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Abstract

This paper proposes a generation method for
feature-structure-based unification grammars.
As compared with fixed arity term notation, fea-
ture structure notation is more flexible for repre-
senting knowledge needed to generate idiomatic
structures as well as general constructions. The
method enables feature structure retrieval via
multiple indices. The indexing mechanrism, when
used with a semantic head driven generation al-
gorithm, attains efficient generation even when
a large amount of generation knowledge must be
considered. Qur method can produce all possi-
ble structures in parallel, using strueture sharing
among ambiguous substructures.

1 Introduction
Practical generation systems must have linguistic

knowledge of both specific expressions like idioms
and general grammatical constructions, and they
should efficiently produce surface strings apply-
ing that knowledge [1]{2].

In order to satisfy the first requirement, our
system employs a set of trees annotated with
feature structures to represent generation knowl-
cdge. Dlach trec represents a fragment of a syn-
tactic structure, and is paired with a semantic
feature structure. We can describe idiomatic
constructions, by making a tree which contains
lexical specifications and is paired with a specific
rather than gereral semantic structure. Because
feature structures allow partial specification, we
can encode generation knowledge rangiug over
multiple levels of generality in a uniform way.

However, notice that this property will be re-
stricted if we use DCG or (fixed arity) term
notation !.  Supposc there is a generation
knowledge structure wlose syntactic part is
The feature structure notation
of its semantic part will be something like:

W »
go on foot”.

notation is also discussed in [4)].
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[[Reln GO]
[Agent ?agent(]]
[Instrument FOOT]]. (1)

while the term notation is :
instrument(go(Agent), foot) (2)

These two notations seem to be equivalent, but
there is a crucial difference. A gencration knowl-
edge structure containing the feature-based se-
mantics will still be unifiable even if the seman-
tic input to be untfied contains additional ma-
terial.  Thus the knowledge structure will be
discovered and its syntactic information can be
used for generation. By contrast, a term-based
input with additional clements would not unify
with the term-based semantic structure shown
above. It would thus be necessary to create ad-
ditional generation structures containing distinet
(though partly overlapping) term-based seman-
tic structures. Such additional structures are re-
dundant and cause superfluous output.

For example, consider the augmented feature
structure (3).

[[Reln GOJ

[Agent Ken]

[Instrument FOOT]

{Time 10:00an] ] (3)

It will indeed unify with (1) above. But term-
based input semantic structure (4) will not unify
with term-based semantic structure (2).

instrument (time(go(ken), 10:00am), toot).

4

To unify (2), semantic structure (5} would also
be required.

time(instrument(go(ken), Toot), 10:00am).
(5)
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For this reason, our generation knowledge con-
sists of trees represented as feature structures.
A tree can be substituted for a leaf node of an-
other tree to form a larger structure. Thus, the
tree can be regarded as a rule in a context-free
feature-structure-based unification grammar.

The second requirement for a generation sys-
tem is efficient creation of syntactic structures.
‘I'his is the main topic of this paper. Our system
is based upon Semantic Head Driven Generation
[6), which is an efficient algorithm for unification
based formalisms. However, this algorithm re-
quires some additional mechanisms to efficiently
retrieve relevant genecration knowledge, because
feature structures can not be easily indexed.

The algorithm presented here uses a multiple
index network of feature structures to efficiently
choose relevant generation knowledge from the
knowledge base. The algorithm also uses an hy-
pothetical node so as to efficiently maintain am-
biguous structures during generation.

2 Phrase Description(PD)

Generation knowledge is represented as a set of
trees annotated with feature structures. lach
tree is called a Phrase Description (PD).

An example of a PD is shown in Tigure.l.

Structure:
(S AUX (NP PRON) VP)
Annotation:
(s [[syn [[cat SI[inv +]1]
[{sem [{reln REQUEST]
[agen *SPx]
{recp *HR+]
{obje 7ACTION]]1])
(AUX [[syn [[cat AUX][lex "would"]
[v-morph PASTI]I1)
(NP [[syn [[cat NP][case NOMI111)
(PRON  [[syn [[cat PRON][case NOM]
[lex "you"]111)
(VP [[syn [[cat VP][v-morph BSE]]]
[sem ?ACTION]])

Figure 1: an example of a PD

A PD consists of two parts: a structure defini-
tion and feature structure annotation (Structure
and Annotation in Figure 1).

