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A b s t r a c t  

A formal t reatment  of typed feature structures 
(TFSs) is developed to augment  TFSs, so tha t  neg- 
ative descriptions of them can be treated. Negative 
descriptions of TFSs can make linguistic descriptions 
compact  and thus easy to understand.  Negative de- 
scriptions can be classified into three primitive nega- 
tive descriptions: (1) negations of type symbols, (2) 
negations of feature existences, and (3) negations of 
feature-address value agreements. The formalization 
proposed in this paper is based on A'it-Kaci's com- 
plex terms. The first description is treated by extend- 
ing type symbol lattices to include complement type 
symbols. The second and third are treated by aug- 
meriting term structures with structures representing 
these negations. Algorithrrts for augmented-TFS uni- 
fication have been developed using graph unification, 
and programs using these algorithms have been writ- 
ten in Conmaon Lisp. 

1 I n t r o d u c t i o n  

In unification-based or information:based linguistic 
frameworks, the most  impor tant  objects are struc- 
tures called 'feature s t ruc tures '  (FSs), which are used 
to describe linguistic objects and phenomena. A fea- 
ture s t ructure  is either atomic or complex: an atomic 
FS is denoted by an atomic symbol; a complex FS 
consists of a set of feature-value pairs each of which 
describes an aspect of an object.  Partial information 
on aJ~ object is merged by applying the unification 
operation to FSs. 

ILeseareh on unification-based linguistic theories 
has been accompanied by research on FSs themselves. 
Several extensions on FSs or on feature descriptions 
and formal t reatments  of the extensions have been 
proposed. 

Disjunctive and negative descriptions on FSs help 
make the linguistic descriptions simple, compact,  and 
thus easy to understand.  For disjunctive feature de- 
acrq)tions, Kay[14] introduces them into FUG (lqlnc- 
tmnal Unification Grammar)  and gives the procedu- 
ral semantics. Kar t tunen[ l l ]  also proposes proce- 
dural t reatments  of disjunctions in conjunction with 
relatively simple negations. ILounds and Ka.sper[19, 
13] propose a logic-based formalism--feature logic-  
which uses au tomata  to model FSs and can treat  dis- 
Junctive feature descriptions, and they obtain impor- 
tant  results. 

For negative descriptions of PSs, one of the most. 
fundamental  properties of FSs, the partiality of in- 
formation they carry, makes its insufficient to adopt  
relatively simple treatments.  Classical interpretation 
of negation, for example, does not, allow evaluation 

of negations to be freely interleaved with unification. 
Moshier and Rounds[17] propose a formal framework 
which treats  negative feature descriptions on the b`a~is 
of intuitionistic logic. Ilowever, their |bHnalism has 
trouble t reat ing double negations. Dawar[5] l)rOl)OSeS 
a formal t reatment  b ~ e d  on three-valued logic. 

In order to treat  feature domains of complex FSs 
and to treat  taxonomic hierarchies of symbolic tim 
ture values, type (or sort) hierarchies have been in- 
troduced, allowing definition of typed (or sorted) 
feature-structures (TFSs). A TFS consists of a type 
symbol from a lattice and a set of rearm:e-value pairs. 
A TFS can be seen as a generalized concept of both 
atomic and cornplex FSs. Pollard and Sag/18] iatt'o- 
duce sorts into IIPSG (Ilead-drivcn Phr~Lse Strllcttn'e 
Grammar)  and use sorted FSs to describe linguistic 
objects. 

Ait-Kaci[1] proposes an Mgebraie fratnewot'k using 
the C-types and ~-types, one of promising lbt'maliza- 
tions of TFSs, based on lattice theory. This lbrmal- 
ization was originally ainmd at formalizing and in- 
tegrating various kinds of knowledge representat.ioiT 
frameworks m AI. In this approach, types are defined 
,as equivalence clmsses of complex term structures.  A 
subsumption relation is defined on these term struc-. 
tures. The join and meet operations on thenT cor- 
respond to tile generalization and uniilcation Ol)era- 
tions on TFSs,  respectively. This approach essentially 
adopLs ' type-as-set '  seulantics. Subtype relationships 
on type correspond to subsnmption relationships on 
denotations of types. Based on this framework, an 
extension to Prolog, LOGIN[2], has becn developed. 

Smolka[20] proposes a feature logic with subsorts. 
In this approach,  negative descriptkms can be decom- 
poscd into three kinds of prinfitivc negations, namely, 
negations of sorts or complement sorts which denote 
tile complements of sets that  positive counterlmrl.s lie- 
note, negations of feature existences, and negations 
of feature-address agreement or feature-address dis 
agreement. Slnolka extends t~aturc descriptions but 
a feature-structure interpretation of an extended de 
scription does not include negat.iw~ information and 
corresponds to a simple TI"S. 

Some TIeS based m~tural language processing sys- 
tems have been developed[7, 24, 12, 15, 8, 22]. Car- 
imnter and Pollard[4] propose an interlhce to buikl 
type lattices. 

