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Abstract

In this paper, a discrimination and robusimess
oriented adaptive leaming procedure is proposed to
deal with the task of syntactic ambiguity resolution.
Owing to the problem of insufficient training data
and approximation error introduced by the language
model, traditional statistical approaches, which re-
solve ambiguities by indirectly and implicitly using
maximum likelihood method, fail to achieve high
performance in real applications. The proposed
method remedies these problems by adjusting the
parameters to maximize the accuracy rate directly.
To make the proposed algorithm robust, the possi-
ble variations between the training corpus and the
real tasks are also taken into consideration by en-
larging the separation margin between the correct
candidate and its competing members. Significant
improvement has been observed in the test. The
accuracy rate of syntactic disambiguation is raised
from 46.0% to 60.62% by using this novel approach.

1. Introduction

Ambiguity resolution has long been the focus in
natural language processing. Many rule-based ap-
proaches have been proposed in the past. However,
when applying such approaches to large scale appli-
cations, they usually fail to offer satisfactory perfor-
mance. As a huge amount of fine-grained knowl-
edge is required to solve the ambiguity problem, it
is quite difficult for rule-based approach to acquire
the huge and fine-grained knowledge, and maintain
consistency among them by human [Su 90a].

Probabilistic approaches attack these problems
by providing a more objective measure on the pref-
erence to a given interpretation. Then, these ap-
proaches acquire huge and fine grained knowledge,
or parameters in statistic terms from the corpus au-
tomatically. The uncertainty problem in linguistic
phenomena is resolved on a more solid basis if a
probabilistic approach is adopted. Moreover, the
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knowledge acquired by the statistical method is al-
ways consistent because the knowledge is acquired
by jointly considering all the data in the corpus at
the same time. Hence, the time for knowledge ac-
quisition and the cost to maintain consistency are
significantly reduced by adopting those probabilis-
tic approaches.

To resolve the problems resulting from syntac-
tic ambiguities, a unified statistical approach for am-
biguity resolution has been proposed by Su [Su 88,
92b). In that approach, all knowledge sources, in-
cluding lexical, syntactic and semantic knowledge,
are encoded by a unified probabilistic score function
with a uniform formulation. This uniform proba-
bilistic score function has been successfully applied

" in spoken language processing [Su 90b, 91b, 92a)

and machine translation systems [Chen 91] to in-
tegrate different knowledge sources for ambigvity
resolution.

In implementing this unified probabilistic score
function, values of score functions are estimated
from the data in the training corpus. However, duc
to the problem of insufficiency of training data and
incompleteness of model knowledge, the statistical
variations between the training corpus and the real
application are usually not covered by this approach.
Therefore, the performance in the testing set some-
times gets poor in the real application.

To enhance the capability of discrimination
and robusiness of those proposed score function,
a discrimination-oriented adaptive leaming is pro-
posed in this paper. And then, the robustness of this
proposed adaptive lcaming procedure is enhanced
by enlarging the margin between the correct candi-
date and its confusing candidates to achieve maxi-
mum separation between different candidates.

Since the implementation of this adaptive learn-
ing procedure is based on the uniform probabilistic
score function, we will first briefly review the uni-
fied probabilistic score function. Readers who are
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interested in the details about the uniform proba-
bilistic score function please refer [Chen 91, Su
91b, 92a, 92b].

2. Overview of Uniform Probabilistic
Score Function

2.1. General Definition

A Score Function for a given syntactic tree, say
Synj, is defined as follows:

Score (Syn,) = P (Syn,, Lex, | wl'), [¢))]

where w} is the input word sequence, w] =
{wy,wg, -+, we}, and Lex;, the correspond-
ing lexical string, i.c., part of speech sequence
{€j,,€4y2 "+ ¢j, |+ By applying the multiplication
theorem of probability, P (Syn,, Lex, | w?) can be re-
stated as follows.

P (Syn,, Lexy | wy')
= P(Syn; | Lex,,wy') x P(Lex, | wy') (2)

= Sagn (Synj) X Stex (Lex,).

The two components, S,,. (Syn;) and Sie. (Lex,), in
the above formula are called syntactic Score Func-
tion and Lexical Score Function, respectively. The
original score function, i.c., P(Syn,,Lex,|w}), is
then called Integrated Score Function.