The structure definition defines the structure
of a trec by using a list in which the first ele-
ment corresponds to the mother node and the
rest of the elements correspond to daughters.
Fach daughter may be a tree rather than a sim-
ple node.
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The annotation part specifies the feature
structure of each symbol appearing in the struc-
ture definition. A feature structure description
can contain tags or variables (symbols with “?”
as a prefix in the figure). The scope of a tag in
a PD is the entire PD.

Lach node should have a semantic and syntac-
tic feature structure. The semantic feature on
the root node of a PD represents the semantics
of the PD; thus we call it the semantic structure
of the PD.

Although the description represents a tree, it
is the same as for a (partial) derivation structure
of a unification-based CFG, because the current
system does not allow adjoining operations. If
the structure definition of every P is restricted
to mother-daughter relations only, the PD set is
strictly equivalent to a unification-based CFG.

3 Generation Algorithm

Our algorithm is an efficient extension of Seman-
tic Head Driven Generation. The major exten-
sions are: 1) it handles feature structures di-
rectly, and 2) it creates all possible phrase struc-
tures in parallel. These extensions are embodied
mainly in the P1) activation and ambiguity han-
dling mechanisms discussed in this section.

3.1 Overview of the algorithm

The main part of the generation process is expan-
slon process, which iterates through ezpanding
node selection, activation, precombination, and
application, using an expanding node agenda.

Input to the process is a feature structure con-
taining syntactic, semantic and pragmatic fea-
tures as an initial constraint on the root node.

The expaunding node agenda coutains the un-
lexicalized leaf nodes of the tree under creation.
At the beginning of the process, it contains only
one node, which has the leature structure given
as an initial constraint.

The expanding node selection step picks up
one node, say ezpanding node, from the agenda.
If no node is picked up, the expansion process
stops.

The PD activation step activates all PIDs
whose semantic structures subsume the seman-
tic structure of the expanding node.

The precombination step makes D sequences
from activated PD’s to satisly some constraints.

The application step instantiates the PD se-
quence(s) and applies it to the expanding node.
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Figure 2: an example of dags

It also pushes unlexicalized leaf nodes into the
expanding node agenda.

3.2 Expanding Node Selection

The expanding node selection step is for fetching
one node from the expanding node agenda. From
among the nodes whose semantic feature has
been instantiated, one is chosen. In this step, if
the fetched node satisfies some termination con-
ditions (if, for instance, it satisfies the conditions
for slash termination), the node is discarded (i.e.,
not expanded any more). If the agenda is empty
or contains no node with an instantiated seman-
tic feature, the expansion process stops.

3.3 Activation

This step is responsible for selecting all PD’s
whose semantic structures subsume the semantic
structure of an expanding node. The selection is
done by traversing a multiple index network of
PD’s called the PD net.

3.3.1 Compiling PD’s

A set of PD’s are pre-compiled into a PD) net.
Suppose there are two PI)’s whose semantic
structures? are defined as the dags (i.c. di-
rected acyclic graphs) in Figure 2. In the fig-
ure, fa,fb.fc,... and v1,v2,. represent arc labels
(feature names) and atomic values respectively.
These PD’s are compiled to the PD net shown in
igure 3.

The net has two kinds of nodes: path
nodes(pi), and PD nodes (PD;). These nodes
are linked by three kinds of labeled directed arcs:

2The semantic feature of ¢ PD. is a semantic feature
on the root node of the PD
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Figure 3: an example of PD net

feature arcs(bold lines), value arcs(dashed), and
tag arcs(with arrows).

A path node is used to represent a particular
feature path in one or more feature structure.

As shown in Figare 3, path nodes are linked by
bold feature arcs to form a tree. The sequence
of arc labels from the root path node to a path
node p; is the path of p;. In Figure 3, p3 and p5
show paths (fb fd) and (fc fd) respectively.

Each PD node (rectangle) corresponds to a
particular PD, which may have value arcs and
tag arcs.

o Value Arcs: Which PD’s contain which atomic
values along certain paths 7

A PD node may be linked to path nodes with
value arcs.