Formalizations of extended FSs and of extettd('d 
feature-descriptions, described above, arc classilicd 
into two classes: (1) extensions of FSs themselves, 
and (2) extensions not of FSs themselves hut of 
Dature-descriptions. Previous a t tempts  to introduce 
type hierarchies fall into the former clzLss while pre 
vious t reatments  of disjunctive and neg~diw~ &'scrip- 
tions mainly fall into the latter. 
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This paper proposes an extension to Ait-Kaci's ~/,- 
type that  incorporates three kinds of the primitive 
negative descriptions described below into the q:-type. 
Ai't-Kaei's t - t y p e  formalization uses term structures. 
In this paper, both these type s tructures  and the tyl)e 
symbol lattice on which term strnctures are delined 
are e×tcuded to treat negative descril)tions. Nega 
tions of type symbols are treated by extending type 
symbol lattices, aud negations of feature cxistmmes 
attd feature-address disagreements are treated by ex- 
tending term structures.  This extension can be seen 
as intuitionistie. The extension is classified into class 
(1) abow'.. 

Based on this paper ' s  formalization, unilieation al- 
gorithms have been developed usiug graph unification 
techniques[23, 16]. Programs based on these alger 
rithms have been implemented in Common Lisp. 

2 Requirements of Negative 
Descriptions of TFSs 

In describing linguistic information using (tyl)ed) fea- 
ture structures,  negative descriptions make the de-. 
scription compact ,  intuitive, and hence easy to under- 
stand.  For example, we want to deserihe the gram- 
rnaI, ical agreement for an English verb, say "eat",  nat- 
urally a.s follows. 

. . . . . . . . .  , I. r , ,e , .  . . . . .  : '"h] sg (1) 
This description specifies compactly and directly that  
it is not the case tha t  the person at t r ibute  is third 
and that  the number a t t r ibute  is singular. If we 
could not use such complex negative descriptions, we 
would write it using disjunctive descriptions with sim- 
ple complement types as follows. 

sy , (ag , ' eeme,d  ag,{l  . . . . . .  ,, ~ 3 r d ]  ]'[ 
syii(agreeme;',l all, tinumbe'r msg] I J" (2) 

or 

{ sy , ( .g ,~ ,ae , , t  ,,g~[ve~ . . . .  1st]] 1 
sy,ftag,'eemenl ag l Ip  ....... 2 n d ] ] }  (3) 
sy , (  a.qreeme,d a g ,  f , ,umber  p l ] ]  J 

In this case, (1) is e*Lsier to understand than (2) or 
(3). 

In the above ease., we can describe the informa- 
tion because the complex negative descriptions C~tll 
be transformed into the disjmlction of simple negative 
descriptions {with ml almost same inteuded mean- 
ing) and because both person and number features 
take their values from { l s t ,  2nrl ,  3 rd}  and { s t ,  p l} .  
However, it is not always the case tha t  such transfor- 
mations are possible and that  feature takes its value 
from a finite set. 

Let us consider more. complicated cases using dif- 
t 1 ference lists expressed using featm'e structures.  The 

empty list of categories is represented as follows. 

x~ H) 
In the above example, the tag symbol, X1 shows that  
features in and out must take the same value. 

tin HPSG and JPSG (Japanese Ptlrase Structure 
Grammar), a difference list is very convenient ['or express- 
ing subcat and slash feature values. 

llow can oniy nomemptiness be expressed? This 
is impossible using complement type symbols or dis 
junctions becmlsc we can consider the set of MI finite 
length lists whose elements can bc taken froltl inlinitc 
sets. l)ireet or indirect extension of feature struetures 
is required. 

So far, we have discussed the requirement of nega- 
tive descriptions of type symbols and of l;eature-value 
agreeumnts from the viewpoint of capability of de- 
scribing linguistic inR)rmation. There are other ad 
vantages of allowing negative descriptions. Consider, 
for exannlde , debttgging processes of gramJt,atical de- 
scriptlous by parsing sample sentences. We may ob 
t a i u  u n e x p e c t e d  r e s u l t s  Sllch ll.~ il ~l'FS with an t l n e x  
peeled type symbol, a TFS with an unexpected lea 
tare value agreement and so on. [1/ such sittlations, 
negatiw~ descriptions can be usefld tools R)r delecting 
their re~mons. 

To t/l;tke linguistic descriptions compact and thus 
ea.uy to understand,  to treat  natura l  language efll- 
clently, and to detect error reasons rapidly, it is neces- 
sary to develo 1) formalizations and nu'.thods of treat- 
ing negative descriptions. 

a Formal Treatment of Negative 
Descriptions of TFSs 

As stated earlier, a typed t~:at, ure s tructure (TI"S) 
cous i s t s  Of ~t tYl)e s y u l b o l  a l ld  a se t  of feal, t l re-vs.ble 
pairs. Thus, descriptions of TFSs are chLssitied into 
descriptions of TFSs having: 
(1) a certain type symbol (or having a subtype syn,- 

hol of a certain type symbol), 
(2) a feature, and 
(3) two feature-address vahtes that  agree. 

