
A T R E A T M E N T OF N E G A T I V E D E S C R I P T I O N S OF
T Y P E D F E A T U R E S T R U C T U R E S

K I Y O S H I K O G U R E
N T T B a s i c P~esearch L a b o r a t o r i e s

9 -11 , M i d o r i - c h o 3 - c h o m e , M u s a s h i n o - s h i , T o k y o , 180 J a p a n
k o g u r e @ a t o m . n t t . j p

A b s t r a c t

A formal t reatment of typed feature structures
(TFSs) is developed to augment TFSs, so tha t neg-
ative descriptions of them can be treated. Negative
descriptions of TFSs can make linguistic descriptions
compact and thus easy to understand. Negative de-
scriptions can be classified into three primitive nega-
tive descriptions: (1) negations of type symbols, (2)
negations of feature existences, and (3) negations of
feature-address value agreements. The formalization
proposed in this paper is based on A'it-Kaci's com-
plex terms. The first description is treated by extend-
ing type symbol lattices to include complement type
symbols. The second and third are treated by aug-
meriting term structures with structures representing
these negations. Algorithrrts for augmented-TFS uni-
fication have been developed using graph unification,
and programs using these algorithms have been writ-
ten in Conmaon Lisp.

1 I n t r o d u c t i o n

In unification-based or information:based linguistic
frameworks, the most impor tant objects are struc-
tures called 'feature s t ruc tures ' (FSs), which are used
to describe linguistic objects and phenomena. A fea-
ture s t ructure is either atomic or complex: an atomic
FS is denoted by an atomic symbol; a complex FS
consists of a set of feature-value pairs each of which
describes an aspect of an object. Partial information
on aJ~ object is merged by applying the unification
operation to FSs.

ILeseareh on unification-based linguistic theories
has been accompanied by research on FSs themselves.
Several extensions on FSs or on feature descriptions
and formal t reatments of the extensions have been
proposed.

Disjunctive and negative descriptions on FSs help
make the linguistic descriptions simple, compact, and
thus easy to understand. For disjunctive feature de-
acrq)tions, Kay[14] introduces them into FUG (lqlnc-
tmnal Unification Grammar) and gives the procedu-
ral semantics. Kar t tunen[l l] also proposes proce-
dural t reatments of disjunctions in conjunction with
relatively simple negations. ILounds and Ka.sper[19,
13] propose a logic-based formalism--feature logic-
which uses au tomata to model FSs and can treat dis-
Junctive feature descriptions, and they obtain impor-
tant results.

For negative descriptions of PSs, one of the most.
fundamental properties of FSs, the partiality of in-
formation they carry, makes its insufficient to adopt
relatively simple treatments. Classical interpretation
of negation, for example, does not, allow evaluation

of negations to be freely interleaved with unification.
Moshier and Rounds[17] propose a formal framework
which treats negative feature descriptions on the b`a~is
of intuitionistic logic. Ilowever, their |bHnalism has
trouble t reat ing double negations. Dawar[5] l)rOl)OSeS
a formal t reatment b ~ e d on three-valued logic.

In order to treat feature domains of complex FSs
and to treat taxonomic hierarchies of symbolic tim
ture values, type (or sort) hierarchies have been in-
troduced, allowing definition of typed (or sorted)
feature-structures (TFSs). A TFS consists of a type
symbol from a lattice and a set of rearm:e-value pairs.
A TFS can be seen as a generalized concept of both
atomic and cornplex FSs. Pollard and Sag/18] iatt'o-
duce sorts into IIPSG (Ilead-drivcn Phr~Lse Strllcttn'e
Grammar) and use sorted FSs to describe linguistic
objects.

Ait-Kaci[1] proposes an Mgebraie fratnewot'k using
the C-types and ~-types, one of promising lbt'maliza-
tions of TFSs, based on lattice theory. This lbrmal-
ization was originally ainmd at formalizing and in-
tegrating various kinds of knowledge representat.ioiT
frameworks m AI. In this approach, types are defined
,as equivalence clmsses of complex term structures. A
subsumption relation is defined on these term struc-.
tures. The join and meet operations on thenT cor-
respond to tile generalization and uniilcation Ol)era-
tions on TFSs, respectively. This approach essentially
adopLs ' type-as-set ' seulantics. Subtype relationships
on type correspond to subsnmption relationships on
denotations of types. Based on this framework, an
extension to Prolog, LOGIN[2], has becn developed.

Smolka[20] proposes a feature logic with subsorts.
In this approach, negative descriptkms can be decom-
poscd into three kinds of prinfitivc negations, namely,
negations of sorts or complement sorts which denote
tile complements of sets that positive counterlmrl.s lie-
note, negations of feature existences, and negations
of feature-address agreement or feature-address dis
agreement. Slnolka extends t~aturc descriptions but
a feature-structure interpretation of an extended de
scription does not include negat.iw~ information and
corresponds to a simple TI"S.

Some TIeS based m~tural language processing sys-
tems have been developed[7, 24, 12, 15, 8, 22]. Car-
imnter and Pollard[4] propose an interlhce to buikl
type lattices.

Formalizations of extended FSs and of extettd('d
feature-descriptions, described above, arc classilicd
into two classes: (1) extensions of FSs themselves,
and (2) extensions not of FSs themselves hut of
Dature-descriptions. Previous a t tempts to introduce
type hierarchies fall into the former clzLss while pre
vious t reatments of disjunctive and neg~diw~ &'scrip-
tions mainly fall into the latter.

