A TREATMENT OF NEGATIVE DESCRIPTIONS OF
TYPED FEATURE STRUCTURES

KIYOSHI KOGURE
NTT Basic Research Laboratories
9-11, Midori-cho 3-chome, Musashino-shi, Tokyo, 180 Japan
kogure@atom.ntt.jp

Abstract

A formal treatment of typed feature structures
(TFSs) is developed to augment TFSs, so that neg-
ative descriptions of them can be treated. Negative
descriptions of TFSs can make linguistic descriptions
compact and thus easy to understand. Negative de-
scriptions can be classified into three primitive nega-
tive descriptions: (1) negations of type symbols, (2)
negations of feature existences, and (3) negations of
feature-address value agreements. The formalization
proposed in this paper is based on Ait-Kaci’s com-
plex terms. The first description is treated by extend-
ing type symbol lattices to include complement type
symbols. The second and third are treated by aug-
menting term structures with structures representing
these negations. Algorithms for augmented-TTFS uni-
fication have been developed using graph unification,
and programs using these algorithms have been writ-
ten in Common Lisp.

1 Introduction

In unification-based or information-based linguistic
frameworks, the most important objects are struc-
tures called ‘feature structures’ (FSs), which are used
to describe linguistic objects and phenomena. A fea-
ture structure is either atomic or complex: an atomic
FS is denoted by an atomic symbol; a complex S
consists of a set of feature-value pairs each of which
describes an aspect of an object. Partial information
on an object is merged by applying the unification
operation to FSs.

Research on unification-based linguistic theories
has been accompanied by research on FSs themselves.
Several extensions on FSs or on feature descriptions
and formal treatments of the extensions have been
proposed.

Disjunctive and negative descriptions on F'Ss help
make the linguistic descriptions simple, compact, and
thus easy to understand. For disjunctive feature de-
scriptions, Kay[14] introduces them into FUG (Fune-
tional Unification Grammar) and gives the procedu-
ral semantics. Karttunen[l1] also proposes proce-
dural treatments of disjunctions in conjunction with
relatively simple negations. Rounds and Kasper[19,
13] propose a logic-based formalism—feature logic—
which uses automata to model FSs and can treat dis-
junctive feature descriptions, and they obtain impor-
tant results.

For negative descriptions of ¥Ss, one of the most
fundamental properties of FSs, the partiality of in-
formation they carry, makes its insufficient to adopt
relatively simple treatments. Classical interpretation
of negation, for example, does not allow evaluation
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of negations to be freely interleaved with unification.
Moshier and Rounds[17] proposc a formal frainework
which treats negative feature descriptions on the basis
of intuitionistic logic. However, their formalism has
trouble treating double negations. Dawar{] proposes
a formal treatment based on three-valued logic.

In order to treat feature domains of complex FSs
and to treat taxonomic hierarchies of symbolic fea-
ture values, type (or sort) hierarchies have been in-
troduced, allowing definition of typed (or sorted)
feature-structures (‘TFSs). A TFS consists of a type
symbol from a lattice and a set of feature-value pairs.
A TFS can be scen as a generalized concept of both
atomic and complex FSs. Pollard and Sag[l18) intro-
duce sorts into HPSG (Head-driven Phrase Structure
Grammar) and use sorted FSs to describe linguistic
objects.

Ait-Kaci[l] proposes au algebraic framework using
the ¥-types and e-types, one of promising formaliza-
tions of TI'Ss, based on lattice theory. This forinal-
ization was originally aimed at formalizing and -
tegrating various kinds of knowledge representation
frameworks in Al In this approach, types are defined
as equivalence classes of complex term structures, A
subsumption relation is defined on these term struc-
tures. ‘The join and meet operations on them cor-
respond to the gencralization and unification opera-
tions on TTSs, respectively. This approach essentially
adopls ‘type-as-sct’ semantics. Subtype relationships
on type correspond to subsumption relationships on
denotations of types. Based on this framework, an
extension to Prolog, LOGIN[2], has been developed.