A TFS can be described by using conjunct, ions and 
disjunctions of such kinds of descriptions. A eonjmle- 
tiw* and disjunctive TFS can be formalized as Nit- 
Kaei's t - t y p e  and ~-type, respectively. Tha t  is, a 
t - t ype ,  which has a complex term structure called a 
g, term a.s its syntax,  represents a conjunction of such 
kinds of descriptkms or at col0unctiw~ typed feaLltrl! 
structure,  and an e-type is a maximal set of ¢ types 
representing the disjunction of them. 

Negative counterparts  of these descriptions are 
ebLssified into deseriptions of TFSs: 
(1') not having a certain tyl)c symbol (or having a 

type symbol which is not subsunmd by a certain 
type symhol), 

(2') not having a certain feature, and 
(3') having two thature-addrcss values that  do not 

agree. 
By i n e o r p o r a t i u g  s t r l l e t t l r e s  represe l l l ,  i l lg st lch lll!g- 

ative descriptions into a O term, a ' F F S  with the net  
ative descriptions can be formalized. Such a lerm is 
called an allglnented t - t e r m  and a type with an allg- 
mented ~/, term ~m its syntax is called a n  allgllu!nted 
O-type. From augmented g:-t.erms, an augmented 
t e r u l  eilll be  COllStl ' l leted ill t h e  S~Lllle Illallll#!l" t lHlt  fill 
( - t e r l u  is e o n s t r l l e t e d  f ro lu  ¢-t ,  er rns .  

Next, augmented C-terms and C-types are defined. 
T e r l n  s t r u c t u r e s  a r e  f i rs t  a l l g l u e u t e d  with s t r t l c t l l r e s  
representing inhibited features and disagreement of 
feature address values. Then, type symbol htttiees 
are extended to inch,de complement type symbols as 
suggested in [1]. 
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3.1 T y p e d  F e a t u r e  S t r u c t u r e s  as  
A u g m e n t e d  C-Types  

In order to define complex term structures, a signa- 
ture is used to specify their vocabulary. It serves as 
the interface between their syntax and semantics. A 
signature is formally defined as follows. 
Def ini t ion 1 A signature is a quadruple (7-,<_T 
,2- ,  V) consisting of: 

1. a set 7- of type symbols containing T and _L, 
2. a partial order _<7- on 7" such that 

(a) ± is the least and T is the greatest element, 
and 

(b) every pair of type symbols a, b E 7- have a 
least upper bound or join, which is denoted 
by a VT" b and a greatest lower bound or 
meet, which is denoted by a AT b, 

3. a set .T" of feature symbols, and 
4. a set I] of tag symbols 

where 7-, 2- and l? are pairwise disjoint. 
A simple 'type-as-set' semantics is adopted for 

these objects. That  is, a type symbol in 7- denotes 
a set of objects in an interpretation. Here, 7- and 
.1_ denote the sets called the universe, written as U,  
and the empty set 0, respectively. Another element 
a denotes a nonempty subset of U,  written as [a]. 
The partial order <~- denotes the subsumption rela- 
tion between these sets; for any type symbols a, b, 
and c, 

1. a <~  b if and only if I s |  c lb], 
2. a Y:r b = c if and only if [a] O [b] = [el, and 
3. a AT- b = c if and only if [a ]N [b] = [c]. 
A feature symbol denotes a function from a subset 

of U to U. A feature path is a finite string of feature 
symbols and denotes the function obtained by tile 
composition of the functions that  tile feature symbols 
denote. 

A term is defined from a signature. First, a term 
domain is defined as a skeleton built from feature 
symbols. 
Def in i t ion  2 A term domain A on 2- is a set of finite 
strings of feature symbols in 2" (inclnding the empty 
string ~) such that 

1. Aisprefix-elosed: Yp, q(52-*,ifp.q(s A, then 
p (5 A; and 

2. A is finitely branching: if p (5 A, then {f (5 
2"1 p . f  (5 A} is finite 

where ' . '  is the string concatenation operator. 
An element of a term domain is called a feature 

address or a feature path. By definition, the empty 
string e must belong to all term domains and is called 
the root address. A term domain is represented by 
a rooted directed graph within which each arc has a 
feature symbol as its label. 

A suhdomain of a term domain, corresponding to 
a subgraph, is defined ms follows. 
Def in i t ion  3 Given a term domain A and a feature 
address p t5 A, the subdomain of A at p is defined to 
be the term domain Alp := {p' I P '  P* (5 A}. The set 
of all subdomains of A is denoted by S u b d o m ( A ) .  