ACRES DE COIJNG,92, NAMES, 23-28 AOt33" 1992 3 8 0 Pl~oc. OF COL1NG-92, NANTES, AUG. 23-28, 1992

This paper proposes an extension to Ait-Kaci's ~/,-
type that incorporates three kinds of the primitive
negative descriptions described below into the q:-type.
Ai't-Kaei's t - t y p e formalization uses term structures.
In this paper, both these type s tructures and the tyl)e
symbol lattice on which term strnctures are delined
are e×tcuded to treat negative descril)tions. Nega
tions of type symbols are treated by extending type
symbol lattices, aud negations of feature cxistmmes
attd feature-address disagreements are treated by ex-
tending term structures. This extension can be seen
as intuitionistie. The extension is classified into class
(1) abow'..

Based on this paper ' s formalization, unilieation al-
gorithms have been developed usiug graph unification
techniques[23, 16]. Programs based on these alger
rithms have been implemented in Common Lisp.

2 Requirements of Negative
Descriptions of TFSs

In describing linguistic information using (tyl)ed) fea-
ture structures, negative descriptions make the de-.
scription compact , intuitive, and hence easy to under-
stand. For example, we want to deserihe the gram-
rnaI, ical agreement for an English verb, say "eat", nat-
urally a.s follows.

. , I. r , ,e , : '"h] sg (1)
This description specifies compactly and directly that
it is not the case tha t the person at t r ibute is third
and that the number a t t r ibute is singular. If we
could not use such complex negative descriptions, we
would write it using disjunctive descriptions with sim-
ple complement types as follows.

sy , (ag , ' eeme,d ag,{l ,, ~ 3 r d]]'[
syii(agreeme;',l all, tinumbe'r msg] I J" (2)

or

{ sy , (.g ,~ ,ae , , t ,,g~[ve~ 1st]] 1
sy,ftag,'eemenl ag l Ip 2 n d]] } (3)
sy , (a.qreeme,d a g , f , ,umber p l]] J

In this case, (1) is e*Lsier to understand than (2) or
(3).

In the above ease., we can describe the informa-
tion because the complex negative descriptions C~tll
be transformed into the disjmlction of simple negative
descriptions {with ml almost same inteuded mean-
ing) and because both person and number features
take their values from { l s t , 2nrl , 3 rd} and { s t , p l} .
However, it is not always the case tha t such transfor-
mations are possible and that feature takes its value
from a finite set.

Let us consider more. complicated cases using dif-
t 1 ference lists expressed using featm'e structures. The

empty list of categories is represented as follows.

x~ H)
In the above example, the tag symbol, X1 shows that
features in and out must take the same value.

tin HPSG and JPSG (Japanese Ptlrase Structure
Grammar), a difference list is very convenient ['or express-
ing subcat and slash feature values.

llow can oniy nomemptiness be expressed? This
is impossible using complement type symbols or dis
junctions becmlsc we can consider the set of MI finite
length lists whose elements can bc taken froltl inlinitc
sets. l)ireet or indirect extension of feature struetures
is required.

So far, we have discussed the requirement of nega-
tive descriptions of type symbols and of l;eature-value
agreeumnts from the viewpoint of capability of de-
scribing linguistic inR)rmation. There are other ad
vantages of allowing negative descriptions. Consider,
for exannlde , debttgging processes of gramJt,atical de-
scriptlous by parsing sample sentences. We may ob
t a i u u n e x p e c t e d r e s u l t s Sllch ll.~ il ~l'FS with an t l n e x
peeled type symbol, a TFS with an unexpected lea
tare value agreement and so on. [1/ such sittlations,
negatiw~ descriptions can be usefld tools R)r delecting
their re~mons.

To t/l;tke linguistic descriptions compact and thus
ea.uy to understand, to treat natura l language efll-
clently, and to detect error reasons rapidly, it is neces-
sary to develo 1) formalizations and nu'.thods of treat-
ing negative descriptions.

a Formal Treatment of Negative
Descriptions of TFSs

As stated earlier, a typed t~:at, ure s tructure (TI"S)
cous i s t s Of ~t tYl)e s y u l b o l a l ld a se t of feal, t l re-vs.ble
pairs. Thus, descriptions of TFSs are chLssitied into
descriptions of TFSs having:
(1) a certain type symbol (or having a subtype syn,-

hol of a certain type symbol),
(2) a feature, and
(3) two feature-address vahtes that agree.

A TFS can be described by using conjunct, ions and
disjunctions of such kinds of descriptions. A eonjmle-
tiw* and disjunctive TFS can be formalized as Nit-
Kaei's t - t y p e and ~-type, respectively. Tha t is, a
t - t ype , which has a complex term structure called a
g, term a.s its syntax, represents a conjunction of such
kinds of descriptkms or at col0unctiw~ typed feaLltrl!
structure, and an e-type is a maximal set of ¢ types
representing the disjunction of them.