Smolkaf20] proposes a feature logic with subsorts.
In this approach, negative descriptions can be decom-
poscd into three kinds of primitive negations, namely,
negations of sorts or complement sorts which denote
the complements of sets that positive counterparts de-
note, negations of feature existences, aud negatlons
of feature-address agreement or feature-address dis-
agreement. Smolka extends feature descriptions but
a feature-structure interpretation of an extended de-
scription does not include negative inforination and
corresponds to a simple T1'S.

Some T¥S-based natural language processing sys-
tems have been developed(7, 24, 12, 15, 8, 22]. Car-
penter and Pollard[4] propose an interface to build
type lattices.

Formalizations of extended FSs and of extended
feature-descriptions, described above, are classified
into two classes: (1) extensions of FSs themselves,
and (2) extensions not of FSs themselves but of
feature-descriptions. Previous attempts to introduece
type hicrarchies fall into the former class while pre-
vious treatments of disjunctive and negative descrip-
tions mainly fall into the latter.
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‘This paper proposes an extension to Ait-Kaci’s -
type that incorporates three kinds of the primitive
negative descriptions described below into the -type.
Ait-Kact’s ¢-type formalization uses terin structures.
In this paper, both these type structures and the type
symbol lattice on which term structures are defined
are extended to treat negative descriptions. Nega-
tions of type symbols are treated by extending type
symbol lattices, and negations of feature existences
and feature-address disagreements are treated by ex-
tending term structures. This extension cau be seen
as intuitionistic. The extension is classified into class
(1) above.

Based on this paper’s formalization, uuification al-
gorithms have been developed using graph unification
techniques{[23, 16]. Programs based on these algo-
rithms have been implemented in Common Lisp.

2 Requirements of Negative
Descriptions of TFSs

In describing linguistic information using (typed) fea-
ture structures, negative descriptions mmake the de-
scription cornpact, intuitive, and hence easy to under-
stand. For example, we want to describe the gram-
matical agreement for an English verb, say “cat” | nat-
urally as follows.

person  3rd

syn[ agreement - G\gr[ number  sg D] (1)
This description specifies compactly and directly that
it is not the case that the person attribute is third
and that the nuinber attribute is singular. 1f we
could not use such complex negative descriptions, we
would write it ustng disjunctive descriptions with sim-
ple complement types as follows.

syn| agreement  agy person -3rd] | 2)
syn| agreement  agy number —sg] |
or
syn| agreement  agy person  1st]]
sy agreement  agi person  2nd}] 3

syn agreement  agi{ number pl]]

In this case, (1) is easier to understand than (2) or
3).
( )In the above case, we can describe the informa-
tion because the complex negative descriptions can
be transformed into the disjunction of simple negative
descriptions (with an almost same intended mean-
ing) and because both person and aumber features
take their values from {1st,2nd, 3rd} and {sg,pl}.
However, it is not always the case that such transfor-
mations are possible and that feature takes its value
from a finite set.

Let us consider more complicated cases using dif-
ference lists expressed using feature structures.! The
empty list of categories is represented as follows.

. i X1 list
dlist} . ¥ {4)
In the above example, the tag symbol, X1 shows that
features in and on? must take the same value.

'In HPSG and JPSG (Japanese Phrase Structure
Grammar), a difference list is very convenient for express-
ing subcat and slash feature values.
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How can only non-emptiness be expressed? This
is impossible using complement type symbols or dis-
Junctions because we can consider the set of all finite
length lists whose elenients can be taken from infinite
sets. Direct or indirect extension of feature structures
is required.