If a (rectangular) PD node is linked to a
(round) path node pn with a dashed value arc
labeled v, then following the path leading to pn
yields atomic value v in that PD.

Consider the dashed value arc vl in Figure 3.
It indicates that following path fa in PD; yields
an atomic value vl. This is just the situation
depicted in Figure 2.

o Tag Arcs: In a given PD, which paths share a
certain feature structure as a value ?

A PD node may also be linked to path nodes
with tag arcs.

If two tag arcs have the same label and they
connect a PD node to two path nodes, say pnl
and pn2, then the feature structure of that PD
has a substructure which is the value of both
paths, that of pnl and pn2.
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Tor example, the two tag arcs from rectangular
PDI1 node labeled “t1” in Figure 3 show that
the semantic structure of PD1 has a substructure
serving as the value of (fb) and (fc).

3.3.2 Traversing the PD net

The data structure of nodes and arcs are shown
in Figure 4.

________ . | label |
lvalues l ldestlnatlonl
[£eatures] (c) arc

Ida storel (feature arc,
________ value arc,
(a) P node (b) PD node path arc)

Pigure 4: Node and Arc structures

A path node has three slots: values, features,
and dagstore. The values slot and the arcs slot
contain value arcs and feature arcs respectively.
The dagstore slot is initially empty; later it holds
a pointer to a dag which passed the path node.

Lach PD node has a PD slot, a tagarcs slot,
a valueNum slot, and a status slot. The PD slot
contains a pointer to the represented PD itself,
The tagarcs slot contains the data structure of
the tagarcs (see below). The valueNum slot has
the number of value arcs to the PD node. For
example, the value of the number slot of PDI
node in Iigured is 3, because the node has one
value arc labeled vl and two value arcs labeled
v2. The status slot holds integer and is initially
set to 0.

Every type of arc has two slots, label’ and
*destination’. "Label’ is an atomic symbol which
labels the arc, and ’destination’ is a pointer to
the node which is the destination of the arc.

We use the PD net as a dataflow net. The en-
try point of the net is the root path node and the
token which flows is a dag of a semantic feature
structure.

The action of a path node is shown in Figure
5. “failure” means there is no P whose seman-
tic structure subsumes the given dag. Thus the
entire retrieval process fails.

The action of a PD node is shown in Figure
6. The status is incremented each time the node
reccives a token. As a result, if all atomic values
in the semantic structure of the PD are satisfied,
the status becomes equal to the valueNum (that
is the number of atomic values). Once this is
detected, then unifiability of shared structure is
checked by calling the tagtest procedure.

Tagtest tests unifiability of the dagsin the dag-
stores of p(ath) nodes connected by tag arcs with
the same label. In Tigure 3, if the status of PD1
becomes 3 and if the dag in p2 and the dag in pd
are identical, then the D becomes active. That
is, the PD has been found to subsume the gen-
eration input. It may or may not actually be
applied, depending on later events.

PROCEDURLE PDnodeAction(pdNode, value)
pdNode.status «— pdNode.status 4 1 ;
IF pdNode status = pdNode.valueNum
and tagtest(pdNode.tagarcs) = T THEN
activate{pdNode.PD) ;

PFigure 6: Procedure of a D node

If there is a PD node whose valueNums is 0
(i.e. No atomic value is specified in the semantic
structure), node action of the PI) node is invoked
after dataflow is terminated.

PROCEDURE PathNodeAction(pathnode, dag)

pathnode.dagstore « the pointer of dag ;

IF dag is atomic value type THEN

validValueAres « {arc | arc € pathnode.values, arc.label = dag.value} ;

IF validValueArcs # ¢ THEN

TOR EACH arc IN validValueArcs DO

PDnodeAction(arc.pdnode, dag) ;
ELSE failure ;

ELSE IF dag is complex value type THEN

FOR EACH arc IN dag.vaiue DO

IF Searcharc(arc.label, pathnode.featureArcs)

# Nil THEN

PathNodeAction(Searcharc(arc.label, pathnode.featureArcs), arc.destination) ;

ELSE failure
Figure
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5: Procedure of a path node
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3.4 Precombination

The precombination step is responsible for mak-
ing sequences of PD’s from activated PD’s under
certain constraints. A PD sequence is a rough
plan for a potential structure which can realize
a semantic specification of the node being ex-
panded 3. If no sequence is obtained, the am-
biguity resolution process, discussed later, is in-
voked.

