
T T P : A F A S T A N D R O B U S T P A R S E R F O R N A T U R A L L A N G U A G E

TOMEK STRZALKOWSKI

Courant Institute of Mathematical Sciences
New York University

715 Broadway, rm 704
New York, NY 10003

tomek@cs.nyu.edu

ABSTRACT

In this paper we describe TI~ , a fast and robust
natural language parser which can analyze written text
and generate regularized parse structures for sentences
and phrases at the speed of approximately 0.5
sec/sentence, or 44 word per second. The parser is
based on a wide coverage grammar for English,
developed by the New York University's Linguistic
String Project, and it uses the machine-readable ver-
sion of the Oxford Advanced lw~arner's Dictionary as a
source of its basic vocabulary. The parser operates on
stochastically tagged text, and contains a powerful
skip-and-fit recovery mechanism that allows it to deal
with extra-grammatical input and to operate effec-
tively under a severe time pressure. Empirical experi-
ments, testing parser's speed and accuracy, were per-
formed on several collections: a collection of technical
abstracts (CACM-3204), a corpus of news messages
(MUC-3), a selection from ACM Computer Library
database, and a collection of Wall Street Journal arti-
cles, approximately 50 million words in total.

1. INTRODUCTION

Recently, there has been a growing demand for
fast and reliable natural language processing tools,
capable of performing reasonably accurate syntactic
analysis of large volumes of text within an acceptable
time. A full sentential parser that produces complete
mmlysis of input, may be considered reasonably fast if
the average parsing time per sentence falls anywhere
between 2 and 10 seconds. A large volume of text,
perhaps a gigabyte or more, would contain as many as
7 million sentences. At the speed of say, 6
sec/sentence, this much text would require well over a
year to parse. While 7 million sentences is a lot of text,
this much may easily he contained in a fair-sized text
database. Therefore, the parsing speed would have to
be increased by at least a factor of 10 to make such a
task manageable.

In this paper we describe a fast and robust
natural language parser that can analyze written text
and generate regularized parse structures at a speed of
below 1 second per sentence. In the experiments con-
ducted on variety of natural langauge texts, including

technical prose, news messages, and newspaper arti-
cles, the average parsing time varied between 0.4
sec/sentence and 0.7 see/sentence, or between 1600
and 2600 words per minute, as we tried to find an
acceptable compromise between parser's speed and
precision.l

It has long been assumed that in order to gain
speed, one may have to trade in some of the purser's
accuracy. For example, we may have to settle for par-
tial parsing that would recognize only selected gram-
matical structures (e.g. noun phrases; Ruge et al.,
1991), or would avoid making difficult decisions (e.g.
pp-attachment; Hindle, 1983). Much of the overhead
and inefficiency comes from the fact that the lexical
and structural ambiguity of natmal language input can
only be dealt with using limited context information
available to the parser. Partial parsing techniques have
been used with a considerable success in processing
large volumes of text, for example AT&T's Fidditch
(Hindle and Rooth, 1991) parsed 13 million words of
Associated Press news messages, while MIT's parser
(de Marcken, 1990) was used to process the 1 million
word Lancaster/Oslo/Bergen (LOB) corpus. In both
cases, the parsers were designed to do partial process-
ing only, that is, they would never attempt a complete
analysis of certain constructions, such as the attach-
ment of pp-adjuncts, subordinate clauses, or coordina-
tions. This kind of partial analysis may be sufficient in
some applications because of a relatively high preci-
sion of identifying correct syntactic dependencies. 2
However, the ratio at which these dependencies are
identified (that is, the recall level) isn't sufficiently
high due to the inherently partial character of the pars-
ing process. The low recall means that many of the
important dependencies are lost in parsing, and

t These results were obtained on a 21 MIPS SparcStafion
ELC. The experiments were performed within an information re-
trieval system so that the final recall and precision statistics were
used to rnealurc effectiwmess of the panmr.

a Hindle and Rooth (1991) and Church and Hanks (1990) used
partial parses generated by Fidditch to study word ~ u r r t . n c ¢ pat-
terns m syntactic contexts.

ACRES DE COLING-92, NANTES, 23-28 AOr~ 1992 1 9 8 PROC. OF COL1NG-92. NANTES, AOO. 23-28, 1992

therelore partial parsing may not be suitable in appli-
cations such as information extraction or document
retrieval.