So far, we have discussed the reguirement of nega-
tive descriptions of type symbols and of feature-value
agreements from the viewpoint of capability of de-
scribing linguistic information. There are other ad-
vantages of allowing negative descriptions. Consider,
for exanple, debugging processes of granunatical de-
scriptions by parsing sample sentences. We may ob-
tain unexpected results such as a TS with an unex-
pected type symbol, a TFS with an unexpected fea-
ture value agreement and so on. In such situations,
uegative descriptions can be useful tools for detecting
their reasons.

To ke linguistic descriptions compact and thus
easy to understand, to treat natural language effi-
ciently, and to detect error reasons rapidly, 1t is neces-
sary to develop formalizations and methods of treat-
ing negative descriptions,

3  Formal Treatment of Negative
Descriptions of TI'Ss

As stated earlier, a lyped feature structure (TFS)
consists of a type symbol and a set of feature-value
pairs. Thus, descriptions of I'FSs are classified into
descriptions of TFSs haviug:

(1) a certain type symbol (or having a subtype sym-
bol of a certain type symbol),

(2) a feature, and

(3) two feature-address values that agree.

A TFS can be deseribed by using conjunctions aund
disjunctions of such kinds of descriptions. A coujunc-
tive and disjunctive TFS can be formalized as Alt-
Kaci’s i-type and e-type, respectively, That is, a
y-type, which has a complex term structure called a
P-term as its syntax, represents a conjunction of snch
kinds of descriptions or a conjunctive typed feature
strncture, and an e-type is a maximal set of 9-types
representing the disjunction of them,

Negative connterparts of these descriptions are
classified into descriptions of "I'l'Ss:

(1) not having a certain type symbol (or having a
type symbol which is not subsumed by a certain
type symbol),

(2°) not having a certain feature, and

(3’) having two feature-address values that do not
agree.

By incorporating structures representing such neg-
ative descriptions mto a g-term, a TS with the neg-
ative descriptions can be formalized. Such a term is
called an augmented ¥-term and a type with an aug-
mented ¥-term as its syntax is called an augmented
ph-type. From augmented i-terms, an augmented ¢-
term can be constructed in the same manner that an
e-term 1s constructed from yp-terms.

Next, augmented ¥-terms and y-types are defined.
‘Term structures are first augmented with structures
represcuting inhibited features and disagreement of
feature address values. Then, type symbol lattices
are extended to include complement type symbols as
suggested in (1)
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3.1 Typed Feature Structures as
Augmented 1)-Types

In order to define complex term structures, a signa-
ture is used to specify their vocabulary. It serves as
the interface between their syntax and semantics. A
signature is formally defined as follows.

Definition 1 A signature is a quadruple (7,<s
,F,V) consisting of:

1. aset 7 of type symbols containing T and L,

- 2. a partial order <7 on 7 such that

(a) L is the least and T is the greatest element,
and

(b) every pair of type symbols a, b € 7 have a
least upper bound or join, which is denoted
by a Vr b and a greatest lower bound or
meet, which is denoted by a At b,

3. a set F of feature symbols, and

4. aset V of tag symbols
where T, F and V are pairwise disjoint.

A simple ‘type-as-set’ semantics is adopted for
these objects. That is, a type symbol in 7 denotes
a set of objects in an interpretation. Here, T and
1 denote the sets called the universe, written as U,
and the empty set @, respectively. Another element
a denotes a nonempty subset of U, written as [a].
The partial order <7 denotes the subsumption rela-
tion between these sets; for any type symbols a, b,
and ¢,

1. a <7 b if and only if {a} C {b],

2. aVr b = cif and only if fa] U [b] = [c], and

3. aAr b =c if and only if [a] N [b]} = [e].

A feature symbol denotes a function from a subset
of U to U. A feature path is a finite string of feature
symbols and denotes the function obtained by the
composition of the functions that the feature symbols
denote.

A term is defined from a signature. First, a term
domain is defined as a skeleton built from feature
symbols,

Definition 2 A term domain A on F is a set of finite
strings of feature symbols in F (including the empty
string ¢) such that

1. Ais prefix-closed: Vp, g€ F*,if p-g € A, then

p € A; and
2. A is finitely branching:
Flp-f€ A} is finite
where ‘- is the string concatenation operator.