Next, we assumc the information, from the
word sequence w}, required for syntactic ambigu-
ity resolution, haq pcrcolalcd to the lexical inter-
pretation Lez;. Also, only little addilional infor-
mation can be provided from wi for the task of
disambiguating syntactic mu:rpmtallon Syn, after
the lexical interpretation Lew; is given. Thus, the
syntactic score can be approximated as shown in
Eq.(3):

P (Syn; | Lex,).

(3)
The integrated score function P (Syn,, Lez, | w}) is
then approximated as follows.

Seun (Syns) = P(Syn, | Lex,, wi') =

P {Syny, Lex, | u))
w2 P (Syn; | Lex,) x P(Lex, | w)')

)

Such a formulation allows us to usc both lexical
and syntactic knowledge in assigning preference
measure to a syntactic tree. In the real computation,
log operation is used to convert the operations of
multiplication to the operations of addition. The
following cquation shows the final form in the real
application.

log P (Syn,, Lex, | wy')
(5)
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= log Sayn (Syn;)+10g Siex (Lez;) .

2.2. Lexical Score Kunction

Let ¢ ko denote the k-th sequence of the lexical
category, or pdn of speech, corresponding to the
word sequence wy. The Lexical Score Function can
be cxpressed as follows [Chen 91, Su 92b]:

Stex (Lewy) = I (Lexi f wl) = P (cip | w})

= H P (ck, | ck;».x,w;') , ©®
=1

where ¢y, is the lexical category of w;.  Sev-
eral forms |Gars 87, Chur 88, Su 92b] for
P (ck‘ | -1, wl) were proposed to simplify the
computation. For example, [Chur 88] approximalcd
P (c; ]ck, .,w])by [P(c; feye- .) x Plek, | wi)|.
general nonlincar smoothing fonn [Chen 91] dc-
scribed in Eq.(7) is adopted in this paper:

g (P (cx, | ox_yiwi))

()]
2 AG (P {ex, | wi))+ (1~ A)g(ex, | ok_,),

where A is the Iexical weight (A = 0.6 is used in the
current setup), and g is a transform function (log ()
is used in this paper). Hence, given both Eq.(6) and
(7), the following formula is derived:

log (Stex (Lexi))

= Z {Xlog P (cx, lwi) + (1 — M) log P (ck,lex,_, )} -

= ®
It is noted that the above generalized form reduced
to the formulation of [Chur 88] when the transfonn

function is log function and A is 0.5.

2.3. Syntactic Score Function

To show the computing mechanism for the syn-
tactic score, we take the syntax tree in Fig.1 as an
example. The syntax tree is decomposed into a
number of phrase levels. Each phrase level (also
called a sentential form) consists of a set of sym-
bols (tcrminal or nonterminal) which can derive all
the terminal symbols in a sentence. Let label t; in
Fig.1 be the time index for cach state transition of a
LR parser, and L; be the i-th phrase level. Thus, a
transition from phrase level L; to phrasc level Liy
is equivalent to a redue action at time ;.

A ACTION
7 .
/\ 18 (A | Rodues kit
B c 7= (B, 3
VA VAN
15=(m .
D EoR G A= {p,
=(n, B,
TR Y TR e
c, Cy Cy c, U=lo, oo, c4d

Figure 1 The decompoesition of a syntax tree
into phrase levels.
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The syntactic score of the syntax tree in Fig.1

. Categor
is then defined as Word (part n?gspe!;dl) log P(c|w)
Sagn (syna) = P(Lg, Lr,--+, La | Ln) 1 pron (pronoun) -0.22
8 8 n (noun, -0.39
=HP(L.-|L;“'>zHP(L.lL._x), - (",, )
ie2 o2 vi (intransitive verb) -0.52
© saw vt (transitive verb) 0.16
where syny is the parse trec, and L through Lg ot (article) 002
represent different phrase levels. Note that the prod- 2 prep (preposition) 130
uct terms in the last formula correspond to the right- —
. . . man 1 (noun) 0
most derivation sequence in a general LR parser [Su -
91c], with left and right contexts taken into account. Table 1 Categories for words and their log
Therefore, such a formulation is especially useful word-to-category scores.
for a generalized LR parsing algorithm, in which In Table 1, the log word-to-category score,
context-sensitive processing power is desirable. log (P (¢ | w)), for each word is estimated from the