Negative counterparts of these descriptions are
ebLssified into deseriptions of TFSs:
(1') not having a certain tyl)c symbol (or having a

type symbol which is not subsunmd by a certain
type symhol),

(2') not having a certain feature, and
(3') having two thature-addrcss values that do not

agree.
By i n e o r p o r a t i u g s t r l l e t t l r e s represe l l l , i l lg st lch lll!g-

ative descriptions into a O term, a ' F F S with the net
ative descriptions can be formalized. Such a lerm is
called an allglnented t - t e r m and a type with an allg-
mented ~/, term ~m its syntax is called a n allgllu!nted
O-type. From augmented g:-t.erms, an augmented
t e r u l eilll be COllStl ' l leted ill t h e S~Lllle Illallll#!l" t lHlt fill
(- t e r l u is e o n s t r l l e t e d f ro lu ¢-t , er rns .

Next, augmented C-terms and C-types are defined.
T e r l n s t r u c t u r e s a r e f i rs t a l l g l u e u t e d with s t r t l c t l l r e s
representing inhibited features and disagreement of
feature address values. Then, type symbol htttiees
are extended to inch,de complement type symbols as
suggested in [1].

AcrEs DE COLING-92, NAN'rgs. 23-28 AO£~r 1992 3 8 1 1)l~oc. OF COLING-92, NANTES, AUG. 23-28, 1992

3.1 T y p e d F e a t u r e S t r u c t u r e s as
A u g m e n t e d C-Types

In order to define complex term structures, a signa-
ture is used to specify their vocabulary. It serves as
the interface between their syntax and semantics. A
signature is formally defined as follows.
Def ini t ion 1 A signature is a quadruple (7-,<_T
,2- , V) consisting of:

1. a set 7- of type symbols containing T and _L,
2. a partial order _<7- on 7" such that

(a) ± is the least and T is the greatest element,
and

(b) every pair of type symbols a, b E 7- have a
least upper bound or join, which is denoted
by a VT" b and a greatest lower bound or
meet, which is denoted by a AT b,

3. a set .T" of feature symbols, and
4. a set I] of tag symbols

where 7-, 2- and l? are pairwise disjoint.
A simple 'type-as-set' semantics is adopted for

these objects. That is, a type symbol in 7- denotes
a set of objects in an interpretation. Here, 7- and
.1_ denote the sets called the universe, written as U,
and the empty set 0, respectively. Another element
a denotes a nonempty subset of U, written as [a].
The partial order <~- denotes the subsumption rela-
tion between these sets; for any type symbols a, b,
and c,

1. a <~ b if and only if I s | c lb],
2. a Y:r b = c if and only if [a] O [b] = [el, and
3. a AT- b = c if and only if [a]N [b] = [c].
A feature symbol denotes a function from a subset

of U to U. A feature path is a finite string of feature
symbols and denotes the function obtained by tile
composition of the functions that tile feature symbols
denote.

A term is defined from a signature. First, a term
domain is defined as a skeleton built from feature
symbols.
Def in i t ion 2 A term domain A on 2- is a set of finite
strings of feature symbols in 2" (inclnding the empty
string ~) such that

1. Aisprefix-elosed: Yp, q(52-*,ifp.q(s A, then
p (5 A; and

2. A is finitely branching: if p (5 A, then {f (5
2"1 p . f (5 A} is finite

where ' . ' is the string concatenation operator.
An element of a term domain is called a feature

address or a feature path. By definition, the empty
string e must belong to all term domains and is called
the root address. A term domain is represented by
a rooted directed graph within which each arc has a
feature symbol as its label.

A suhdomain of a term domain, corresponding to
a subgraph, is defined ms follows.
Def in i t ion 3 Given a term domain A and a feature
address p t5 A, the subdomain of A at p is defined to
be the term domain Alp := {p' I P ' P* (5 A}. The set
of all subdomains of A is denoted by S u b d o m (A) .

Next, flesh is put on the term structure's skele-
ton as defined as a term domain by assigning several
kinds of objects to each feature address. Ait-Kaci's
term structure, the basis of the C-type, is defined by
assigning a type symbol and a tag symbol to each
feature address as follows.

Def ini t ion 4 A term is a triple (A, r, v) where A is
a term domain on .T, r is a type symbol function fi'om
2-* to T such that r (f * - A) = {T}, and v is a tag
symbol 5ruction front A to Y.

Given a tag symbol fimction v, A d d r . denotes the
function from a tag symboJ to tile set of addresses:

Addro(X) :-- { p G A I v (p) = X } . (5)
In order to treat negations of feature existences attd

feature-address value disagreement, the term struc-
ture defined above is augmented by assigning addi-
tional objects, a set of inhibited features and a set of
disagreement tag symbols, to each feature addrcss.
Def in i t ion 5 An augmented term is a quintuple
(A , r , o , ¢ , X) where A is a term domain on 5 v, r
is a type symbol timer(on from ~'* to T such that
r(2-* - A) = {T}, v is a tag symbol function front
A to V, ¢ is an inhibited feature filnction front 5 r*
to 2 ~ such that ¢(p) is finite for any p (5 A and
~(~'* - A) = {0}, and X is a disagreement tag sym-
bol function from J'* to 2 v such that X(P) is finite
for any p (5 A and X(f'* - A) _- {0}, 2

The inhibited feature fimction ¢ specifies which fea-
tures cannot exist at a given address. There is thus
inconsistency if there is an address p in A such that

¢ (p) n { f e 2 - l p . f (s A } # O. (6)
The disagreement tag symbol fimction X specifies,

for a given address, substructures with which its ar-
gument disagrees. There is thus inconsistency if there
is an address p in A such that