The alternative is to create a parser that would
at tempt to produce a complete parse, and would resort
to partial or a p p r o x i m ~ analysis only under excep-
tional conditions such as an extra-grammatical input or
a severe time pressure. Encounter ing a construction
that it cou ldn ' t handle, the parser would first try to pro-
duec an approxinmte analysis of the difficult fragment,
and then resume normal processing for the rest of the
input. The outcome is a kind of "fitted" parse,
reflecting a compromise between the actual input and
g rammar-encoded preferences (imposed, mainly, in
rule o rde r ing))

2. S K I P - A N I) - F I T R E C O V E R Y IN P A R S I N G

A robust parser must deal efficiently with
difficult input, whether it is an exUa-gmmmatical
string, or a string whose complete analysis could be.
considered too costly. Frequently, these two situations
am not distinguishable, estmcially for long and com-
plex sentences found iu free running text. The parser
must be able to analyze such strings quickly and pro-
duec at least partiM stractures, imposhlg preferences
when necessary, and even removing or inserting small
input fragments , if the data-driven processing falters.
For example, in the fol lowing sentence,

The method is illustrated by the automatic con-
struction of both recursive and iterafive programs
operating on natural numbers, lists, and tree.s, ht
order to construct a program satisfying certain
specifications a theorem induced by those
specifu:ations is proved, and the desired program
is extracted from the ptooL

the italicized part is likely to cause additional compli-
cations in parsing this lengthy string, and the parser
may be better off ignoring the fragment altogether. To
do so successfully, the parser must close the consti-
tuent which is being culrenfly parsed, an(l lYossibly a
few of its parent constituents, removing correspumling
product ions f rom further consideration, until an
appropriate product ion is rcactivatexl, The parser then
jumps over the iutervening inatedal .so as to re.start
processing of the remainder of the sentence usiag rite
newly reactivated production. In the example at hand,
suppose that the parser has just read the word
specifications and is looking at the following article a.
Rather than continuing at the present level, the parser
reduces the phrase a program satiyfying certain

The idea of parse "fitting" was partly ialspired by the UIM
parser (Jen~en et al., 1983), as well as by the sumdard error mcovely
techniques used in shift-reduce parsiug.

specifications to NP, and then t races further reduc-
tions: SI --) to V NP; SA -~ SI; S .--) NP V NP SA, until
product ion S --* S a n d S is reached. 4 Subsequently, the
parser skips input to find and , then resumes normal
processing.

As may be expected, this k ind o f act ion involves
a great deal of indeterminacy which, in case o f natural
language strings, is compounded by the high degree of
lexical ambigui ty . If the purpose o f this skip-and-fit
technique is to get the purser smoothly through even
the most complex strings, the amount of additional
backtracking caused by the lexical level ambigui ty ks
certain to defeat it. Without lexical d isambigaat ion of
input, the purser 's performance will deteriorate, even
if the .skipping is limited only to certain types o f adver-
bial adjuncts. The most common cases o f lexical ambi-
guity are t h o ~ of a phwal noun (nns) vs. a singular
verb (vbz), a singular noun (nn) vs. a p lmal or
infinitive verb (vbp,vb), and a past tense verb (vbd) vs.
a past participle (vbn), as illusWatod in the following
exarnple.

The notation used (vbn or vl~l?) explicitly asse.ci-
ates (nns or vbz?) a data structure (vb or nn)
shared (vbn or vbd?) by concun-ent processes (nn.,~
or vbz?) wiflt operatimLs defirmd (vbn or vbd?) cut
it.