Although the context-sensitive model in the training corpus by calculating their relative frequen-
above equation provides the ability to deal with cies. For example, in the training corpus, the word
intra-level context-sensitivity, it fails to catch inter-  "'I" is used as pronoun for 60 times, and 40 times
level correlation. In addition, the formulation of s roun. Then, the log word-to-category scores can
Eq.(9) gives rise to the normalization problem for be calculated as follows.
ambiguous syntax trees with different number of

nodes. An altemative to relieve this problem is log, P (pron | {I}) = log,, (so_ﬁoﬁ) = -0.22,
to compact multiple highly correlated phrase levels 40+ (11)
into one in evaluating the syntactic scores. The log,o P (n | {I}) = log,o (m) = —0.39.

formulation is expressed as follows [Su 91c]:

In this example, there arc 2*2*2*1=8 possible dif-
ferent ways to assign lexical categories to the input
m P (Ls, Lz, Lo [ La) % P (Ls | Le) 5 P (L, L | L2) % P (L2 | Likentence. When these 8 possible lexical sequences
~ P(La|Lsy x P(Ls | Lu) x P(Ls| Lz} x P (L | Ly) are parsed, only four of them arc accepted by our
parser. They are listed as follows:

Ssyn (8yna}

(10)
Because the number of shifts, i.c., the number of
terms in Eq.(10), is always the same for all am-
biguous syntax trees, the normalization problem
is then resolved. Moreover, it provides a way
to consider both intra-level context-sensitivity and
inter-level correlation of the underlying context-free ~ The syntactic scores of different parse trees are

1. pron vt art n
2. nvtartn

3. pron vi prep n
4. nvi prep n.

grammar. With such a score function, the capabil- then calculated according to Eq.(10). A patse tree
ity of context-sensitive parsing (in probability sense) corresponding to the lexical sequence “[pron vt art
can be achieved with a context-free grammar. n]” is drawn below as an example.

3. Discrimination and Robustness Oriented S

Adaptive Learning N
NP vp
3.1. Concepts of Adaptive Learning

The gencral idea of adaptive learning is to ad- ey e
just the model parameters (in this paper, they arc /\
lexical scores and syntactic scores) to achieve the
desired criterion (in our case, it is to minimize the
error rate). To explain clearly how the adaptive
learning works, we take the sentence “I saw a man.”
as an cxample. The lexical category (i.e., part of
speech) and its corresponding log score for each
word are listed in Table 1.

art n

The log syntactic scores for those four grammatical
inputs are computed and listed in Table 2.
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Input Lexical Sequence log syniactic score
O (D3H(03)+(0.2) = -1.5

(-D.2)+(DIN-03}(-02) = -1.0

[pron vt art n}
-

[n vt art n}

parameters of the syntactic scores are adjusted. The
details of adaptive leaming for adjusting syntactic
scores are listed as follows:

1Hialrnth
nit

[pron vi prep n} OTH0TH(0.41(-03) = 2.1

didate -1. & syntactic score = [-0.7 -0.3 -0.3 .0.2] = -1.5,

[n vi prep n} (-0.2) +(-0.7)H{-041(-03) = -1.6
Table 2 log syntactic scores of the grammatical
input lexical sequences.

According to Eq.(5), the total log integrated
score (log Spe,+10gSsyy) for cach parsed sentence
hypothesis is calculated. For example, the log lexi-
cal score for “¥fpron] saw/[vt] a/[art] man/[n]” = (-
0.22-0.16-0.02-0)= -0.4. Finally, the log integrated
scores for the above grammatical inputs arc listed
as follows:

candidate -/, log integrated score = (-0.40-1.5 = -190) :
Y{pron] saw/[vt] a/{art] man/[n}

candidate -2.  log integrated score = (-(.57-1.0 = -1.57) : [/[n]
saw/[vt} aflart] man/[n]

candidate -3. log integrated score = (-2.04-2.1 = 4.71) :

Y/{pron] saw/[vi] a/[prep] man/{n}
candidate 4. log integrated score = (-2.21-1.6 = -3.81) : J/[n]
sawf{vi] a/[prep] man/[n]

Among these four candidates, the candidate 1 is
regarded as the desired selection by linguists. Since
our decision criterion will select the candidate which
has the highest integrated score, i.c., the second one;
I/[n] saw/[vt] a/[art] man/[n], it results in a decision
error in this case.