, (p) e x(1,). (7)
The disagreement address function Disag r . , x frmn

A to 2 ~:', based on v and X, takes an address as its
argument, and gives the set of addresses with Milch
the argument address must disagree, called the dis-
agreement address set and defined as:

Disagrv,x(P) := U Ad d r . (X) , (8)

Xex(v)
Augmented terms are hereafter referred to simply

as terms unless stated otherwise.
Def ini t ion 6 Given a term ~ : (A , r , v , ¢ , X) and a
feature address p in A, the subterm o f / a t the address
p is the term tip = (A/p,r/p,v/p,~b/p,x/p) where
rip :Jr* ~ T, v/p : Alp ~ V, ¢/p :2-" ~ 2 F, and
X/P : .T" ~ 2 v are defined by

(r/p)(q) := 7-(p-q), (9a)
(v/p)(q) := v(p.q) , (91)

(¢/p)(q) := ¢ (p .q) , (9r)
(X/P)(q) := X(P'q). (9(1)

For a term t = (A, r, v, ¢, X), a type symbol a (sim-
ilarly, a tag symbol or a term t') is said to occnr in t
if there is a feature address p in ,X such that r(p) = a
(similarly, v(p) = X or X (5 X(P), or lip = t').

A term t = (A r, v, ¢, X) is said to be regular if the
set of all subterms of t, S u b t e r m (t) := {t/p] p (5
A}, is finite, tlereafter, we will consider mdy regular
terms. Ill a regular term, only finite numbers of type
symbols and tag symbols occur.

2For any set S, 2 s denotes the set of subsets of S.

ACRES DE COLING-92, NANTES, 23-28 AOt3T 1992 3 8 2 PRO(=. OF COLING-92, NANTES, AUG. 23-28, 1992

~e,apty
Xl:{}:{} :d l i s t

: ['"o,,, x2:{j...,~:{}:r] x 2

X a : { } : { } : d l i s t
[X 4 : { } : { X 6 } : l i s t]

= in [first X5: {} : {} : T]
out X6 : {} : {X4} : list

Figure 1: Examples of Augmented Terms ill Matrix
Notation

lem~ty tnonempty
X l : { } : { } : d l i s t X 3 : { } : {) :dlist

,. (~o . t . C l i o , , ,
x 4 : { } : { x 6 } . (_ _%.

X2:{fi,'st}:{} l ist I x 6 : { } : { x 4 }
l l . t li"~t I ii.,,

xs:{}:{}
T

Figure 2: Examples of Augmented ' l~rms ill Directed
Graph Notat ion

In a t e rm, any two feature addresses bearing tile
same symbol are said to corefer. Thus, tile corefer-
enee relation g of a terln is a relation defined on A ,as
the kernel of the tag flnlctiou v; i . e , ~ := K e r (v) =
v - I o v. IIere, g is an equivalence relation and a ~-
class is called a corefereuee class.

D e f i n i t i o n 7 A terln t is referentially consistent if
the same subtern* occurs at all feature addresses in a
coreference class.

If a t e rm is referentially consistent, then by defini-
tion, for any Ph p:Z E A, if v (p l) = v(p2) then, for all
p such tha t Pt ' P C A, it follows tha t P2 ' P (5 A and
v(pl " p) = v(p~ . p). Therefore, if a t e rm is referen-
tially consistent, g is a r ight- invariant eqnivalence or
r ight-eongrueuee on A. T h a t is, for any Pl, P2 E A,
if Pt*¢P2 then (Pl ' P)~:(P2 ' P) for any p such that
Pl . p E A .

D e f i n i t i o n 8 A well-formed t e rm (wft) is a
referentially-consistent regnlar te rm. The set of all
well-formed te rms is denoted by 14,'.TtrT.

A t e rm can be represented in mat r ix notation. Ex-
amples of t e rms are showu in Figllre 1. In this figure,
T , d l i s t and l i s t are type symbols, in, out and .first
are feature symbols, and X1, X2, . . . are tag sym-
bols. A ma t r ix represents a set of feature-value pairs
preceded by a tag symbol, followed by a set of iuhib-
ited features and followed by a set of disagreement tag
symbols. In the t e rm te,,vlv, its snb te rms at in and at
out corefer while t,~o,,,,,vty is a t e rm ill which its sub-
te rms at in aud at out should not corefer. The t e rm
te.m£1y should not have the feature address in ..first
Willie tnonempty II&S tha t address,

A t e rm can also be represented by directed graphs
(DGs). t~,,~,t~ anti t ply in Figure 1 are shown as
DGs in Figure 2.

The set W Y 5 r of well-formed terms includes many
te rms tha t llave tile same type syml)ol function, tile
same coreferenee relations, the same inhibited feature
function, and the same disagreelnent address fllllC-
lion but different tag symbol fiUlCtions. These te rms
have the same infornlation and can describe the same
liugttistic object or tile same linguistic phenomena.
These ternls const ruct equivalence classes by reualll-
lug tag symbols in a certain manner .
D e l i n l t i o n 9 T w o terlns tl = (Al,rl ,Vl ,¢q,?(1}
and t~ = (A2, r2, V~, ~2, X-~) are altlhabetical variants
of each other if and only if

1. Al = A2,
2. K e r (v l) = K e r (v 2) ,
3. rl = r2,
4. ¢1 = ¢2, and
5. D i s a g r ~ , , x ` = D i s a g r ~ , x , .

This is wri t ten as 11 ~t~ .
According to ' type-as-se t ' semantics , tile symbols

T aud ± denote, respectively, tile le&st informative
type tile whole universe U aud the overdefined or
incousistel,cy type. - - the empty set 0. Therefore, a
t e rm containing ± should be interpreted as inconsis
tent. Such an inconsistency is called a type inconsis-
tency. ' Ib t rea t such inconsistency, a relation 1~1 on
W . ~ ' T is llefiued as follows.
D e f i n i t i o n 10 For ally two te rms t l , t=, G]4,'.T'T,
tl gl t2 if and mdy i f .£ occurs in both tl and i 2.