3. P A R T O F S P E E C H T A G G E R

Oue way of dealing with lexical ambigui ty is to
use a tagger to preproccss the input marking each
wurti with a tags that indicates its syntact ic categoriza.-
tion: a part of speech with selected morphological
features such as nunther, tense, mode, case and degree.
The following are tagged sentcoces from the CACM-
3204 collection: s

The(dr) papei'(nn) pre~nts(vbz) a(dt)
proposal(on) lor(/n) stmctured(vbn)
representation(nn) of(in) multipmgranuning(vbg)
in(in) a(dt) high(jj) level(tin) language(nn) .(per)

The(tit) notation(nn) used(vbn) explicitly(rb)
associates(vbz) ~dt) data0m.v) structme(nn)
shared(vbn) by(in) concmrent(/j) prc~esses(nns)
with(in) t)peratit)ns(mJs) defined(vbn) on(in)
it(pp) .(per)

The tags are underst(xxl as follows: (It - determiner, nn
- singular 1~oan, nns - plural noun, in - preposition, jj
adjective, vbz - verb in present tense third person

"lhe decision to force • reducti(m rather than to back up
co~ld be triggered by various means. In clte of TTP parser, i t iJ a l -

w a y s induced by the thne-citt lignal.
Tagged u~ing the 35-tag Penn 'ft,zebank Tagset cmmed at the

University of Pemtsylwmia.

Acq~.s DE COLING-92, NA~'I~, 23°28 Ao(rr 1992 1 9 9 PROC. OF COLlNG-92, NANrF.s, AUo. 23-28, 1992

singular, to - particle "to", vbg - present participle, vim
- past participle, vbd - past tense verb, vb - infinitive
verb, cc - coordinate conjunction.

Tagging of the input text substantially reduces
the search space of a top-down parser since it resolves
most of the lexical level ambiguities. In the examples
ahove, tagging o f presents as "vbz" in the first sen-
tence cuts of f a potentially long and cosily "garden
path" with presents as a plural noun followed by a
headless relative clause starting with (that) a proposal
.... In the second sentence, tagging resolves ambiguity
of used (vim vs. vbd), and associates (vbz vs. nns).
Perhaps more imlxmantly, elimination of word-level
lexical ambiguity allows the parser to make projection
about the input which is yet to be parsed, using a sim-
ple lookabead; in particular, phrase boundaries can be
determined with a degree of confidence (Church,
1988). This latter property is critical for implementing
skip-and-fit recovery technique outlined in the previ-
ous section.

Tagging of input also helps to reduce the
number o f parse structures that can be assigned to a
sentence, decreases the demand for consulting of the
dictionary, and simplifies dealing with unknown
words. Since every item in the sentence is assigned a
tag, so are the words for which we have no entry in the
lexicon. Many of these words will be tagged as "np"
(proper noun), however, the surrounding tags may
force other selections. In the following example,
chinese, which does not appear in the dictionary, is
tagged as "j.j":~

this(dO papca'(nn) dates(vbz) back(rb) the(d 0
genesis(nn) of(in) binary(j/) conception(nn)
circa(/n) 5000(cd) years(nns) ago(rb) ,(corn)
as(rb) derived(vbn) by(m) the(d 0 chinese(if)
ancients(nns) .(per)

We use a stochastic tagger to process the input
text prior to parsing. The tagger is based upon a bi-
gram model; it selects most likely tag for a word given
co-occurrence probabilities computed from a small
training SgL 7

4. P A R S I N G w I T H T T P PARSER

TTP (Tagged Text Parser) is a top down English
parser specifically designed for fast, reliable process-
ing of large amounts of text.

6 We use the machine wadable version of the Oxford Ad-
vanced Learner's Dictionary (OALD).

7 The program, suppfiod to us by Bolt Benmck and Newman,
openttes in two almmative modes, either telocting • single most like-
ly tag for each word (best-tag option, the one we use •t prcaenO, or
supplying t slion tanked list of alternatives (Mercer et al., 1991).

TTP is based on the Linguistic String Grammar
developed by Sager (1981). Written in Quintus Pro-
log, the parser currently encompasses more than 400
grammar productions, s T I P produces a regularized
representation of each lmrsed sentence that reflects the
sentence's logical structure. This representation may
differ considerably from a standard Imrse tree, in that
the constituents get moved around (e.g., de.
passivization, de--dativization), and the phrases are
organized recursively around their head elements. An
important novel feature of T I P parser is that it is
equipped with a time-out mechanism that allows for
fast closing of more difficult sub-constituents after a
preset amount of t ime has elapsed without producing a
parse. Although a complete analysis is attempted for
each sentence, the parser may occasionally ignore
fragments of input to resume "normal" processing after
skipping a few words. These fragments are latex
analyzed separately and attached as incomplete consti-
tuents to the main parse tree.