We divide PD’s into two groups: propagation
type and non-propagation type. A propagation
type PD has has one propagation node. A prop-
agation node of a PD is a leaf node whose se-
mantic structure is identical with the semantic
structure of the root node of the PD 4, The rest
of the PI)’s, which have no propagation nodes,
are classified as non-propagation type PD’s. This
distinction is an extension of Shieber’s chain rule
and non-chain rule distinction.

A PD sequence PD.....PD,, must satisfy the
following constraints.

1. semantic structure sharing constraints

(a) PDi(1<i<n)isa prbpaga.tion PD,
(b} PD, is a non-propagation PD,

Under these constraints, the system can
make a partial phrase structure by unifying
the propagation node of PD; with the root
node of PD;y;. The root node of the cre-
ated structure contains the unified semantic
structure of all semantic structures of PD’s
in the sequence.

2. local unifiability constraints

(a) the root node of PDj is unifiable with
the expanding node

(b) PD; and PDjyq are connectable

where PD; is conncctable to PD; if PD;is a
propagation PI), and the propagation node
of PD; is unifiable with the root node of
PD;.

These constraints are necessary conditions
for unifiability throughout the entire PD se-
quence, which is called the global unifiability
of @ PD sequence. In contrast to such global
unifiability constraints, the local unifiability
can be pre-computed, or compiled, before
generation process.

®A PD sequence is roughly corresponds to a bottom-up
chain in (6]

*Our current system does not allow PI)’s with multiple
semantic head
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3. covering constraint

Let fs1 be the unified semantic structure of
all semantic structures of PD’s in the se-
quence. I'sl must contain cvery top feature
of the semantic structure of the expanding
node, where a top feature of a feature struc-
ture is defined as a top-level feature name.

The covering constraint ensures complete
generation [6]. If the constraint is not satis-
fied, a given semantic structure may not be
completely realized in the generation result.
For example, if an input semantic strucure
is (3) (in Section 1) and the unified seman-
tic structure of a PI) sequence is (1), then
the resulting PD sequence lacks the locative
phrase for the “time” feature, which will not
appear in the generation result.

4. disjointness constraints

For each PD (PD;), there is no other PD
(PDj(i # 7)), such that PD; has a top arc
whose label is included in the set of top arcs
of PD;. The definition of top arc is given
above.

If this constraint is not satisfied, the genera-
tion result may contain duplicated or invalid
expressions. For example, if a PD sequence
contains two distinct PD’s each of which is
for a locative adjunct and has a “time” fea-
ture on the top level, the generation result
will have two locative adjuncts for one se-
mantic feature (i.e. the “time” feature).

The disjointness constraint also ensures
compact generation. Suppose a coherent and
complete generator produces a string w, and
the grammar assigns a semantic structure
fso to w using a set of rules R. String w is
minimal if every sub-structure of fso is sup-
plied from one rule in R. The generator is
compact if any string w is minimal.

In general, completeness, and compactness
cannot actually be judged until the entire gen-
eration finishes. Thus the last two constraints (3
and 4) do not really guarantee completeness and
compactness; rather, they help to limit scarch
space in a practical way.

3.5 PD Application

The PD application step is responsible for creat-
ing phrase structure(s) from PD sequence(s) and
attaching them to the expanding node. In this
section, we restrict ourselves to the simple case
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such that there is only one PD sequence obtained
during the previous step. The case of multiple
PD sequences, (i.e., generation ambiguity), will
be discussed in the next section.

First, the module connects all PD’s in the PD
sequence P D;...PD,, by unifying the propagation
node of PD; with the root node of PD;y;. All
unification operations are quasi-destructive, or
temporal [7). The result of the unification is valid
until the module copies it (see below).

If this entire unification process succeeds (i.e.,
if every PD in the sequence can indeed be uni-
fied, and the sequence thus proves to be globally
unifiable; see 3.7), then the module makes a copy
of the unified PD sequence. Otherwise expansion
failure (see next section) is signified. The copy,
which is a phrase structure tree, is called an in-
stance of the PD sequence.