There are other kinds of inconsistency as mentioned
earlier. If a t e rm contains an address p such that
¢){P)fq {f ~: J : ' l p ' f (~ A} i¢ 0, it is inconsistent
because it means tha t there are features tha t should
uot exist at. the address. Such an inconsistency is
called a feature inconsistency.

Ill addition, if a terln contains an address p such
tha t v(p) E X(P), it is inconsistent because it means
tha t tile sub te rm at p does not agree with itself. Such
an inconsistency is called a tag illconsisteucy.

llence, the three kinds of inconsistency are treated
integratedly by a relation .~ on)4 , 'S 'T delincd as fol-
lows.
D e f i n i t i o n 11 For any two terms i t , Z2 C W.T'T ,
tl U 12 if and ouly if each of them contaius at legist
one address p such that

t. r (p) : ±,
2. ¢ (p) n { f e J l p . f e A} ¢ O, or
3..(p) e x(v).
Clearly, if J~ occurs in a terln, it also occurs in all

ternls in its ¢~-class. This is also trne for feature incon-
sistency and tag inconsistency, lh.'nce, the relations (~
and -U are such tha t their union ~ becomes an equiv-
alence relation. Thus , we call detincd the augnlented
t - t y p e s as follows.
D e f i n i t i o n 12 An augmented &-tyl)e (or ~b-tyl)e for
short) It] is an e lement of tile quotient set, q~ :=

Syutact ic s t ructures of augmented g,-tyl)es will I)e
(:ailed augmented ~p-ternls. An augmented typed-
fea ture-s t ructure Cal l t)e formalized as a n anglllented
t - t y p e .

The set of type symbols 7- has the partial order ~7-
which denotes a subsumpt ion relation between the
set denoted by type symbols. The part ial ordering
on 7 can lie extended to augnmuted g~-terms and t -
types. Tile sul)smnption orders on)&.T"T and on
are ilefined t~s follows.

Acrgs DE COLING-92, NANTES, 23-28 AO~' 1992 3 8 3 PROC. OF COLING-92, NAm'ES, AUG. 23-28, 1992

D e f i n i t i o n 1 3 Let t l = (AI , r t , vl,~bl, Xt) and t2 =
(A2,r~,v2,C~,X2) be W F T s . i l is said to be sub-
s u m e d by t2, wr i t t en t t _< i2, if and only if e i ther
tt ~ J _ o r

1. A~ __ A t ,
2. K e r (v ~) C_ K e r (v l) ,
3. vp e Y', n(p) _<r r~(v),
4. Vp E 2-*, #:(p) _c ~t(p), ~nd
5. Yp (5 5 r* , D i s a g r ~ , x , (p) C_ Disag ro~ ,x ~ (p).

The s u b s u m p t i o n order on • are defined by [/1] _< [t2]
if t l _< t2 is well-defined.

La t t i ce ope ra t i ons on • can be defined to be com-
pa t ib le wi th the above s u b s u m p t i o n o rde r relat ion as
follows.
T h e o r e m 1 If (7";_<7") is a la t t ice , t hen so is ~ .
P r o o f . Th i s t heo rem can he proved in a very simi-
lar m a n n e r to the c o u n t e r p a r t for A' / t -Kaci ' s 0 - t e rms .
Therefore , ins tead of p rov id ing the p r o o f in detail ,
on ly the defini t ions of the least uppe r b o u n d s - -
or j o i n s - - a n d g rea tes t lower b o u n d s ~ r m e e t s - - a r e
provided below. Let t t : (ml ,7" l ,P l , g]) l ,XI) and
t~ = (A~,r~,v2,ck2,X2) be W F T s .

Fi rs t , the jo in of t~ and t2, ta = tl V t2 =
(Aa , ra, Va, ~ba, Xa), is defined as follows:

Aa = A l n a = (10a)

va : A a ---* ~1 such t h a t
K e r (v a) = ~x Nt i s , (lOb)

and Vp E .T*
r s (p) = rx(p) V z T~(p), (10c)

~ba(p) =-- (pl(p)N~b2(p), and (lOd)

XS(P) = {us(q) I q E (D i s a g r o , , x t (p)

NDisagro~,x~ (p))}. (10e)
Next , the mee t of t , and t2, t4 = t , A t~ =

(A4, r4, v4, ~b4, X4), is defined as follows:

A 4 = At*], (l l a)

v4 : A~ ~ I; such t h a t

K e r (v 4) = r[*l, (l l b)
and Vp G 9 r "

r4(p) : VT{7"i(q)]P~pq, i : 1 , 2 } , (l i e)