As the parsing ixoceeds, each sentence receives
a new slot of time during which its parse is to be
returned. The amount of t ime allotted to any particular
sentence can be regulated to obtain an acceptable
compromise between parser 's speed and precision. In
our experiments we found that 0.5 see/sentence time
slot was appropriate for the CACM abstracts, while
0.7 see/sentence was more appropriate for generally
longer sentences in MUC-3 articles. 9 The actual length
of the time interval allotted to any one sentence may
depend on this sentence's length in words, although
this dependency need not be linear. Such adjustments
will have only limited impact on the parser 's speed,
but they may affect the quality of produced parse trees.
Unfortunately, there is no obvious way to evaluate
quality of parsing except by using its results to attain
some measurable ends. We used the parsed CACM
collection to generate domain-specific word correla-
tions for query processing in an information retrieval
system, and the results were satisfactory. For other
applications, such as information extraction and deep
understanding, a more accurate analysis may be
required, m

* See (Strzalkowski, 1990) for Prolog implementation details.
Giving the parser more time per sentence doesn't a l w a y s

mean that • belmr (more accurate) parse will be obtained. For com-
plex or extra-grammatical structures w e are l i k e l y to be better o(f if
we do not allow the parser wander around for too long: the molt
likely inteq~mtation of an unexpected input is probably the one gcn-
cnlted early (the grammar rule ordering en forces some preferences).

Jo A qualitative method for par~cr evaluation has he~a pro-
[me.ed in (ihrrison et al,, 1990, and it may be used to mike • rd•-
tire comtxtrison of purser's accuracy. What is not dear is how •oeu-
ate a par~er needs to be for may particular apptic.iticct.

ACTES DE COLING-92, NANTES, 23-28 AOt3T 1992 2 0 0 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

Initially, a full analysis of each sentence is
attempted. If a parse is not returned before the allotted
time elapses, the parser enters the time-out mode.
From this point on, the parser is permitted to skip por-
tions of input to reach a starter terminal for the next
constituent to be parsed, and closing the currently opea
one (or ones) with whatever partial representation has
been generated thus far. The result is an approximate
partial parse, which shows the overall structure of the
sentence, from which some of the constituents may be
missing. The fragments skipped in the first pass are
not thrown out, instead they are analyzed by a simple
phrasal post-processor that looks for noun phrases and
relative clauses and then attaches the recovered
material to the main parse structure.

The time-out mechanism is implemented using a
straightforward parameter passing and is at present
limited to only a sub~et of nonterminals used by the
grammar. Suppose that X is such a nonterminal, and
that it appears on the right-hand side of a production S
---> X Y Z. The set of "starters" is computed for Y,
which consists of the word tags that can occur as the
left-most constituent of Y. This set is passed as a
parameter while the parser attempts to recognize X in
the input. If X is recognized successfully within a
preset time, then the parser proceeds to parse a Y, and
nothing else happens. On the other hand, if the parser
cannot determine whether there is an X in the input or
not, that is, it neither succeeds nor fails in parsing X
before being timed out, the unfinished X constituent is
closed with a partial l~rse, and the parser is restarted
at the closest element from the sta~ers set for Y that
can be found in the remainder of the input. If Y
rewrites to an empty string, the starters for Z to the
right of Y are added to the starters for Y and both sets
are passed as a parameter to X. As an example con-
sider the following clauses in the T I P parser: ~1

sentence(P) : - assertion([],P).
assertion (SR, P) : -

clause(SR,Pl),s coord(SR, PI,P).

clause (SR, P) : -
sa ([pdt, dr, cd, pp, ppS, J j, Jjr,

j Js, nn, nns, np, nps] ,PAl) ,
subject ([vbd, vbz, vbp], Tail, P 1),
verbphrase (SR, Tail, PI, PAl, P) ,
subtail (Tail) .

thats (SR, P) :-
that, assertion (SR, P) .