Next, flesh is put on the term structure's skele- 
ton as defined as a term domain by assigning several 
kinds of objects to each feature address. Ait-Kaci's 
term structure, the basis of the C-type, is defined by 
assigning a type symbol and a tag symbol to each 
feature address as follows. 

Def ini t ion 4 A term is a triple (A, r, v) where A is 
a term domain on .T, r is a type symbol function fi'om 
2-* to T such that r ( f *  - A) = {T}, and v is a tag 
symbol 5ruction front A to Y. 

Given a tag symbol fimction v, A d d r .  denotes the 
function from a tag symboJ to tile set of addresses: 

Addro(X) :-- { p G A I v ( p ) = X } .  (5) 
In order to treat negations of feature existences attd 

feature-address value disagreement, the term struc- 
ture defined above is augmented by assigning addi- 
tional objects, a set of inhibited features and a set of 
disagreement tag symbols, to each feature addrcss. 
Def in i t ion  5 An augmented term is a quintuple 
( A , r , o , ¢ , X )  where A is a term domain on 5 v, r 
is a type symbol timer(on from ~'* to T such that 
r(2-* - A) = {T}, v is a tag symbol function front 
A to V, ¢ is an inhibited feature filnction front 5 r* 
to 2 ~ such that ¢(p) is finite for any p (5 A and 
~(~'* - A) = {0}, and X is a disagreement tag sym- 
bol function from J'* to 2 v such that X(P) is finite 
for any p (5 A and X(f'* - A) _- {0}, 2 

The inhibited feature fimction ¢ specifies which fea- 
tures cannot exist at a given address. There is thus 
inconsistency if there is an address p in A such that 

¢ ( p ) n { f e 2 - l p . f ( s A }  # O. (6) 
The disagreement tag symbol fimction X specifies, 

for a given address, substructures with which its ar- 
gument disagrees. There is thus inconsistency if there 
is an address p in A such that 

, (p)  e x(1,). (7) 
The disagreement address function Disag r . ,  x frmn 

A to 2 ~:', based on v and X, takes an address as its 
argument, and gives the set of addresses with Milch 
the argument address must disagree, called the dis- 
agreement address set and defined as: 

Disagrv,x(P) := U Ad d r . (X) ,  (8) 

Xex(v) 
Augmented terms are hereafter referred to simply 

as terms unless stated otherwise. 
Def ini t ion 6 Given a term ~ : ( A , r , v , ¢ , X )  and a 
feature address p in A, the subterm o f / a t  the address 
p is the term tip = (A/p,r/p,v/p,~b/p,x/p) where 
rip :Jr* ~ T, v/p : Alp ~ V, ¢/p :2-" ~ 2 F, and 
X/P : .T" ~ 2 v are defined by 

(r/p)(q) := 7-(p-q), (9a) 
(v/p)(q) := v(p.q) ,  (91) 

(¢/p)(q) := ¢ (p .q ) ,  (9r) 
(X/P)(q) := X(P'q). (9(1) 

For a term t = (A, r, v, ¢, X), a type symbol a (sim- 
ilarly, a tag symbol or a term t') is said to occnr in t 
if there is a feature address p in ,X such that r(p) = a 
(similarly, v(p) = X or X (5 X(P), or lip = t'). 

A term t = ( A  r, v, ¢, X) is said to be regular if the 
set of all subterms of t, S u b t e r m ( t )  := {t/p ] p (5 
A}, is finite, tlereafter, we will consider mdy regular 
terms. Ill a regular term, only finite numbers of type 
symbols and tag symbols occur. 

2For any set S, 2 s denotes the set of subsets of S. 
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~e,apty 
Xl:{}:{} :d l i s t  

: ['"o,,, x2:{j...,~:{}:r ] x 2  

X a : { } : { } : d l i s t  
[ X 4 : { } : { X 6 } : l i s t  ] 

= in [first X5:  {} : {} : T ] 
out X6 : {} : {X4} : list 

Figure 1: Examples  of  Augmented  Terms  ill Matrix 
Notation 

lem~ty tnonempty 
X l : { }  : { } : d l i s t  X 3 : { } : { )  :dlist  

,. (~o . t  . C l i o , , ,  
x 4 : { } : { x 6 } . ( _  . . . .  _%. 

X2:{fi,'st}:{} l ist I x 6 : { } : { x 4 }  
l l . t  li"~t I ii.,,  

xs:{}:{} 
T 

Figure 2: Examples  of  Augmented  ' l~rms ill Directed 
Graph  Notat ion 

In a t e rm,  any two feature addresses bearing tile 
same symbol  are said to corefer. Thus,  tile corefer- 
enee relation g of  a terln is a relation defined on A ,as 
the kernel of  the tag flnlctiou v; i . e ,  ~ := K e r ( v )  = 
v - I  o v. IIere, g is an equivalence relation and a ~- 
class is called a corefereuee class. 

D e f i n i t i o n  7 A terln t is referentially consistent if 
the same subtern* occurs at all feature addresses in a 
coreference class. 