U{~i(q) lpnpq, i = 1,2}, (l i d) ~ (v) =

and

x 4 p) =

where

A['] =

A l , , l =

g[.l =

U{v4(q) lqaqr,
r C (Disagrv~ ,×~(p)

oDisagro~ .×~(P)) }~1 le)

co

U At"l ,
n=0

{ A1 U A ~ for n = O,

A [' - q U

{p E 9 r• I ptct ' lq, q E A i " - q }

for n > I,

x["],

n=0

tempty V tnonempty
X / : { } : { } : d l i s t

= [i n X S : { } : (} : l l s t]
out X9 {} {} list

~etnp[y A ~Tlollelllpl~
X10 : {} : {} : d l i s t
I Xl l : {first} : {Xll} : list

= it, [f i r s t X 1 2 : { } : { } : T]
out Xll

F igure 3: E x a m p l e s of Join and Meet. of A u g m e n t e d
tb-Terms

o /£2) '

for n = 0,

i¢['d = ~ [, - l] O

{(p~ • p ,p~ . v) I p l~ t " - ' l v2) ,
for n > 1

attd r~ ,uA~ is the rellexive extens ion of ~i f rom Ai
to A 1 U A 2 for i = 1, 2.

The condi t ions (l l a - l l e) define a meet , t h a t col-
lapses to J- whenever condi t ions (l i e - - l i e) l) roducc
some address p such t h a t t ype inconsis tency, fea ture
inconsis tency, or t ag incons is tency occurs a t p.

T h e V is a jo in ope ra t i on and A is a meet ope ra t ion
which are compa t ib l e with the s u b s u m p t i o u order de-
fined in Definit ion 13. []

Examples of join and meet ope ra t i ons on aug-
men ted e - t e r m s are shown in F igure 3. T h e jo in and
meet opera t ions on a u g m e n t e d ~ - types co r re spond
to the genera l iza t ion and unif icat ion ope ra t i ons on
TFSs .

A'it-Kaei defines an ~-type as a m a x i m a l set of ~b-
types . It is also possible to defir, e an a u g m e n t e d ~-
t ype as a m a x i m a l set of a u g m e n t e d ~b-types in the
s ame manne r , m a k i n g d is junct ive and nega t ive de-
scr ip t ions possible.

3 .2 T y p e S y m b o l L a t t i c e E x t e n s i o n t o
I n c l u d e C o m p l e m e n t T y p e S y m b o l s

q_¥eating a nega t ive desGil) t ion of a given type syln-
bol, say a , requires a type symbol I) such t h a t b has
on ly informat ion t h a t unif icat ion of it with a yiekls in-
consis tency, or such t h a t a V T h = -V and a A T b = ± .
Such a symbol is called a comp lemen t type symbol of
a and wr i t ten as a ~. If a given type symbol la t t ice
(7-; _<7") is a Boolean lat t ice, t h a t is, a comI) lcmented 3
d i s t r ibu t ive lat t ice, we do no t need to do any th ing .
Otherwise , we n m s t ex tend the lat t ice to include the
cmnp lemen t s of the type symbols con ta ined in the
given lat t ice.

For a finite type symbol la t t ice T , for example ,
a Boolean la t t ice T ~ can he cons t ruc t ed a.s follows.
Let ..4 := {at aN} be the set of a tolns of 7-,
t h a t is, t ype symbo l s which cover j_.4 If there are
, t on -a tomic t ype s y m b o l s which cover on ly one sym-
bol , for each such symbol a , a new a t o m is added

aA lattice is called complemented if its all elements
have complements.t3]

~a is said to cover b if b <7 a attd b < 7 c <7- a
implies e = b.

Ac'IXS DE COLING-92, NANTES, 23-28 ^otrr 1992 3 8 4 Paoc. OF COLING-92, NANTES. AUG. 23-28. 1992

tsymbol: node structure
{a type symbol}

arcs: ~a set of arc structures) _ _

~a set of feature symbols)
e s : ~ a set of rtode structures) anoaes:

fo~a~: ~a .odo s.nc*nro/ I NZL
arc structure

[#atn,~! I (a feat ymbol}
[vM I {a node structure}

Figure 4: Data Structures

Fnnetion Unify(nodel, node~)
begin

node1 := Dereference(node l);
node~ := Det,e]erence(node2);
if node1 = node2 then

return(node1);
qodel .forward := node~;
node2.tsymbol := nodel.tsymbol AT node2.tsymbol;
if node2.tsymbol = J_ then

return(J_)
node2.ifeatures := nodel.i]eatures LI node~.J]eatures;
if node2.ifeaturesr'l

{arc.feature I arc • nodel .arcs LJ node2.arcs}
0 then

return(.L);
aodee.dnodes := node1 .dnodes O node2.dmMes;
if {node1, node2} {7 node2.dnodes # ~ theai

return(.L);
arcpairs := Shared-Arc-Pairs(node1, node~);
for (arc1, arc2) in arcpairs do
begin

value := Unify(arcl .value, arce.value);
if vMue = .1 . t h e n

return(l);
end;

arcs : : Complement~Arcs(node1, node'2);
rlodcS2.aFcs := arcs LJ llode~.arcs;
return(node*);

end

Figure 5: A Destrnctive Graph Unification Function

so that a covers all additional type symbol. The ex-
tended lattice "T ~ is tile set of subsets of A with set
inclusion ordering. An element {al}iet E "T' denotes
Uie/[al] . The join and mcct operations on T ' are
the set-nniou and set-intersection operations, respec-
tively. The complement of an element {ai}ie/ in T '
is the set-complement of it with respect to .4, that is,
{~ • .4 l a ¢ {ad,e~}.