In the clause production above, a (finite) clause

n The clauses arc slightly simplified, and some arguments are
removed for expository reasons.

rewrites into an (optional) sentence adjunct (SA), a
subject, a verbphrase and subject's right adjunct
(SUBTAIL, also optional). With the exception of sub-
tail, each predicate has a parameter that specifies the
list of "starter" tags for restarting the parser, should the
evaluation of this predicate exceed the allotted portion
of time. Thus, in case sa is aborted before its evalua-
tion is complete, the parser will jump over some ele-
menUs of the unparsed portion of the input looking for
a word that could begin a subject phrase (either a pre-
determiner, a determiner, a count word, a pronoun, an
adjective, a noun, or a proper name). Likewise, when
subject is timed out, the parser will restart with
verbphrase at either vbz, vbd or vbp (finite forms of a
verb). Note that if verbphrase is timed out, then subtail
will be ignored, both verbphrase and clause will be
closed, and the parser will restart at an element of set
SR passed down to clause from assertion. Note also
that in the top-level production for a sentence the star-
ter set for assertion is initialized to be empty: if the
failure occurs at this level, no continuation is possible.

When a non-terminal is timed out and the parser
jumps over a non-zero length fragment of input, it is
assumed that the skipped part was some sub-
constituent of the closed non-terminal. Accordingly, a
place holder is left in the parse structure under the
node dominated by this non-terminal, which will be
later filled by some nominal material recovered from
the fragment. The examples given in the Appendix
show approximate parse structures generated by TIP .

There are a few caveats in the skip-and-fit pars-
ing strategy just outlined which warrant further expla-
nation. In particular, the following problems must be
resolved to assure parser's effectiveness: how to select
starter tags for non-terminals, how to select non-
terminals at which to place the starter tags, and finally
how to select non-terminals at which input skipping
call occur.

Obviotlsly some tags are mote likely to occur at
the left-most position of a constituent than others.
~ l y , a subject ~ can start with u word
tagged with any element from the following fist: Ixlt,
dt, cd, ji, jjr, jjs, pp, ppS, nn, nns, np, nps, vbg, vbo, rb,
in} 2 In practice, however, we may select only a subset
of these, as shown in the clause production above.
Although we now risk missing the left-hand boundary
of subject p~rases in some sentences, while skipping
an adjunct to their left, most cases are still covered and
the chances of making a serious misinterpretation of

u Thit list it .ot comphac. In addition to the tal~ explthled
before: pdt - [n~de~trniner, jjt - compamtlve *djcctiv¢, j~ - mpcda-
tire ~.ieO~c, pp - pronoun, ppS - s~nitiv¢, rlp, npl - p,x~l,er noun. r'o
- ~verb.

ACTES DI~; COLING-92. NANTES. 23-28 nor]r 1992 2 0 l PROC. OF COLING-92. NANTES. AUG. 23-28, 1992

input are significantly lower.

We also need to decide on how input skipping is
to be done. In a most straightforward design, when a
nonterminal X is timed-out, the parser would skip
input until it has reached a starter element of a nonter-
minal Y adjacent to X from the right, according to the
top-down predictions, t3 On the other hand, certain
adjunct phrases may be of little interest, possibly
because of their typically low information contents,
and we may choose to ignore them altogether. There-
fore, if X is timed out, and Y is a low contents adjunct
phrase, we can make the parser to jump fight to the
next nonterminal Z. In the clause production discussed
before, subtail is skipped over if verbphrase is timed
ouL 14

Finally, it is not an entirely trivial task to select
non-terminals at which the input skipping can occur. If
wrong non-terminals are chosen the parser may gen-
erate rather uninteresting structures that would be next
to useless, or it may become trapped in inadvertently
created dead ends, hopelessly trying to fit the parse.
Consider, for example, the following sentence, taken
from MUC-3 corpus of news messages:

HONDURAN NATIONAL POLICE ON MON-
DAY PRESENTED TO THE PRESS HON-
DURAN JUAN BAUTISTA NUNEZ AMADOR
AND NICARAGUAN LUIS FERNANDO OR-
DON[~ REYES, WHO TOLD REPORTERS
THAT COMMANDER AURELIANO WAS AS-
SASSINATED ON ORDERS FROM JOSE DE
JESUS PENA, THE NICARAGUAN EMBASSY
CHIEF OF SECURITY.

