instead of 
sums of probabilities. Trained grammars are used by 

(23) the parser to predict the most likely syntactic structure 
of new sentences. The applications for which the parser 
was developed make use of incomplete parses if a sen- 
tence is not covered by the grammar,  thus top-down 
filtering is not used. 
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