To remedy this error, adaptive leaming proce-
durc is adopted to adjust the score values iteratively,
including lexical and syntactic scores, until the inte-
grated score of the correct candidate (i.e., candidate
1) raises to the highest rank. In this paper, parame-
ters which arc adjusted by adaptive learning proce-
dure are those log scores, including log P (¢y, | w;),
log P (cki 1ck,_,) and log P (Li | L’;‘). The
amount of adjtislmcm in each iteration depends on
the misclassification distance. Misclassification dis-
tance is defined as the difference between the score
of the top candidate and that of the correct one.
(In the above cxample, distance = (score of cor-
rect candidate)-(score of top candidate) = (-1.90)-
(-1.57)= -0.33). From iteration to iteration, the
parameters (both lexical and syntactic scores) are
adjusted so that the integrated score of the correct
candidate is increased, and the integrated score of
the wrong candidate is decreased at the same time.
The leaming procedure for a sentence is stopped
when the candidate of this sentence is correctly se-
lected. To make the explanation of this adaptive
learning procedure clear, we assume lexical scores
arc unchanged during leaming. That is, only the
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log integrated score = -1.9;

candidate 2. ° syatactic score = [-0.2 -0.3 -0.3 -0.2] = -1,0,
log integrated score = -1.57;
candidate -3.  syntactic score = [-0.7 -0.7 -0.4 -0.3] = -2.1,

log integrated score = -4.71;
syntactic score = (-0.2 -0.7 -0.4 -0.3] = -1.6,
log integrated score = -3.81;

candidate 4.

Iteration 1
candidate -{. & syntactic score = [-0.5 -0.3 -0.3 -0.2) = -1.3,
log integrated score = -1.7;

candidate -2. ° syntactic score = {-0.3 -0.3 .03 -0.2] = -1.1,
log integrated score = -1.67;
candidate -3.  syntactic score = [-0.5 -0.7 -0.4 -0.3] =-1.9,

log integrated score = -3.94;
syntactic score = [-0.3 -0.7 -0.4 -0.3] = -1.7,
log integrated score = -3.91;

candidate 4.

Iteration 2
candidate -1. & syntactic score = [-0.2 -03 0.3 -0.2] = -1.0,
log integrated score = -1.4;
(stop learning)

candidate -2, syntaclic score = [-0.6 -0.3 -0.3 -0.2] = -1.4,
log integrated score = -1.97;

candidate -3.  syntactic score = [-0.2 -0.7 -0.4 -0.3) = -1.6,
log integrated score = -3.64;

candidate 4.  syntactic score = [0.6 -0.7 -0.4 -0.3] = -2.0,

log intzgrated score = -4.21;

(where * denotes the top candidate, and A denotes the desired
candidate)

It is clear that after the second iteration, parameters
have been adjusted so that the desired candidate
(i.e., candidate 1) would be selected.

3.2. Procedure of Discrimination Learning

Since correct decision only depends upon cor-
rect rank ordering of the integrated scores for all
ambiguitics, not their real valuc, a discrimination-
oriented approach should directly pursue comect
rank ordering. To derive the discrimination func-
tion, the probability scorcs mentioned above are first
jointly considered. Then, a discrimination-oriented
function, namely g (-}, is defined as a mcasurement
of above mentioned score functions, so that it can
well prescrve the comect rank ordering [Su 91a].
Here, g(-) is chosen as the weighted sum of log
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lexical and log syntactic scores, i.c.,

g(Syny)
= Wiey - 108 Stex (Lezk) + Wayn + 108 Seyn (Synk)

"
= Wiey * i: log P (Ckllck;-—l s w{') + Woyn Z log P (I,.lL;"])
i=1 =1

= Wiaz + 3 Mex (i) + wagn - 3 Aayn (),

§=1 =1 (12)
where A (i) = logP(ck_lck;_n,w}‘), and Ay (i) =
log P (Li|Li™*) . Both stand for the log lexical score
and the log syntactic score of the i-th word for the
k-th syntactic ambiguity, respectively. In addition,
Wieg and Weyy correspond to the weights of lexical
and syntactic scores, respectively.