After reaching the verb PRESENTED, the parser con-
salts the lexicon and finds that one of the possible sub-
categorizations of this verb is [pun,to], that is, its
object suing can be a prepositional phrase with ' to '
followed by a noun phrase. The parser thus begins to
look for a prepositional phrase starting at "TO THE
PRESS ...", but unfortunately misses the end of the
phrase at PRESS (the following word is tagged as a
noun), and continues until reaching the end of sen-
tence. At this point it realizes that it went too far (there
is no noun phrase left), and starts backing up. Before
the parser has a chance to back up to the word PRESS
and correct the early mistake, however, the time-out
mode is turned on, and instead of abandoning the
current analysis, the parser now tries hard to fix it by
skipping varying portions of input. This may take a
considerable amount time if the skip points are badly

i~ Note that the top-down predictions are crucial for the skip-
ping parser, wheahcr the paner's processing is top-down or bouem-
up.

t4 :mbta//it the remainder of a discontinued subject phrase.

placed. On the other hand, we wouldn' t like to allow
an easy exit by accepting an empty noun phrase at the
end of the sentenceI]5

One of the essential properties o f the input skip-
ping mechanism is its flexibility to jump over
varying-size chunks of the input sUing. The goal is to
fit the input with a closest matching parse structure
while leaving the minimum number of words unac-
counted for. In T I P , the skipping mechanism is imple-
mented by adding extra productions for selected non-
terminals, and these are always tried fast whenever the
nonterminal is to be expanded. We illustrate this with
rn productions covering fight adjuncts to a noun.

rn (SR, P) :-
timed out, !,
skip (SR), store (P) .

rn(_, []) : -
la ([[pdt, dt, vbz, vbp, vbd,

rod, eom, h a , r m r]]) ,
\+is ([[C0~] , [wdt,wp,wps]]) .

rn(SR,P) :- rnI(SR, P).

In the rn predicate, SR is the list of starter tags and P is
the parse tree fragment. The first production checks if
the time-out mode has already been entered, in which
case the input is skipped until a starter tag is found,
while the skipped words are stored into P to be
analyzed later in the purser's second pass. Note that in
this case all other rn productions are cut off; however,
should the first skip-and-fit attempt fail to lead to a
successful parse, backtracking may eventually force
predicate skip(SR) to evaluate again and make a longer
leap. In a top-down left to right parser, each input
skipping location becomes potentially a multiple buck-
tracking point which needs to be controlled in order to
avoid a combinatorial explosion of possibilities. This
is accomplished by supplementing top-down predic-
tions with bottom-up, data-driven fragmentation of
input, and a limited lookahead. For example, in the
second of the rn productions above, a right adjunct to a
noun can be considered empty if the item following
the noun is either a period, a semicolon, a comma, or a
word tagged as pdt, dt, vbz, vbp, vbd, or md, but not a
comma followed by a relative pronoun.~6

,2 In the present implementation, when the skipping mode is
entered, it will stay on for the balance of the first pass in parsing of
the current sentence. "[~his way, o~¢ skip-and-fit attempt may lead to
anc4her before any backtracking is considered. An altemafive is to
do time-out on a nonterminal by nonterminal basis, that is, to time
out processing of selected nonterminals only and then resume regular
parsing, qhis design leads t o a far more complex implementation and
somewhat inferior performance, but it might be worth comic~ring in
the fumre.

t6 md - modal veto; vbp - plural verb; wdt, wp, wps - ttladve
pronouns.

ACq'ES DE COLING-92, NANTES, 23-28 AOt3T 1992 2 0 2 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

5. R O B U S T N E S S

T I P is a robust parser and it will process nearly
every sentence or phrase, provided the latter is reason-
ably correctly tagged. 17 The lmrser robustness is
further increased by allowing for a gradual degrada-
tion of its performance rather than an outright failure
in the face of an unexpected input. Each sentence or
phrase is attempted to be analyzed in up to four ways:
(1) as a sentence, (2) as a noun phrase or a preposition
phrase with a right adjunct(s), (3) as a gemndive
clause, and if all these fail, (4) as a series of simple
noun phrases, with each of these attempts allotted a
fresh time slice) s The purpose of this extension is to
accommodate some infrequent but still important con-
strnctions, such as dries, itemizations, and lists.