4 I m p l e m e n t a t i o n o f A u g m e n t e d T F S
Unification

The unification operation for augmented 1/,-terms or
augmented TFSs has been implemented using graph
unification techniques. A term structure is repre-
sented as a directed graph by assigning a graph node
to each x-class as in Figure 2. The unification oper-
ation for such DGs corresponds to a graph merging
operation. This takes two DGs and merges ~-cla.sses
of the same feature-aAdress into a n-class.

In a destructive graph unification method, which is
very simple, suci~ a graph is represented by tile data
structures in Figure 4. A node structure consists of

live fields: lsymbol for a type symbol, arcs for a set
of feature-vafile pairs, ifeatures for a set of inhibited
features, dnodes for a set of disagreement nodes
i.e., disagreement K-classes, and forward. The field
for'warY1 is used for the Union-Find algoritfim[9] to
calculate unions of K-classes in tile salne nlanner ,'Lq
lluet's algorithm[10}. By traversing two DGs' nodes
with the same feature-address sinmltaneously, calcu-
lating the union of their x-classes, and copying arcs,
their unification can be calculated as in Figure 5.

The function Unify takes two input nodes and puts
them in a K-class by letting one input be tim forward
field values. The flmction then examines three kinds
of inconsistency; namely, type inconsistcncy, fea-
ture inconsistency, and tag inconsistency. Tim fimc-
tion finally treats arcs in order to make tile result
graph right-cougruent. For treating arcs, tile function
Unify assumes two fimctions, Shared_Arc_Pairs and
Complement_Arcs . The function Shared_Arc_Pairs
takes two nodes as its inpnts aud gives a set of
arc pairs each consisting of both inputs' arcs with a
shared feature. The flmctiou Complement_Arcs also
takes two nodes and gives a set of arcs whose features
exist in the first node but not in the second.

An inhibited feature fimetion is implemented using
tile tfeatnres field of nodes. When unification of two
nodes results in a node witfi an arc witfi a feature in
i features, it yields J- because of feature inconsistency.
A disagreement tag symbol fnnetion is implemented
using dnodes. Unification of two nodes which have
each other in their dnodes yields 3. because of tag
inconsistency, q_'hese computations require negligible
additional computation.

qb simplify the exphmation, the destructive version
of graph unification is used above. Other versions
based ou more efficient graph unillcation methods
such ;~s Wroblewski's and Kogure's method[23, 16]
have also been developed. 1,'urthermore, it is easy
to modify other graph unification methods[21, 6] to
allow augmented TFSs.

,5 Conclusion

]'his paper has proposed an augmentatiotl of fea-
ture structures {FSs) which introduces negative in-
formation into FSs ill unification-based tbrmalisms.
Unification-based linguistic formalisnm nse l".qs to de-
scribe linguistic objects and phenotneua, l~ecanse lin-
guistic information (:an |)e described compact ly using
disjunctive and uegatiw: descriptions, FSs and feao
ture descriptions are required to treat such (lescrip-
trans, in this paper, FSs have been augnlent.ed, using
a promising method of fornudizat.iou, Ait-l(aci's $~
type, to allow three kinds of negatiw~ descriptions of
them to be treated.

In a formalizalion of typed feature structures, neg-
ative descriptions can be decomposed rata three kinds
of negations: negations of type sytnbols, negations of
feature existences, aud llegations of feature-address
value agreements. It. is shown thai the second and
third kinds Call be treated by ailglncIItlllg tlrl'nl stlill%
Lures to include structures representing such kinds of
descriptions. Subsnmption relations on augmented
terms are defined. It. is also shown that the first kind
call be treated by exteuditlg type symbol lattices t()
include complement type synd)ols.

The proposed formalization cau provide efficient al-

AcrEs DE COLING-92, NANTES, 23-28 AOl3"r 1992 3 8 $ PROC. OF COLING-92, Nhr, n'Es. AUG. 23-28. 1992

gorithms for generalization and unification operations
as well as treat primitive negations. The formaliza-
tion can be integrated with logic-based frameworks
such as [20] which can treat wider ranges of descrip-
tions but which do not have such efficient algorithms
for these operations. Logic-based frameworks can be
used to obtain the data structures for this paper's
formalization.

Unification algorithms for augmented terms or aug-
mented TFSs have been developed using graph uni-
fication techniques. Unification programs based on
these algorithms have been developed in Common
Lisp.

The augmentation of TFSs makes linguistic de-
scriptions compact and easy to understand. In an
HPSG-based grammar, for example, non-emptiness
of a subcat or slash feature value can be easily de-
scribed by nsing feature-address value disagreement.
Moreover, negative descriptions make debugging pro-
eessss of grammatical descriptions easier.

A c k n o w l e d g m e n t s

This research was performed in the VCAT project of
the Takeuchi Research Group in NTT Basic Research
Laboratories. The author would like to thank Ikuo
Takeuehi, Akira Shimazu, Shozo Naito, Masahito
Kawamori, Mikio Nakano, and other colleagues of the
group for their encouragement and thought-provoking
discussions.

R e f e r e n c e s

[1] Hassan Ait-Kaei. An algebraic semantics approach
to the effective resolution of type equations. Journal
of Theoretical Computer Science, 45:293-351, 1986.

