
F e a t u r e S t r u c t u r e B a s e d

S e m a n t i c H e a d D r i v e n G e n e r a t i o n

G e n d c h i r o K I K U I

A T R I n t e r p r e t i n g]~e lephony R e s e a r c h L a b o r a t o r i e s

2 2 I I i ka r i da i , Seika-cho, S o r a k u - g u n , K y o t o (;19 02 J A P A N

k iku i@at r - l a . a t r . co . jp

A b s t r a c t

This paper proposes a genera t ion me thod for
fea ture-s t ructured)ased unificat ion g rammars .
As comlx~red with fixed ~ri ty t e rm nota t ion , fea-
ture s t ruc tu re nota t ion is more tlexible for repre-
sent ing knowledge needed to genera te idiom~ttic
s t ruc tu res as well as genem~l construct ions . The
method enables feature s t rnc tu re retr ieval via
nml t ip le indices. The indexing mechanism, when
used with a semant ic head driven generat ion al-
gor i thm, a t t a ins efficient genera t ion even when
a large amoun t of genera t ion knowledge mus t be
considered. Our method can produce all possi
ble s t ruc tu res in parNlet , using s t ruc ture shar ing
among ambiguous subs t ruc tures .

1 I n t r o d u c t i o n
Pract icM generat ion sys tems mus t lnwe l inguis t ic
knowledge of both specilic expressions like id ioms
and generM g r a m m a t i c a l construct ions , ;rod t tmy
should efgtciently produce sm'face s t r ings apply-
ing t h a t knowledge [[][2].

In order to satisfy the first requi rement , our
sys tem employs a set of t rees anno ta t ed with
fe,~ture s t ruc tures to represent genera t ion knowl-
edge. l:;ach tree represents a t?agment of a syn-
tact ic s t rnc ture , and is paired with a semant ic
feature s t ructure . We can describe id iomat ic
eons t ruc t ions , by making a tree which cont~tins
lexical specifications and is paired with a specilie
ra ther than general semaut ic s t ructure . Because
feature s t ruc tu res allow par t ia l speei i ica t iom we
can encode generat ion knowledge r ;mgiug over
mul t ip le levels of genera l i ty in a. uniform way.

l lowever , notice tha t this p roper ty will be re-
s t r ic ted if we use DCG or (tixed ar i ty) t e rm
nota t ion 1 Suppose there is a genera t ion
knowledge s t ruc ture whose syn tac t i c par t is
"go on foot". ' r im feat, tu'e s t ruc ture nota t ion
of its semant ic par t will be sonmthing like:

~The flexibility of structure notation colnpated Lo tetln
notation is also discussed il~ [4].

[[Rein GO]
[Agent ?agent []]
[Instrument FOOT]].

while the t e rm nota t ion is :

(1)

i n s t rumen t (go (Agen t) , foot) (2)

These two no ta t ions seem to be equivalent , but
there is a cruciN diflerence. A genera t ion knowl-
edge s t ruc tu re conta in ing the fe~tture-based se-
lnan t ics will still be unifiable even i f the seman-
tic input to be unified contains additional ma-
terial. Thus the knowledge s t ruc tu re will be
discovered and i ts syntac t ic in format ion can he
used for generat ion. By cont ras t , a te rm-based
inpu t wi th additiona.1 e lements would not unify
with the te rm-based semant ic s t ruc tu re shown
above. It would thus be necessary to create ad-
d i t ional generat ion s t ruc tures conta in ing d is t inc t
(though par t ly overlN)ping) t e rm-based seman-
tic s t ructures . Such addi t iona l s t ruc tures are re-
d u n d a n t ~tn(l cause superfluous ou tpu t .

For example , consider the a,ugmented feature
s t ruc tu re (3).

[[Rein ~o]
[Agent Ken]
[Instrument FOOT]
[Time I0 : OOmn]] (3)

i t will indeed nnify with (1) above. But term-
based input semant ic s t ruc ture (4) will not unify
with te rm-based semant ic s t ruc tu re (2).

i n s t r u m e n t (t i m e (g o (k e n) , 10 :00am) , f o o t) .
(4)

To unifv (2), semant ic ,structure (5) would a.lso
be required.

t i m e (i n s t z u m e n t (g o (k e n) , f o o t) , 10:00ma) .
(5)

AcrEs DE COLING-92. NANTES. 23 28 AOt~q" 1992 3 2 PROC. OI; COLING 92. NANTES. AUG. 23 28. 1992

For this reason, our generation knowledge con-
sists of trees represented as feature structures.
A tree can be substituted for a leaf node of as-
other tree to form a larger structure. Thus, tile
tree can be regarded as a rule in a context-free
feature-structure-based unification grammar.

The second requirement for a generation sys-
tem is efficient creation of syntactic structures.
This is the main topic of this paper. Our system
is based upon Semantic }lead Driven Generation
[6], which is an efficient algorithm for unilication
based formalisms. However, this algorithm re-
quires some additional mechanisms to efficiently
retrieve relevant generation knowledge, because
feature structures can not be easily indexed.