6. DISCUSSION

In this paper we described TIP , a fast and
robust parser for natural language. In the experiments
conducted with various text collections of more that 50
million words the average parsing speed recorded was
approx. 0.5 sec/sentence. For example, the total time
spent on parsing the CACM-3204 collection was less
than 1.5 hours. In other words, T I P can process
100,000 words in approximately 45 minutes, and it
could parse a gigabyte of text (approx. 150 million
words) in about 40 days, on a 21 MIPS computer.

The parser is based on a wide coverage grammar
for English, and it contains a powerful skip-and-fit
recovery mechanism that allows it to deal with unex-
pected input and to perform effectively under a severe
time pressure. Prior to parsing, the input text is tagged
with a stochastic tagger that assigns part-of-speech
labels to every word, thus resolving lexical level ambi-
guity.

T I P has been used as front-end of a natural
language processing component to a traditional
document-based information retrieval system (Strzal-
kowski and Vauthey, 1992). The parse structures were
further analyzed to extract word and phrase depen-
dency relations which were in turn used as input to
various statistical and indexing processes. The results
obtained were generally satisfactory: an improvement
in both recall and precision of document retrieval have
been observed. At present, we are also conducting
experiments with large corpora of technical computer
,science texts in order to extract domain-specific

,7 Some sentences (1 in 5000) mmy still fail to parse if tagging
errors are. compotmded in In unexpected way.

ts Although parsing of some sentences may now approach
four drnes the allotted time limit, we noted that the average parsing
tinm per sentence at 0.745 sec. is only slighdy above the time-out
limit.

conceptual taxonomies for an even greater gain in
retrieval effectiveness.

7. ACKNOWLEDGEMENTS

We wish to thank Ralph Weischedel and Heidi
Fox of BBN for assisting in the use of the part of
speech tagger. ACM has generously provided us with
the Computer Library text database. This paper is
based upon work supported by the Defense Advanced
Research Project Agency under Contract N00014-90-
J-1851 from the Office of Naval Research, the
National Science Foundation under Grant IRI-89-
02304, and by the Canadian Institute for Robotics and
Intelligent Systems (IRIS).

8. R E F E R E N C E S
Church, Kenneth Ward. 1988. " A Stochastic Parts

Program and Noun Phrase Parser for Unrestricted
Text." Proceedings of the Second Conference
on Applied Natural Language Processing, pp.
136-143.

Church, Kenneth Ward and Patrick Hanks. 1990.
"Word association norms, mutual information,
and lexicography." Computational Linguistics,
16(1), MIT Press, pp. 22-29.

De Marcken, Carl G. 1990. "Parsing the LOB
corpus." Proceedings of the 28th Meeting of the
ACL, Pittsburgh, PA. pp. 243-251.

Harrison, Philip, et al. 1991. "Evaluating Syntax Per-
formance of Parser/Grammars of English."
Natural Language Processing Systems Evaluatiou
Workshop, Berkeley, CA. pp. 71-78.

Hindle, Donald. 1983. "User manual of Fidditch, a
deterministic parser." Naval Research Labora-
tory Technical Memorandum 7590-142.

Hindle, Donald and Mats Rooth. 1991. "Structural
Ambiguity and Lexical Relations." Proceedings
of the 29th Meeting of the ACL, Berkeley, CA.
pp. 229-236.

Jensen, K., G.E. Heidorn, L.A. Miller, and Y. Ravin.
1983. "Parse fitting and prose fixing: Getting a
hold of ill-formedness." Computational Linguis-
tics, 9(3.-4), pp. 147-161.

Meteer, Marie, Richard Schwartz, and Ralph
Weischedel. 1991. "Studies in Part of Speech
Labelling." Proceedings of the 4th DARPA
Speech and Natural Language Workshop,
Morgan-Kaufman, San MateD, CA. pp. 331-336.

Ruge, Gerda, Christoph Schwarz, Amy J. Warner.
1991. "Effectiveness and Efficiency in Natural
Language Processing for Large Amounts of
Text." Journal of the ASIS, 42(6), pp. 450-456.

Sager, Nanmi. 1981. Natural Language Information
Processing. Addison-Wesley.