Then the module attaches (unifies) the instan-
tiated PD sequence to the expanding node.

Yinally, the system stores in the expanding
node agenda leaf nodes of expanded structures
which have no lexical feature values. .

3.6  Ambiguity Handling

3.6.1 Ambiguity packing

If multiple P1) sequences are applicable to an ex-
panding node, the substructure of the expanding
node can not be uniquely determined, because
each PD sequence indicates only an hypothesis
for the potential substructure.

The system maintain these hypotheses in a
special hypotheses slot on the undetermined ex-
panding node.

For each P sequence, a copy of the expanding
node called an hypothesis node is created. These
copies are stored into the hypotheses slot of the
original expanding node. Then the system ap-
plies cach I'D sequence to the corresponding hy-
pothesis node, as described in the previous sec-
tion, and continues expansion.

In IMigure 7, three subtrees in the “hypo” slot
on the undetermined node have been created for
the hypothetical PD sequences.

The hypothetical PD sequences are not uni-
fied with the original expanding node, but uni-
fied with copies of the expanding node. This pre-
vents the original feature structure of the unde-
termined node from being modified by further
expansion of the hypothetical structures (1'1-T3
in Figure 7).

The further expansion sometimes makes an
hypothesis node inconsistent with the original
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Figure 7: generation ambiguity

node. This is detected in the ambiguity reso-
lution process described in the next section.

3.6.2 Expansion Failure and Ambiguity
Resolution

xpansion failure occurs when:

1. no PD is activated in the PD activation, or

2. no PD sequences are obtained in the pre-
combination, or

3. no PD sequences satisfy global connectabil-
ity in the application.

The failure signifies that the feature structure
of the current expanding node is inconsistent
with a set of P1)Y’s given as generation knowl-
edge.

The module searches for the nearest (i.e., low-
est) hypothesis node (V) dominating the failed
expanding node and deletes N, from the hy-
potheses slot containing it.

If the number of hypothetical structures in the
hypotheses slot of an undetermined node (N,)
becomes one, then N, and the root node of the
remaining structure in the hypotheses slot are
unified, If the unilication fails, ambiguity resolu-
tion continues recursively upward.

An example of ambiguity resolution is iltus-
trated in Figure 8. The values of the hypothe-
ses slot of node VP are the hypothetical nodes
VI1, VP2, and VP3, corresponding to hypothet-
ical trees ‘I'l, T2, '3 respectively. If expansion
failave occur in T'1 and T2, VI1 and VI'2 are
removed from the hypothesis slot. Then, VP3 is
unified with VI, because there is only one hy-
pothesis node left in the slot VI node.

If there is no hypothesis node dominating the
failed expausion node, the entire generation pro-
cess fails.
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Figure 8: an illustration of generation ambiguity
resolution
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3.7 Postprocess

Expansion halts when no node is selected in the
expanding node selection step. This does not
necessarily mean the agenda is empty, because
there may be some nodes without instantiated
semantic structure.

How do such semantically empty nodes arise?
The problem is that feature structures within hy-
pothetical nodes are not allowed to unify with
the feature structure on the “real” dominating
node.

The solution is: for each hypothetical node,
we create a complete tree using copies of the
“real” dominating structure. TFeature structures
can then be permitted to unify with dominating
structures. Then, the system collects all unlexi-
calized leaf nodes as initial values of the expand-
ing node agenda and starts the normal expansion
loop again.

4 Concluding Remarks

A semantic head driven generation method based
on feature structures is proposed in this pa-
per. This method efliciently generates all possi-
ble phrase structures from a given semantic fea-
ture structure. The method involves multiple
indexing of feature structures and a precombi-
nation mechanism. These mechanisms constrain
applicable grainmatical knowledge before instan-
tiation; thus the method eliminates the copying
of feature structures, which consumes coniputing
resources.

The proposed grammar notation is appropri-
ate for describing idiomatic phrase structunres
easily. To make the best use of the notation,
we are cxtending the algorithm so that it can
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perform adjunct operation [9].
The algorithm is implemented in SL-Trans, a
spoken language translation system [8].
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