If  a t e rm is referentially consistent, then by defini- 
tion, for any Ph  p:Z E A, if v (p l )  = v(p2) then, for all 
p such tha t  Pt ' P C A, it follows tha t  P2 ' P (5 A and 
v(pl " p) = v(p~ . p). Therefore,  if a t e rm is referen- 
tially consistent,  g is a r ight- invariant  eqnivalence or 
r ight-eongrueuee on A. T h a t  is, for any Pl, P2 E A, 
if Pt*¢P2 then (Pl ' P)~:(P2 ' P) for any p such that  
Pl . p E A .  

D e f i n i t i o n  8 A well-formed t e rm (wft) is a 
referentially-consistent regnlar te rm.  The  set of all 
well-formed te rms  is denoted by 14,'.TtrT. 

A t e rm can be represented in mat r ix  notation. Ex- 
amples of  t e rms  are showu in Figllre 1. In this figure, 
T ,  d l i s t  and l i s t  are type symbols,  in, out and .first 
are feature symbols,  and X1, X2, . . .  are tag sym- 
bols. A ma t r ix  represents a set of feature-value pairs 
preceded by a tag symbol,  followed by a set of  iuhib- 
ited features and followed by a set of disagreement  tag 
symbols.  In the t e rm te,,vlv, its snb te rms  at in and at  
out corefer while t,~o,,,,,vty is a t e rm ill which its sub- 
te rms at  in aud at  out should not corefer. The  t e rm 
te.m£1y should not  have the feature address in ..first 
Willie tnonempty II&S tha t  address,  

A t e rm can also be represented by directed graphs  
(DGs).  t~,,~,t~ anti t . . . . . . . .  ply in Figure 1 are shown as 
DGs in Figure 2. 

The  set W Y 5  r of well-formed terms includes many  
te rms  tha t  llave tile same type syml)ol function, tile 
same coreferenee relations, the same inhibited feature 
function, and the same disagreelnent address fllllC- 
lion but different tag symbol fiUlCtions. These te rms 
have the same infornlation and can describe the same 
liugttistic object  or tile same linguistic phenomena.  
These ternls const ruct  equivalence classes by reualll- 
lug tag symbols in a certain manner .  
D e l i n l t i o n  9 T w o  terlns tl = (Al,rl ,Vl ,¢q,?(1} 
and t~ = (A2, r2, V~, ~2, X-~) are altlhabetical variants  
of  each other  if and only if 

1. Al  = A2, 
2. K e r ( v l )  = K e r ( v 2 ) ,  
3. rl = r2, 
4. ¢1 = ¢2, and 
5. D i s a g r ~ , , x  ` = D i s a g r ~ , x  , .  

This  is wri t ten as 11 ~t~ .  
According to ' type-as-se t '  semantics ,  tile symbols  

T aud ± denote,  respectively, tile le&st informative 
type  tile whole universe U aud the overdefined or 
incousistel,cy type. - - the  empty  set 0. Therefore,  a 
t e rm containing ± should be interpreted as inconsis 
tent.  Such an inconsistency is called a type inconsis- 
tency. ' Ib  t rea t  such inconsistency, a relation 1~1 on 
W . ~ ' T  is llefiued as follows. 
D e f i n i t i o n  10 For ally two te rms  t l ,  t=, G ]4,'.T'T, 
tl gl  t2 if and mdy  i f .£  occurs in both tl and i 2. 

There  are other  kinds of  inconsistency as mentioned 
earlier. If a t e rm contains an address p such that  
¢){P)fq {f ~: J : ' l p ' f  (~ A} i¢ 0, it is inconsistent 
because it means tha t  there are features tha t  should 
uot  exist at. the address.  Such an inconsistency is 
called a feature inconsistency. 

Ill addition, if a terln contains an address p such 
tha t  v(p) E X(P), it is inconsistent because it means 
tha t  tile sub te rm at p does not agree with itself. Such 
an inconsistency is called a tag illconsisteucy. 

llence, the three kinds of  inconsistency are treated 
integratedly by a relation .~ on )4 , 'S 'T  delincd as fol- 
lows. 
D e f i n i t i o n  11 For any two terms i t ,  Z2 C W.T'T ,  
tl  U 12 if and ouly if each of  them contaius at  legist 
one address p such that  

t.  r (p )  : ±,  
2. ¢ ( p ) n { f  e J l p . f  e A} ¢ O, or 
3..(p) e x(v). 
Clearly, if J~ occurs in a terln, it also occurs in all 

ternls in its ¢~-class. This  is also trne for feature incon- 
sistency and tag inconsistency, lh.'nce, the relations (~ 
and -U are such tha t  their union ~ becomes an equiv- 
alence relation. Thus ,  we call detincd the augnlented 
t - t y p e s  as follows. 
D e f i n i t i o n  12 An augmented  &-tyl)e (or ~b-tyl)e for 
short)  It] is an e lement  of  tile quotient  set, q~ := 

Syutact ic  s t ructures  of augmented  g,-tyl)es will I)e 
(:ailed augmented  ~p-ternls. An augmented  typed- 
fea ture-s t ructure  Cal l  t)e formalized as a n  anglllented 
t - t y p e .  