[2] Hassan Ait-Kaci and Roger Nasr. Latin: a logic pro-
gramming language with built-in inheritance. Jour-
nal of Logic Programming, 3:185-215, 1986.

[3] Garrett Birkhoff, Lattice Theory. Americau Mathe-
matical Society, Providence, Rhode Island, USA, 3rd
edition, 1967.

[4] Bob Carpenter and Carl Pollard. htclusion, disjoint-
hess and choice: the logic of linguistic classification.
In Proceedings o] the 29th Annual Meeting of the As-
sociation for Computational Linguistics, pages 9-16,
ACL, University of California, Berkeley, California,
USA, 1991.

[5] Annuj Dawar and K. Vijay-Shanker. A three-valued
interpretation of negation in feature structure de-
scriptions. In Proceedings of the 271h Annual Meet-
ing of Association for Computational Linguistics,
pages 18-24, ACL, Vancouver, British Columbia,
Canada, 1989.

[6] Martin Emele. Unification with lazy non-rednndant
copying. In Proceedings o] the ~9th Annual Meet-
ing of the Association]or Computational Linguistics,
pages 325-330, ACL, University of California, Berke-
ley, California, USA, 1991.

[7] Martin Emele and Rdmi Zajac. RETIF: A Rewrit-
ing System]or Typed Feature Structures. Technical
Report TR-I-0071, ATR, Kyoto, Japan, 1989.

[8] Martin Emele and Rdmi Zajac. Typed unification
grammars. In Proceedings of the 13th International
Conference on Computational Linguistics, Vol. 3,
pages 293-298, 1990.

[9] J. E. ltopcroft and R. M. Karp. An Algorithm for
Testing the Equivalence of Finite Automata. Tech-
nical Report TR-71-114, Dept. of Computer Science,
Cornell University, lthaca, New York, USA, 1971.

[10] G~rard Huet. Rdsolution d'Equations dans des Lan-
gages d'Order 1, 2, ..., w. PhD thesis, Universit6 de
Paris VH, France, 1976.

[11] Lauri Katttunen. Features and values. In Proceedings
of the lOIh International Conference on Computa-
tional Linguistics, pages 28-33, Stanford, California,
USA, 1984.

[12] Robert T. Kasper. Unification and classification: an
experiment in information-hazed parsing. In Proceed-
ings of the International Workshop on Parsing Tech-
nologies, pages 1 7, Pittsbnrgh, Pennsylvania, USA,
1989.

[13] Robert T. Kasper and William C. Rounds. A logi-
cal semantics for feature structure. In Proceedings of
the 241h Annual Meeting o] the Association for Com-
putational Linguistics, ACL, New York, New York,
USA, 1986.

[14] Martin Kay. Parsiug in functional unitication gram-
mar. In D. R. Dowty, editor, Natural Language Pars-
in9, chapter 7, pages 251-278, Cambridge University
Press, 1985.

[15] Kiyoshi Kogure. Parsing Japanese spoken sentences
based on HPSG. In Proceedings of the International
Workshop on Parsing Technologies, pages 132-141,
Pittsburgh, Pennsylvania, USA, 1989.

[16] Kiyoshi Kogure. Strategic lazy incremental copy
graph unification. In Proceedings of the 131h Inter-
national Conference on Computational Linguistics,
Vol. 2, pages 223-228, 1990.

[17] M. Drew Moshier and William C. Rounds. A logic
for partially specified data structures. In Proceedings
of the ldth ACM Symposium on Principles of Pro-
gramming Language, pages 156 167, Munich, West
Germany, 1987.

[18] Carl Pollard and Ivan Sag. An Information.Based
Syntax and Semantics--Volume 1: bhndamentals.
CSLI Lecture Notes Number 13, CSLI, 1987.

[19] William C. Rounds and Robert T. Kasper. A com-
plete logical calculus for record structures represent-
ing linguistic information. In Proceedings of Sympo-
sium on Logic in Computer Science, IEEE Computer
Society, 1986.

[20] Gert Smolka. A Feature Logic with Subsorts. Tech-
nical Report LILAC Report 33, IBM Deutschland,
7000 Stuttgart 80, West Germany, 1988.

[21] Hideto Tomabechi. Quasi-destructive graph unifi-
cation. In Proceedings of the 291h Annnal Meet-
ing of the Association for Computational Linguistics,
pages 315-322, ACL, University of California, Berke-
ley, California, USA, 1991.

[22] Yoshihiro Ueda and Kiyoshi Kogure. Generation
for dialogue translation using typed feature struc-
tnre unification. In Proceedings of the 13th h~ter.
national Conference on Computational Linguistics,
Vol. 1, pages 64-66, 1990.

[23] David A. Wroblewski. Nondestructive graph unifi-
cation. In Proceedings of the 6th National Confer-
ence on Artificial Intelligence, pages 582-587, AAAI,
Seattle, Washington, USA, 1987.

[24] R6mi Zajac. A transfer model using a typed fea-
ture structure rewriting system with inheritance. In
Proceedings of the PTth Annual Meeting of Associa-
tion for Computational Linguistics, pages 1-6, ACL,
Vancouver, British Columbia, Canada, 1989.

Ac-rEs DE COLING-92, NANTEs, 23-28 ̂ o~'r 1992 3 8 6 Paoc. oF COLING-92, NANTES, AUG, 23-28, 1992