An element of a term domain is called a feature
address or a feature path. By definition, the empty
string € must belong to all term domains and is called
the root address. A term domain is represented by
a rooted directed graph within which each arc has a
feature symbol as its label.

A subdomain of a term domain, corresponding to

a subgraph, is defined as follows.
Definition 3 Given a term domain A and a feature
address p € A, the subdomain of A at p is defined to
be the term domain A/p := {p'|p p’ € A}. The set
of all subdomains of A is denoted by Subdom(A).

Next, flesh is put on the term structure’s skele-
ton as defined as a term domain by assigning several
kinds of objects to each feature address. Ait-Kaci’s
term structure, the basis of the y-type, is defined by
assigning a type symbol and a tag symbol to each
feature address as follows,

if p € A, then {f €
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Definition 4 A term is a triple {A, 7, v) where A is
a term domain on F, 7 is a type symbol function from
F* to 7 such that 7(F* — A) = {T}, and v is a tag
symbol function from A to V.

Given a tag symbol function v, Addr, denotes the
function from a tag symbol to the set of addresses:

Addr,(X) = {peA|u(p)=X}. (5)
In order to treat negations of feature existences and
feature-address value disagreement, the term struc-
ture defined above is augmented by assigning addi-
tional objects, a set of inhibited features and a set of
disagreement tag symbols, to each feature address.
Definition 5 An augmented term is a quintuple
{A,7,v,¢,x) where A is a terma domain on F, 7
i8 a type symbol function from F* to 7 such that
r(F* — A) = {T}, v is a tag symbol function from
A to V, ¢ is an inhibited feature function from F*
to 2% such that ¢(p) is finite for any p € A and
#(F* — A) = {#}, and x is a disagrecment tag sym-
bol function from F* to 2 such that x(p) is finite
for any p € A and x(F* - A) = {#}.?
The inhibited feature function ¢ specifies which fea-
tures cannot exist at a given address. There is thus
inconsistency if there is an address p in A such that

ep)n{feF|p-feA} # 0 (6)
The disagreement tag symbol function x specifies,
for a given address, substructures with which its ar-
gument disagrees. There is thus inconsistency if there
is an address p in A such that

v(p) € x(p) (M

The disagreement address function Disagr, , from

A to 277, based on v and x, takes an address as its
argument, and gives the set of addresses with which
the argument address must disagree, called the dis-
agreement address set and defined as:

\J Addry(X). (8)
Xex(p)

Augmented terms are hereafter referred to simply
as terms unless stated otherwise.
Definition 6 Given a termt = (A, 7,v,¢,x) and a
feature address p in A, the subterm of ¢ at the address
p is the term t/p = (A/p,v/p,v/p,¢/p,x/p) where
Tip  Fr =T, vfp:Alp—V, ¢/p: F* — 2%, and
x/p: F* — 2V are defined by

Disagr, ,(p) =

(r/p)q) = r(p-9). (9a)
(v/p)g) = o(p-9q) (9b)
(¢/p)q) = o(p-9), (9¢)
(x/p)ie) = x(p-9) (9d)

For atermt = (A,7,v,¢,X), a type symbol a (sim-
ilarly, a tag symbol or a term t’) is said to occur in ¢
if there is a feature address p in A such that 7(p) = a
(stmilarly, v(p) = X or X € x(p),or t/p =1t').

Atermt = (A, 1,v,,x) is said to be regular if the
set of all subterms of t, Subterm(t) := {t/p|p €
A}, is finite. Hereafter, we will consider only regular
terms. In a regular term, only finite numbers of type
symbols and tag symbols occur.