The  set of  type symbols  7- has the partial  order ~7- 
which denotes a subsumpt ion  relation between the 
set denoted by type symbols.  The  part ial  ordering 
on 7 can lie extended to augnmuted g~-terms and t -  
types. Tile sul)smnption orders  on )&.T"T and on 
are ilefined t~s follows. 
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D e f i n i t i o n  1 3  Let  t l  = (AI ,  r t ,  vl,~bl, Xt) and  t2 = 
(A2,r~,v2,C~,X2) be W F T s .  i l  is said to  be  sub- 
s u m e d  by t2, wr i t t en  t t  _< i2, if and  only if e i ther  
tt ~ J _ o r  

1. A~ __ A t ,  
2. K e r ( v ~ )  C_ K e r ( v l ) ,  
3. vp e Y', n(p)  _<r r~(v), 
4. Vp E 2-*, #:(p) _c ~t(p), ~nd 
5. Yp (5 5 r* ,  D i s a g r ~ , x , ( p )  C_ Disag ro~ ,x  ~ (p). 

The s u b s u m p t i o n  order  on • are  defined by [/1] _< [t2] 
if t l  _< t2 is well-defined. 

La t t i ce  ope ra t i ons  on • can  be defined to be com- 
pa t ib le  wi th  the  above s u b s u m p t i o n  o rde r  relat ion as 
follows. 
T h e o r e m  1 If  (7";_<7") is a la t t ice ,  t hen  so is ~ .  
P r o o f .  Th i s  t heo rem can  he proved in a very simi- 
lar  m a n n e r  to  the  c o u n t e r p a r t  for  A' / t -Kaci ' s  0 - t e rms .  
Therefore ,  ins tead  of p rov id ing  the  p r o o f  in detail ,  
on ly  the  defini t ions of the  least  uppe r  b o u n d s - -  
or j o i n s - - a n d  g rea tes t  lower b o u n d s ~ r  m e e t s - - a r e  
provided below. Let t t : (ml ,7" l ,P l , g ] ) l ,XI )  and  
t~ = (A~,r~,v2,ck2,X2) be W F T s .  

Fi rs t ,  the  jo in  of t~ and  t2, ta = tl V t2 = 
(Aa ,  ra,  Va, ~ba, Xa), is defined as follows: 

Aa = A l n a =  (10a)  

va : A a  ---* ~1 such t h a t  
K e r ( v a )  = ~x Nt i s ,  ( lOb) 

and  Vp E .T* 
r s (p )  = rx(p) V z  T~(p), (10c)  

~ba(p) =-- (pl(p)N~b2(p),  and  (lOd) 

XS(P) = {us(q)  I q E ( D i s a g r o , , x t ( p )  

NDisagro~,x~ (p))}.  (10e) 
Next ,  the  mee t  of t ,  and  t2, t4 = t ,  A t~ = 

(A4,  r4, v4, ~b4, X4), is defined as follows: 

A 4 = At*], ( l l a )  

v4 : A~ ~ I; such t h a t  

K e r ( v 4 )  = r[*l, ( l l b )  
and  Vp G 9 r "  

r4(p)  : VT{7"i(q)]P~pq, i : 1 , 2 } , ( l i e )  

U{~i(q)  lpnpq, i =  1,2},  ( l i d )  ~ ( v )  = 

and  

x 4 p )  = 

where  

A[ ' ]  = 

A l , , l  = 

g[.l  = 

U{v4(q)  lqaqr, 
r C (Disagrv~ ,×~(p)  

oDisagro~ .×~(P) )  }~1 le)  

co 

U At"l ,  
n=0 

{ A1 U A ~  for n = O, 

A [ ' - q  U 

{p E 9 r• I ptct ' lq,  q E A i " - q }  

for n > I, 

x["], 

n=0 

tempty V tnonempty 
X / : { }  : { } : d l i s t  

= [ i n  X S : { } : ( } : l l s t  ] 
out X9 {} {} list 

~etnp[y A ~Tlollelllpl~ 
X10 : {} : {} : d l i s t  
I Xl l  : {first} : {Xll} : list 

= it, [ f i r s t  X 1 2 : { }  : { }  : T  ] 
out Xll  

F igure  3: E x a m p l e s  of Join and  Meet. of  A u g m e n t e d  
tb-Terms 

o /£2 ) ' 

for n = 0, 

i¢['d = ~ [ , -  l] O 

{(p~ • p ,p~ .  v) I p l~ t " - ' l v2 ) ,  
for n >  1 

attd r~ ,uA~ is the  rellexive extens ion of ~i f rom Ai 
to A 1 U A 2  for i =  1, 2. 