Strzalkowski, Tomek. 1990. "Reversible logic gram-
mars for natural language parsing and

ACRES DE COLING-92. NANTES, 23-28 AOI3T 1992 2 0 3 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

generation.'" Computational Intelligence, 6(3),
NRC Canada, pp. 145-171.

Strzalkowski, Tomek and Barbara Vauthey. 1992.
"Information Retrieval Using Robust Natural
Language Processing." Proceedings of the 30th
Annual Meeting of the ACL, Newark, Delaware,
June 28 - July 2.

APPENDIX: Sample parses

A few examples of non-standard output gen-
erated by TTP are shown in Figures 1 to 3. In Figure 1,
"ITP has failed to find the main verb and it had to jump
over much of the last phrase such as the LR(k) gram-
mars, partly due to an improper tokenization of LR(k)
(note skipped nodes indicating the material ignored in
the first pass). In Figure 2, the parser has initially
assumed that the conjunction in the sentence has the
narrow scope, then it realized that something went
wrong but, apparently, there was no time left to back
up. Note, however, that little has been lost: a complete
strncture of the second half of this sentence following
the conjuction and is easily recovered from the parse
tree (var points up to the dominating rip). Occasion-
ally, sentences may come out substantially truncated,
as shown in Figure 3, where although has been mis-
tagged as a preposition.

SENTF~CE:
The problem of determining whether an arbitrary
context-free grammar is a member of some easily
parsed subclass of grammars such as the LR(k)
grammars is considered.
APPROXIMATE PARSE:
[[verb,[]],[subject, [np,[n,problem] ,[t_pos,the],

[of,[[verb,[determine]],[subject,anyone],
[object,[[verb,[be]],

[subject,[np,[n,grammar],[t_pos,an],
[adj,[arbitrary]],[adj,[context free J]]],

[object,[np,[n,member],[t_pos,a],
[of,[np,[n,subclass],[t_pos,some],

[a pos_v,
[[verb,[parse,lady,easily]I],

[subject,anyone],
[object,pro]]],

[of.[np,[n,grammar],
[rn wb,[[verb,[such]].

[subject,var]]]]]]]]]]],
[sub_urd,Ias,[[verb,[be]] ,[subject,pro],

[object,[np,[n,kl,[t_pos,the],
[adj,["lrC]]]]]]],

[skipped,[[np,[n,grammar]]]]]]]],
[skipped,[[is],[wh rel,[[verb,[consider]],

[sabject,anyone],[object,var]]]]]].

Figure 1.

SENTENCE:
The TX-2 computer at MIT Lincoln Laboratory was used
for the implementation of such a system and the
characteristics of this implementation are reported.
APPROXIMATE PARSE:
[[bc],[[verb,[usc]],

[subject,anyone],
[object,[np,[n,compster],[t_pos,the],[adj,[tx_2]]]],
[for,[and,

[np,[n,implem entation] ,[t._pos,the],
[of,[np,[n,system] ,[t pos,[such,a]]]]],

[np,[n,characteristics],[t_.pos,the],
[o f,[np,[n,implementation] ,[t pos,this]]],
[skipped,

[[are] ,[w h_rel,[[verb,[report]],
[subject,anyone],
[object,var]]]]]]]]],

[at,[np,[n,laboratory],[adj,[mitl],
[n pos,[np,[n,lincoln]]]]]].

Figure 2.

SENTENCE:
In principle, the system can deal with any ortho-
graphy, although at present it is limited to 4000
Chinese characters and some mathematical symbols.
APPROXIMATE pARSE:
[[can_anx],[[verb.[deal]].

[suhject,[np,[n,system].[t pos,the]]],
[sub_oral,[with,[[verb,[limit]],

[subject.anyone],
[object, [skipped.

[[np.[n,orthography] ,[t pos,any]].
[cornS.although.at].
[np.[n,present]],
[np,[n,it]],
[is]]]],

[to,[np,[n,character],
[counl,[4000]],
[a_pos,[chinese]],
[skipped,

[[and],
[np,[n,symbol],[t~pos,some],

[adj,[mathematical]]]]]]]]]]],
[in,[np,[n,principle]]]].

Figure 3.

AcrEs DE COLING-92, NANTES, 23-28 hotzr 1992 2 0 4 PROC. OF COL1NG-92, NANTES, AUG. 23-28, 1992