2For any set S, 25 denotes the set of subsets of S.
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Lempty
X1:{}:{}:dlist
= [in X2:{first}: {}:T ]
out X2

tronempty
X3:{}:{}:dlist
- [’," X4 : {}: {X6} :list- :l

out X6:{}:{X4}:list

Figure 1: Examples of Augmented Terms in Matrix
Notation

tnonempty

X3:{}:{}:dlist

Lempty

X1:{}:{}:dlist

in

X4:(}:{x6}
X2:{first}: {} list
list first

X5:{}:{}
T

Tx6:(): (X4}
list

Figure 2: Examples of Augmented Terms in Directed
Graph Notation

In a term, any two feature addresses bearing the
same symbol are said to corefer. Thus, the corefer-
ence relation k of a term is a relation defined on A as
the kernel of the tag functioun v; i.c., x 1= Ker(v) =
v~low. lere, & is an equivalence relation and a &-
class is called a coreference class.

Definition 7 A term { is referentially consistent if
the same subterm occurs at all feature addresses in a
coreference class.

If a term is referentially consistent, then by defini-
tion, for any py, p2 € A, if v(p1) = v(p2) then, for all
P such that p1-p €A, it follows that py -p € & and
v(py - p) = v(p2 - ). Therefore if a term is referen-
tially consistent., K is a right-invariant equivalence or
right-congruence on A. That is, for any p;, ps € A,
if pispa then (py - p)r(ps - p) for any p such that
nopEA.

Definition 8 A well-formed term (wft) is a
referentially-consistent regular term. The set of all
well-formed terms is denoted by WFT .

A term can be represented in matrix notation. Ex-
amples of terms are shown in Figure 1. In this figure,
T, dlist and list are type symbols, in, out and first
are feature symbols, and X1, X2, ... arc tag sym-
bols. A matrix represents a set of feature-value pairs
preceded by a tag symbol, followed by a set of inhib-
ited features and followed by a set. of di‘:agreement tag
symbols. In the term Lempty) its subterms at in and at
out corefer while Lnanempry 15 a term in which its sub-
terms at in and at ouf should not corefer. The term
tempty should not have the feature address in - first
while ¢ onempty has that address.

A term can also be represented by directed graphs
(DGs). Lempty and tuonempry in Figure 1 are shown as
DGs in Figure 2.
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The set WFT of well-formed terms inchides many
terms that have the same type symbol [unction, the
same coreference relations, the same inhibited feature
function, and the same disagreement address func-
tion but different tag symbol functions. These terms
have the same information and can describe the same
linguistic object or the same linguistic phenomena.
These terms construct equivalence classes by renam-
ing tag symbols in a certain manner.

Definition 9 Two terms ¢ = (A, 7, v1,¢1,X1)
and {5 = (Ag, T2, v2, 62, x2) are alphabetical variants
of each other if and only if

LAy = Ay,

2. Ker{ty) = Ker{v,),

3. 7T =79,

4. ¢y = ¢g, and

5. Disagr,, ,, = Disagr,, ...

This is written as {; aty.

According to ‘type-as-set’ semantics, the symbols
T and L denote, respectively, the least informative
type- -the whole universe U—-and the overdefined or
inconsistency type—the empty set #. Therefore, a
term containing L should be interpreted as inconsis-
tent. Such an inconsistency is called a type inconsis-
tency. ‘To treat such inconsistency, a relation | on
WFT is defined as follows.

Definition 10 For any two terms {y, 19 ¢ WFT,
ty 1 2 if and only if L occurs in both ¢ and 1,.

There are other kinds of inconsistency as mentioned
earlier. If a term contains an address p such that
¢lp)N{f € F|lp f € A} # B it 1s inconsistent
because it means thab there are features that should
not exist at the address. Such an inconsistency is
called a feature inconsistency.

In addition, if a terin contains an address p such
that v(p) € x(p), it is inconsistent because it means
that the subterm at p does not agree with itself. Such
an inconsistency is called a tag inconsistency.

Tence, the three kinds of incousistency are treated
integratedly by a relation { on WFT defined as fol-
lows.