If the parse trec of a sentence is misselected,
the parameters (i.e., the lexical and the syntaclic
scores) are adjusted via the proposed adaptive learn-
ing procedure. Otherwise, no parameters would be
adjusted. When misselection occurs, the misclassi-
fication distanice, d, is less than zero. This mis-
classification distance is defined as the difference
between the log integrated score of the correct can-
didate and that of the top one. A specific term of
the syntactic score components in the (141 )-th itera-
tion of the correct candidate, say ,\5,1;;1) (3), would
be adjusted as follows:

Nk () = A (3) + BAa (1), dae €0,
(1) (33D as
Ason ’ (7)) = Xogn (5)
At the same time, the term of the syntactic score
components of the top candidate would be adjusted
according to the following formulas:

otherwise.

otherwise,

{A‘.‘,,*..”(j):x‘,'y’n ()= BA )y de 20 gy
MR () = Aedn (),

where A,\ﬁ‘,),, (7) is the amount of adjustment. This
value is represented as

€-do Woyn

AN, (5) =

(15)
where dg is a constant which stands for a window
size, and ¢ is the lcarning constant for controlling
the speed of convergence. The leaming rule for
adjusting the Iexical scores can be represented in a
similar manner. Notice that only the parameters of
the top candidate and those of the correct candidate
would be adjusted when misselections occur. Those
parameters of other wrong candidates would not be
adjusted in this adaptive leaming procedure. From
Eq.(13), (14) and (15), it is clear that the score of
the correct candidate will increase and that of wrong
candidate will decrease from iteration to iteration
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until the correct candidate is selected. For the
purpose of clarity, the detailed derivations of the
above adaptive learning procedure will not be given
here. Interested readers can contact the authors for
details.

3.3. Robustness Issues

Since it is easy to improve the performance in a
training sct by adopting a model with a large number
of parameters, the error rate measured in the train-
ing set frequently tums out to be over-optimistic.
Moreover, the parameters estimated from the train-
ing corpus may be quite differ from that obtained
from the real applications. These phenomena may
occur due to the factors of finite sampling size, style
mismatch, or domain mismatch, etc. To achieve a
better performance in the real application, one must
deal with the possible mismatch of parameters, or
statistical variation between the training corpus and
the real application. One way to achicve this goal is
to enlarge the inter-class distance to achieve maxi-
mum separation [Su 91a] between the correct can-
didate and the other candidates. That is, this ap-
proach provides a tolerance zone between different
candidates for allowing possible data scattering in
the real application.

Traditional adaptive lcaming methods [Amar
67, Kata 90] stop adjusting parameters once the in-
put pattern has been correctly classified. However,
if we stop adjusting parameters under the condi-
tion that the observations are correctly classified in
the training corpus, the distance between the cor-
rect candidate and other ambiguities may still be
too small. Thus, it is vulnerable to deal with pos-
sible modeling errors and statistical variations be-
tween the training corpus and the rcal application.
Su [Su 91a] has proposed a robust learning proce-
dure which continucs to enlarge the margin between
the correct candidate and the top one, even if the
syntax tree of the sentence has been correctly se-
lected. That is, the parameters will not be adjusted
only if the distance betwecen the correct candidate
and the others has exceeded a given threshold. The
leaming rules in Eq.(13), (14) arc then modified as
follows.
If dg < 6, where § is a preset margin, the syntactic
score in the (t+1) iteration for the correct candidate
is adjusted according to the following formulas:

{ AGD () = 20 () + AN (), de <6,

otherwise.

16
A (5) = M (), e
And, thc syntactic score of the top candidate is

adjusted as follows:
{ X () = 2 () = BAGR (), dae <8 g

/\[-;;tl)(l') = X(,'y),, (s}, otherwise.