The  condi t ions  ( l l a - l l e )  define a meet ,  t h a t  col- 
lapses  to J- whenever  condi t ions  ( l i e - - l i e )  l ) roducc 
some address  p such t h a t  t ype  inconsis tency,  fea ture  
inconsis tency,  or t ag  incons is tency  occurs  a t  p. 

T h e  V is a jo in  ope ra t i on  and A is a meet  ope ra t ion  
which are compa t ib l e  with the s u b s u m p t i o u  order  de- 
fined in Definit ion 13. [ ]  

Examples  of join and meet  ope ra t i ons  on aug-  
men ted  e - t e r m s  are shown in F igure  3. T h e  jo in  and  
meet  opera t ions  on a u g m e n t e d  ~ - types  co r re spond  
to  the  genera l iza t ion  and  unif icat ion ope ra t i ons  on 
TFSs .  

A'it-Kaei defines an ~-type as a m a x i m a l  set  of  ~b- 
types .  It is also possible to  defir, e an  a u g m e n t e d  ~- 
t ype  as a m a x i m a l  set  of a u g m e n t e d  ~b-types in the 
s ame  manne r ,  m a k i n g  d is junct ive  and  nega t ive  de- 
scr ip t ions  possible.  

3 .2  T y p e  S y m b o l  L a t t i c e  E x t e n s i o n  t o  
I n c l u d e  C o m p l e m e n t  T y p e  S y m b o l s  

q_¥eating a nega t ive  desGil ) t ion of a given type  syln-  
bol, say a ,  requires  a type  symbol  I) such  t h a t  b has 
on ly  informat ion  t h a t  unif icat ion of it with a yiekls in- 
consis tency,  or such  t h a t  a V T  h = -V and  a A T  b = ± .  
Such a symbol  is called a comp lemen t  type  symbol  of 
a and  wr i t ten  as a ~. If a given type  symbol  la t t ice  
(7-; _<7") is a Boolean  lat t ice,  t h a t  is, a comI) lcmented 3 
d i s t r ibu t ive  lat t ice,  we do no t  need to do any th ing .  
Otherwise ,  we n m s t  ex tend  the lat t ice to include the 
cmnp lemen t s  of the  type  symbols  con ta ined  in the  
given lat t ice.  

For a finite type  symbol  la t t ice  T ,  for example ,  
a Boolean la t t ice  T ~ can he cons t ruc t ed  a.s follows. 
Let  ..4 :=  {at  . . . . .  aN} be the set  of a tolns  of 7-, 
t h a t  is, t ype  symbo l s  which cover j_.4 If there  are 
, t on -a tomic  t ype  s y m b o l s  which  cover  on ly  one  sym-  
bol ,  for each such symbol  a ,  a new a t o m  is added  

aA lattice is called complemented if its all elements 
have complements.t3] 

~a is said to cover b if b <7 a attd b < 7  c <7- a 
implies e = b. 
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tsymbol: node structure 
{a type symbol} 

arcs: ~a set of arc structures) _ _  

~a set of feature symbols) 
e s :  ~ a  set of rtode structures) anoaes: 

fo~a~:  ~a .odo s.nc*nro/ I NZL 
arc structure 

[ #atn,~! I (a feat . . . .  ymbol} 
[ vM .... I {a node structure} 

Figure 4: Data Structures 

Fnnetion Unify(nodel,  node~) 
begin 

node1 := Dereference( node l ); 
node~ := Det,e]erence( node2 ); 
if node1 = node2 then 

return(node1); 
qodel .forward := node~; 
node2.tsymbol := nodel.tsymbol AT node2.tsymbol; 
if node2.tsymbol = J_ then 

return(J_) 
node2.ifeatures := nodel.i]eatures LI node~.J]eatures; 
if node2.ifeaturesr'l 

{arc.feature I arc • nodel .arcs LJ node2.arcs} 
# 0 then 

return(.L ); 
aodee.dnodes := node1 .dnodes O node2.dmMes; 
if {node1, node2} {7 node2.dnodes # ~ theai 

return(.L ); 
arcpairs := Shared-Arc-Pairs(node1, node~); 
for (arc1, arc2) in arcpairs do 
begin 

value := Unify( arcl .value, arce.value); 
if vMue = .1 .  t h e n  

return(l);  
end; 

arcs : :  Complement~Arcs(node1, node'2); 
rlodcS2.aFcs := arcs LJ llode~.arcs; 
return(node*); 

end 

Figure 5: A Destrnctive Graph Unification Function 

so that a covers all additional type symbol. The ex- 
tended lattice "T ~ is tile set of subsets of A with set 
inclusion ordering. An element {al}iet E "T' denotes 
Uie/[al] .  The join and mcct operations on T '  are 
the set-nniou and set-intersection operations, respec- 
tively. The complement of an element {ai}ie/ in T '  
is the set-complement of it with respect to .4, that is, 
{~ • .4 l a ¢ {ad,e~}. 