Deofinition 11 For any two terms {;, {, €¢ WFT,
t, § ty if and only if cach of them contains atb least
one address ]) such that

L T(;)

2. ¢(p ﬂ{fcf!p fen}#0 o

3. v(p) € x(p)-

Clearly, if 1 occurs 1u a term, it also oceurs in all
terms in its a-class. This is also true for feature incon-
sistency and tag inconsistency. Hence, the relations «
and |} are such that their union ~ becomes an equiv-
alence relation. ‘Thus, we can defined the augmented
P-types as follows,

Dcfinition 12 An augmented y-type (or -type for
short) {t] is an element of the guoticut set ¥ =
WFT ] ~.

Syntactic structures of augmented ¥-types will be
called augmented y-terms.  An augmented typed-
feature-structure can be formalized as an augmented
P-type.

T'lie set of type symbols 7 has the partial order <4
which denotes a subsumption relation between the
set denoted by type symbols. The partial ordering
on 7 can be extended to augmented ¥-terms and ¢-
types. The subsumption orders on WFT aud on &
arc defined as follows.
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Definition 13 Let t; = {A;, 71, v1,61,X1) and tp =
(A2, 72, v2,¢3,X2) be WFTs. 1, is said to be sub-
sumed by t3, written #; < 15, if and only if either
ty~ Lor

1. As C Ay,

2. Ker(vs) C Ker(vy),

3. ¥p € 7', ni(p) <7 malp),

4. Vp € F*, ¢2(p) € 61(p), and

5. Vp € F*, Disagr,, ,.(p) C Disagr,, ., (p).
The subsumption order on & are defined by [t1] < [t2]
if t; <ty is well-defined.

Lattice operations on ¥ can be defined to be com-
patible with the above subsumption order relation as
follows.

Theorem 1 If (T;<r) is a lattice, then so is &.
Proof. This theorem can be proved in a very simi-
lar manner to the counterpart for Ait-Kaci’s ¢)-terms.
Therefore, instead of providing the proof in detail,
only the definitions of the least upper bounds—
or joins—and greatest lower bounds—or meets—are
provided below. Let ¢; = (A, 7i,v1,¢1,x)) and
1y = (Ag,72,v2, ¢2, X2) be WFTs.

First, the join of t; and {3, &3 = HL Viz =
(A3, 73, V3, ¢3, Xa), is defined as follows:

Az = ANA, (10a)
vy : Az — V such that
Kel‘(Ua) = K1 NKy, (IOb)
and Vp € F*
na(p) = m(p) Vr 2(p), (10c)
¢3(p) = ¢1(p)Ng2(p), and (10d)
xa(p) = {va(e)|q € (Disagr,, ,(»)

NDisagr,, ., (7))}. (10e)
Next, the meet of t; and iz, t4 = ) Aty =
(A4, T4, Va, P4, Xa), i8 defined as follows:

Ay = AV (11a)
vg @ Aq — V such that
Ker(vy) = «, (11b)
and Yp € F°
ra(p) = V. {n(@)prpe,i=12} (110)
¢alp) = |J{oi(a)Iprpe,i=1,2}, (11d)
and
xa(p) = (Hvalo) ] gxer,
r € (Disagr,, ,,(p)
UDisagruLx,(p))](lle)
where
Al = U Alnl,
n=0
AyU A, forn =0,
A‘"] _ A[n—l] U
{p € F | pallg, g€ A1)
forn > 1,
K= U Lok
n=0
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tempty V tnonempty
X7:{}:{}:dlist
= [m X8:{}:{}:|ist]
out  X9:{}:{}:list
tempty A Lnonempry
X10: {} : {} : dlist
_ . X11: {firat} : {X11} : list
= m [first X12:{}:{}:T ]
oul Xl1
1

24

Figure 3: Examples of Join and Meet of Augmented
¥-Terms

Unsalw27 0 80717,

forn=0,
sl = xin-tly
{{pr - p.p2 - p) | Al Mp2},
forn>1
and »?‘UA’ is the reflexive extension of &; from A;

to Ay UA, fori=1, 2.