PROC. OF COLING-92, NANTES, AUG. 23-28, 1992



4. Simulations

The following experiments arc conducted to in-
vestigate the advantage of the proposed discrimina-
tion and robusiness oricnted adaptive leaming pro-
cedure. In the experiments, 4,000 sentences, which
arc cxtracted from IBM technical manuals are first
associated with their corresponding correct calegory
scquences and correct parsed trees by linguists. The
corpus are then partitioned into a training corpus
of 3,200 sentences and a test set of 800 sentences.
Next, the lexical and syntactic probabilitics are cs-
timated from the data in the training corpus. Al-
lerwards, the sentences in the test set are used to
evaluate the performance of the proposed algorithm
using the estimated lexical and syntactic probabili-
tics. This intcgrated score function approach using
the cstimated probabilitics is considered as the base-
line system. Performances of discrimination ori-
ented adaptive leamings with and without robusi-
ness enhancement are then cvaluated. The accuracy
ratc of the syntactic ambiguity resolution for the
training corpus and the test sct arc summarized in
Table 3. (Note that the top candidate is sclected
from all possible parses allowed by the grammars
of the system; therefore, the bascline performance is
evaluated under a highly ambiguous cnvironment.)

Tl"aumng Test Set
Corpus
Baseline 79.75 46.00
+ Basic ve_rsum of 05.50 56,48
learning
+ Robust vcfrsmn of 96.03 60.62
Learning

Table 3 Accuracy rate (in %) of syntuctic (lisnmhlguntth

Table 3 shows that syntax (ree accuracy rale
is improved from 46% 1o 56.88% using the basic
version of discrimination oricnted adaptive leaming
procedure. This significant improvement shows the
superiority of the adaptive learning procedure for
dealing with the disambiguation task. Furihennore,
when the robust version of lecarning procedure is
adopted, the performance is improved further (from
56.88% 10 60.62%). It mcans that the robustiess
of the leaming procedure is indeed enhanced by en-
larging the distance between the correct candidate
and other candidates. Morcover, not only ihe ac-
curacy rate of syntax tree is improved using adap-
tive lecarning, but also that of lexical sequence is
improved. In this paper, a lexical sequence is re-
garded as “correct” only if all the lexical categorics
in a sentence perfectly match those selected by lin-
guists. In other words, we are measuring “‘sentence
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accuracy rare” in contract 1o “‘word accuracy rate”
ag adopted in [Chur 88, Gars 87]. Table 4 shows
that the basic version of adaptive leaming proce-
dure improves the sentence accuracy rate of lexi-
cal sequences about 5% (from 77.12% 10 82.38%).
Again, with the robust version of learning, the ac-
curate rate of lexical sequences is greatly enhanced.

’lY‘ulnlng Test Set
Corpus
Baseline 91.41 7112
+ Basle version of learning 98.91 82.38
+ Robust verslon of 98.53 47.88
Leurning

Table 4 Sentence accurucy rate (in %) of lexical sequences

The behavior of cach iteration of the adaptive
leaming process is shown in Figare 2. Through ob-
serving this figure, we can conclude that if the ro-
bustness issues are not considered during lcaming,
the performance of the test set would decrease as the
training process goes on. This is the phenomena of
over-tuning. However, by forcing the leaming pro-
cedure to continue until the separation between the
correct candidate and the top one exceeds the de-
sired margin, the performance of the test set can be
further binproved, and no degradation phenomenon
is obscrved.

%
i f e Baic Veasion
]
& — - Kobuwt Version
I
F “Teaining Set
g
g Teating, Set
Yo R
#
L.
&
50
7 O G
(1 s W18 w23 30 35 40 45 %0

Tersnion Numbec

Tigure 2 Syntax tree sccurucy rate versus iterations for
basic und robust version of adaptive learniny
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5. Summary

Because of insufficient training data, and ap-
proximation error introduced by the language model,
traditional statistical approaches, which resolve am-
biguities by indirectly and implicitly using maxi-
mum likelihood method, fail to achicve high per-
formance in real applications. To overcome these
problems, adaptive leamning is proposed to pursue
the goal of minimizing discrimination error directly.
The performance of syntactic ambiguity resolution
is significantly improved using the discrimination
oriented analysis. In addition, the sentence ac-
curacy rate of the lexical sequences is also im-
proved. Moreover, the performance is further en-
hanced by using the robust version of leaming pro-
cedure, which enlargeds the margin between the
correct candidate and its candidates. The final re-
sults show that using the basic version of leamning,
the syntax tree selection accuracy rate is improved
about 10% (from 46% to 56.88%), and the total im-
provement is over 14% using robust version leam-
ing. Also, the sentence accuracy rate for lexical
sequences is improved from 77.12% to 82.38 and
87.88% using the basic and robust version of leam-
ing procedure, respectively.
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