The algorithm presented here uses a nmltiple
index network of feature structures to efficiently
choose relevant generation knowledge from the
knowledge base. The algorithm "also uses an hy-
pothetical node so as to efficiently maintain am-
biguous structures during generation.

2 Phrase Descr ipt ion(PD)

Generation knowledge is represented as a set of
trees aunotated with feature structures, l,',ach
tree is called a Phrase Description (PD).

ALl example of a l)D is shown in Figure.1.

Structure:
(S AUX (NP PRON) VP)

Annotation:
(S [[syn [[cat S] [inv +]]1

[sem [[reln REQUEST]
[agon *SP*]
[recp *HR*]
[obje ?ACTION]]]])

(AUX [[syn [[cat AUX] [lex "would"]
[v-morph PAST]]]])

(NP [[syn [[cat NP] [case NOM]]]])
(PRON [[syn [[cat PRON] [case NOM]

[lex "you"]]]])
(VP [[syn [[cat VP][v-morph BSE]]]

[sem ?ACTION]J)

Figure 1: an example of a PD

A PD consists of two parts: a structure defini-
tion and feature structure annotation (Structure
a.nd Annotation in Figure 1).

The structure definition defines tile structure
of a tree by using a list in which the first ele-
ment corresl)onds to the mother node and tile
rest of the elements correspond to daughters.
l';ach daughter may t)e a tree rather than a sin>
pie node.

Acres DE COLING-92, NANTes, 23-28 AO6-r 1992 3 3

The annotation part specifies the feature
structure of each symhol appearing in the struc-
ture definition. A feature structure description
can contain tags or variables (symbols with "?"
as a prefix in the figure), The scope of a tag in
a PD is the entire PD.

Each node should have a semmltic and syntac-
tic feature structure. The semantic feature on
the root node of a PD represents the semaattics
of the PD; thus we call it the semantic structure
of the PD.

Although the description represents a tree, it
is the same ms for a (partial) derivation structure
of a unification-l)ased CFG, because tile current
system does not allow adjoining operations. If
the structure definition of every PD is restricted
to mother-daughter relations only, the PD set is
strictly equivalent to a unification-based CFG.

3 Generat ion Algor i thm

Our algorithm is aal efficient extension of Semaat-
tic Head Driven Generation. 3?he major exten-
sions are: 1) it handles feature structures di-
rectly, and 2) it creates all possible phrase struc-
tures in parallel. These extensions are embodied
mainly in the t 'l) activation and ambiguity han-
dling mechanisms discussed in this section.

3.1 O v e r v i e w o f t h e a l g o r i t h m

The main part of the generation process is expan-
sion process, which iterates through expanding
node selection, activation, prccombination, and
application, using an e~Tmnding node agenda.

Input to the process is a feature structure con-
raining syntactic, semantic and pragmatic fea-
tures as an initial constraint on the root node.

q'he Cxl)auding node agenda contains tim un-
lexicalized leaf nodes of the tree under creation.
At the beginning of the process, it conta.ins only
one node, which has the feature structure giveu
as an initial constraint.

The expanding node selection step picks up
one node, say expanding node, from the agenda.
If no node is picked ill) , the expaa~sinn process
stops.

The PD activation step activates all PD's
whose senlantic strlLetures s~tlJs~tme the seman-
tic structure of the expanding node.

The precombination step makes PD sequences
from activated PD's to satisfy some constraints.

The application step instantiates the PD se-
quence(s) and applies it to tile expanding node.

Paoc. oe COLING-92, NAm'ES, AU~. 23-28, 1992

P D 1 P D 2

v3 v4
v2

Figure 2: an example of dags

It also pushes unlexicMized leaf nodes into the
expanding node agenda.

i//#...':.-"'">e 4a
PDI PD2 l

0 path node ~ feature arc

. . . . value arc pd node
- ~ tag arc

3.2 E x p a n d i n g N o d e S e l e c t i o n

The expanding node selection step is for fetching
one node from the expanding node agenda. From
among the nodes whose semantic feature has
been instamtiated, one is chosen. In this step, if
tile fetched node satisfies some termination con-
ditions (if~ for instance, it satisfies tile conditions
for slash terminatim0, the node is discarded (i.e.,
not expanded any more). If the agenda is empty
or contains no node with an instantiated seman-
tic feature, the expansion process stops.

3.3 A c t i v a t i o n

This step is responsible for selecting all PD's
whose semantic structures subsume the semantic
structure of an expanding node. The selection is
done by traversing a multiple index network of
PD's called the PD net.

3.3.1 Compil ing PD's

A set of PD's are pl'e-compiled into a PI) net.
Suppose there are two PD's whose sema~ntic
structures 2 are defined as the dags (i.e. di-
rected acyelic graphs) in Figure 2. in the fig-
ure, fa,fl),fc,.., and vl,v2,., represent arc babels
(feature names) and atomic values respectively.
These PD's are coinpiled to the PD net shown in
Figure 3.