The conditions {11a-11e) define a meet, that col-
lapses to L whenever conditions (1lc-1le) produce
some address p such that typec inconsistency, featurc
inconsistency, or tag inconsistency occurs at p.

The V is a join operation and A is a meet operation
which are compatible with the subsumption order de-
fined in Definition 13.

Examples of join and meet operations on aug-
mented y-terms are shown in Figure 3. The join and
meet operations on augmented y-types correspond
to the generalization and unification operations on
TFSs.

Ait-Kaci defines an e-type as a maximal set of ¢-
types. It is also possible to defire an augmented ¢-
type as a maximal set of augmented y-types in the
same manner, making disjunctive and negative de-
scriptions possible.

3.2 Type Symbol Lattice Extension to
Include Complement Type Symbols

Treating a negative description of a given type sym-
bol, say a, requires a type symbol b such that b has
only information that unification of it with a yields in-
consistency, or such that aVyh = T andaArb = L.
Such a symbol is called a complement type symbol of
a and written as a’. If a given type symbol lattice
(T; <7) is a Boolean lattice, that is, a complcmcnted3
distributive lattice, we do not need to do anything.
Otherwise, we must extend the lattice to include the
complements of the type symbols contained in the
given lattice.

For a finite type symbol lattice 7, for example,
a Boolean lattice 7’ can be constructed as follows.
Let A := {a,...,an} be the set of atoms of 7,
that is, type symbols which cover L.* If there are
non-atomic type symbols which cover only one sym-
bol, for each such symbol a, a new atom is added

3 A lattice is called complemented if its all elements
have complements.[3]

‘ais said to cover bifl b <7y aand b <7 ¢ <r &
implies ¢ = b.
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node structure
taymbol: {a type symbol}
arcs: (a set of arc structures)
ifeatures: {a set of feature symbols)
dnodes: {a set_of node structures)
Jorward: {(a node structure} [NTI,
arc structure
eature: [ {a feature symbol)
value: | (a node structure)

Figure 4: Data Structures

Function Unify(nodel, node2)
begin
nodel = Dereference(nodel);
node? 1= Dereference(node2);
if nodel = node2 then
return(nodel);
nodel . forward = node?;
node2.tsymbol := nodel .tsymbol Ar node2.tsymbol;
if node2.tsymbol = | then
return(Ll)
node2.ifeatures := nodel.sfeatures U node?2 .ifeatures;
if node2.ifeaturesn
{arc.feature | arc € nodel .arcs U node2.arcs}
# 8 then
return(L);
node2.dnodes := nodel.dnodes U node2.dnodes;
if {nodet, node2} N node2.dnodes 3£ & then
return(.L);
arcpairs 1= Shared_Arc_Pairs(nodel, node2);
for (arcl, arc2) in arcpairs do
begin
value := Unify(arcl .value, arc?.value);
if value = 1. then
return{L);
end;
arcs ;= Complement._Arcs(nodel, node2);
node2.arcs = arcs U node2.arcs;
return(node2);
end

Figure 5: A Destructive Graph Unification Function

so that a covers an additional type symbol. The ex-
tended lattice 77 is the set of subsets of A with set
inclusion ordering. An element {a;};e; € 7' denotes
Uieslail. The join and mect operations on 7' are
the set-union and set-intersection operations, respec-
tively. The complement of an element {a;};es in 7'
is the set-complement of it with respect to A, that is,

{aeA]ad{ailies)

4 Implementation of Augmented TFS
Unification

The unification operation for augmented t-terms or
augmented TFSs has been implemented using graph
unification techniques. A term structure is repre-
sented as a directed graph by assigning a graph node
to each x-class as in Figure 2. The unification oper-
ation for such DGs corresponds to a graph merging
operation. This takes two DGs and merges &-classes
of the same feature-address into a r-class.