4 I m p l e m e n t a t i o n  o f  A u g m e n t e d  T F S  
Unification 

The unification operation for augmented 1/,-terms or 
augmented TFSs has been implemented using graph 
unification techniques. A term structure is repre- 
sented as a directed graph by assigning a graph node 
to each x-class as in Figure 2. The unification oper- 
ation for such DGs corresponds to a graph merging 
operation. This takes two DGs and merges ~-cla.sses 
of the same feature-aAdress into a n-class. 

In a destructive graph unification method, which is 
very simple, suci~ a graph is represented by tile data 
structures in Figure 4. A node structure consists of 

live fields: lsymbol  for a type symbol, arcs for a set 
of feature-vafile pairs, ifeatures for a set of inhibited 
features, dnodes for a set of disagreement nodes 
i.e., disagreement K-classes, and forward.  The field 
for'warY1 is used for the Union-Find algoritfim[9] to 
calculate unions of K-classes in tile salne nlanner ,'Lq 
lluet's algorithm[10}. By traversing two DGs' nodes 
with the same feature-address sinmltaneously, calcu- 
lating the union of their x-classes, and copying arcs, 
their unification can be calculated as in Figure 5. 

The function Unify takes two input nodes and puts 
them in a K-class by letting one input be tim forward 
field values. The flmction then examines three kinds 
of inconsistency; namely, type inconsistcncy, fea- 
ture inconsistency, and tag inconsistency. Tim fimc- 
tion finally treats arcs in order to make tile result 
graph right-cougruent. For treating arcs, tile function 
Unify assumes two fimctions, Shared_Arc_Pairs and 
Complement_Arcs .  The function Shared_Arc_Pairs 
takes two nodes as its inpnts aud gives a set of 
arc pairs each consisting of both inputs' arcs with a 
shared feature. The flmctiou Complement_Arcs  also 
takes two nodes and gives a set of arcs whose features 
exist in the first node but not in the second. 

An inhibited feature fimetion is implemented using 
tile tfeatnres field of nodes. When unification of two 
nodes results in a node witfi an arc witfi a feature in 
i features,  it yields J- because of feature inconsistency. 
A disagreement tag symbol fnnetion is implemented 
using dnodes. Unification of two nodes which have 
each other in their dnodes yields 3. because of tag 
inconsistency, q_'hese computations require negligible 
additional computation. 

qb simplify the exphmation, the destructive version 
of graph unification is used above. Other versions 
based ou more efficient graph unillcation methods 
such ;~s Wroblewski's and Kogure's method[23, 16] 
have also been developed. 1,'urthermore, it is easy 
to modify other graph unification methods[21, 6] to 
allow augmented TFSs. 

,5 Conclusion 

]'his paper has proposed an augmentatiotl of fea- 
ture structures {FSs) which introduces negative in- 
formation into FSs ill unification-based tbrmalisms. 
Unification-based linguistic formalisnm nse l".qs to de- 
scribe linguistic objects and phenotneua, l~ecanse lin- 
guistic information (:an |)e described compact ly  using 
disjunctive and uegatiw: descriptions, FSs and feao 
ture descriptions are required to treat such (lescrip- 
trans, in this paper, FSs have been augnlent.ed, using 
a promising method of fornudizat.iou, Ait-l(aci's $~ 
type, to allow three kinds of negatiw~ descriptions of 
them to be treated. 

In a formalizalion of typed feature structures, neg- 
ative descriptions can be decomposed rata three kinds 
of negations: negations of type sytnbols, negations of 
feature existences, aud llegations of feature-address 
value agreements. It. is shown thai the second and 
third kinds Call be treated by ailglncIItlllg tlrl'nl stlill% 
Lures to include structures representing such kinds of 
descriptions. Subsnmption relations on augmented 
terms are defined. It. is also shown that the first kind 
call be treated by exteuditlg type symbol lattices t() 
include complement type synd)ols. 

The proposed formalization cau provide efficient al- 
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gorithms for generalization and unification operations 
as well as treat primitive negations. The formaliza- 
tion can be integrated with logic-based frameworks 
such as [20] which can treat wider ranges of descrip- 
tions but which do not have such efficient algorithms 
for these operations. Logic-based frameworks can be 
used to obtain the data structures for this paper's 
formalization. 

Unification algorithms for augmented terms or aug- 
mented TFSs have been developed using graph uni- 
fication techniques. Unification programs based on 
these algorithms have been developed in Common 
Lisp. 

The augmentation of TFSs makes linguistic de- 
scriptions compact and easy to understand. In an 
HPSG-based grammar,  for example, non-emptiness 
of a subcat or slash feature value can be easily de- 
scribed by nsing feature-address value disagreement. 
Moreover, negative descriptions make debugging pro- 
eessss of grammatical descriptions easier. 
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