In a destructive graph unification method, which is
very simple, such a graph is represented by the data
structures in Figure 4. A node structure consists of
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five fields: tsymbol for a type symbol, arcs for a set
of feature-value pairs, ifeatures for a set of inhibited
features, dnodes for a set of disagreement nodes—
i.c., disagreement s-classes, and forward. The field
forward is used for the Union-Find algorithm[9] to
caleulate unions of k-classes in the same manner as
Huet’s algorithm([10]. By traversing two DGs’ nodes
with the same feature-address simultancously, calcu-
lating the uniou of their x-classes, and copying arcs,
their unification can be calculated as in Figure 5.

The function Unify takes two input nodes and puts
them in a k-class by letting one input be the forward
ficld values. The function then examines three kinds
of inconsistency; namely, type inconsistency, fea-
ture inconsistency, and tag inconsistency. The func-
tion finally treats arcs in order to make the result
graph right-congruent. For treating arcs, the function
Unify assumes two functions, Shared _Arc_Pairs and
Complement_Arcs. The function Shared_Arc.Pairs
takes two nodes as its inputs and gives a set of
arc pairs each consisting of both inputs’ arcs with a
shared feature. The function Complement_Arcs also
takes two nodes and gives a set of arcs whose features
exist in the first node but not in the second.

An inhibited feature function is implemented using
the tfeatures field of nodes. When unification of two
nodes results in a node with an arc with a feature in
ifeatures, it yields L becuuse of feature inconsistency.
A disagreement tag symbol function is implemented
using dnodes. Unification of two nodes which have
cach other in their dnodes yields 1. because of tag
inconsistency. These computations require negligible
additional computation.

To simplify the explanation, the destructive version
of graph unification is used above. Other versions
based on more efficient graph unification methods
such as Wroblewski’s and Kogure’s method[23, 10]
have also been developed. l‘urthermnore, it is easy
to modify other graph unification methods[21, 6] to
allow augmented TFSs.

5 Conclusion

This paper has proposed an augmentation of fea-
ture structures (F'Ss) which introduces negative in-
formation into I'Ss in unification-based formalisms.
Unification-based linguistic formalisms use F'Ss to de-
scribe linguistic objects and phenomena. Because lin-
guistic information can be described compactly using
disjunctive and negative descriptions, I'Ss and fea-
ture descriptions are required to treat such descrip-
tions. In this paper, FSs have been augimented, using
a promising method of formalization, Ait-Kaci’s -
type, to allow three kinds of negative descriptions of
them to be treated.

In a formalization of typed feature structures, neg-
ative descriptions can be decomposed into three kinds
of negations: negations of type symbols, negations of
feature existences, and negations of feature-address
value agreements. It is shown that the second and
third kinds can be treated by augmenting term struc-
tures to include structures representing such kinds of
descriptions. Subsumption relations on augmented
termns are defined. It s also shown that the first kind
can be treated by extending type symbol lattices to
include complement type syimbols.

‘The proposed formalization can provide efficient al-
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gorithms for generalization and unification operations
as well as treat primitive negations. The formaliza-
tion can be integrated with logic-based frameworks
such as [20] which can treat wider ranges of descrip-
tions but which do not have such efficient algorithms
for these operations. Logic-based frameworks can be
used to obtain the data structures for this paper’s
formalization.

Unification algorithms for augmented terms or aug-
mented TFSs have been developed using graph uni-
fication techniques. Unification programs based on
these algorithms have been developed in Common
Lisp.

The augmentation of TFSs makes linguistic de-
scriptions compact and easy to understand, In an
HPSG-based grammar, for example, non-emptiness
of a subcal or slash feature value can be easily de-
scribed by using feature-address value disagreement.
Moreover, negative descriptions make debugging pro-
cesses of grammatical descriptions easier.
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