The uet has two kinds of nodes: path
nodes@i), and PI) nodes (PDj) . These nodes
are linked by three kinds of labeled directed arcs:

2The semantic feature of a PD. is a semantic feature
on the root node of the PD

Figure 3: an example of PD net

feature arcs(bold lines), vMue arcs(dashed), and
tag arcs(with arrows).

A path node is used to represent a particular
feature path in one or more feature structure.

As shown in Figure 3, path nodes are linked by
bold feature arcs to form a tree. The sequence
of arc labels from the root path node to a path
node Pl is the path of Pi. [It Figure 3, p3 and p5
show paths (Po N) and (re fd) respectively.

Each PD node (rectangle) corresponds to a
particular PD, which may have value ares and
tag arcs.

• Value Arcs: Which PD's contain which atomic
vNues along certain paths ?

A PD node may be linked to path nodes with
v a l u e ares .

If a (rectangular) PD node is linked to a.
(round) path node pn with a dashed value are
labeled v, then following the path leading to pn
yields atomic value v in that PD.

Consider the dashed value are vl in Figure 3.
It indicates that following path fa in PDI yiehls
an atomic value vl. This is just tim situation
depicted in Figure 2.

• Tag Arcs: In a given PD, which paths share a.
cel't~in feature structure as a vaJue ?

A PD node may also be linked to path nodes
with tag arcs.

If lowo tag arcs have the same label and they
cdnnect ;~ PD node to two path nodes, say pnl
and pn2, then tim feature structure of that PI)
has a substrm;ture which is the value of both
paths, that of phi and pn2.

Am~s DE COLING-92, N^NTES, 23-28 ao~r 1992 3 4 Proc. OF COL/NG-92, NANTES, AU6. 23-28, 1992

t, b r example, the two tag arcs from rectangular
PDI node labeled " t l " in Figure 3 show that
the semantic s tructure of PD1 has a subst ructure
serving as the vMue of (~) and (fc).

3.3.2 Travers ing the P D net

The da ta s tructure of nodes and arcs are shown
ill. Figure 4.

+ + + +

I PD I I label I
+ + + +

+ +

Ivalues I ltagarcs I Idestinationl
+ + + + + +

If eatures I I valueNuml (c) arc
+ + + + (feature arc,
Idagstorel [status] value arc,
+ + + +

(a) P node (b) PD node path arc)

Figure 4: Node and Arc structures

A pa th node has three slots: values, features,
oatd dagstore. The values slot and the arcs slot
contain value arcs and feature arcs respectively.
The dagstore stot is initially empty; later it holds
a pointer to a dag which passed the path node.

Each PD node has a PD slot, a tagares slot,
a valueNum slot, and a status slot. The PD slot
contains a pointer to the represented PD itself.
The tagarcs slot contains the data s t ructure of
the tagarcs (see below). The valueNum slot has
the number of value arcs to the PD node. For
example, the value of the number slot of PD1
node in Figure3 is 3, because the node has one
value a.rc labeled vl and two value arcs labeled
vl. The s ta tus slot holds integer and is initially
set to 0.

Every type of arc has two slots, 'label' and
'destination' . 'Label' is an atomic symbol which
labels the arc, and 'dest ination' is a pointer to
the node which is the destination of the arc.

We use the PD net as a dataltow net. The en-
try point of the net is the root path node amd the
token which flows is a dag of a semantic feature
structure.

The action of a path node is shown in Figure
5. "faihn'e" means there is no PD whose seman-
tic s tructure subsumes the given dag. Thus the
entire retrieval process fails.

The action of a 1)D node is shown in Figure
6. The status is incremented each time the node
receives a tokeu. As a result, if all atomic values
in tl,e semantic s tructure of the PI) are satisfied,
the s ta tus becomes equM to the valueNum (that
is the nulnber of atomic values). Once this is
detected, then uuifiability of shared structure is
checked by cMling the tagtcst procedure.

Tagtest tests unifiability of the dags in the dag-
stores of p(ath) nodes connected by tag arcs with
the same label. Iu Figure 3, if the s ta tus of PD1
becomes 3 and if the dag in p2 and the dag in 114
are identical, then the PD becomes active. That
is, the PD has been found to subsume the gen-
eration input. It may or may not actually be
applied, depending on later events.

PROCEDURE PDnodeAction(pdNode, value)
pdNode.stat, us ~ pdNodc.status + 1 ;
IF pdNode.status = pdNode.valueNum

and tagtest(pdNode.tagarcs) = T THEN
activate(pdNode.PD) ;

Figure 6: Procedure of a PD node

If there is a PI) node whose wdueNums is 0
(i.e. No a,tomic value is specified iu the semantic
structure) , node action of the PD node is invoked
after ¢la.taflow is terminated.

PROCEDURE PathNodeAction(pathnode, dag)
pathnode.dagstore ,-- tile pointer of dag ;
IF dag is atomic value type THEN

validValueArcs +-- {arc [arc E pathnode.values, arc.label = (lag.value} ;
IF validValueAres :~ ¢ THEN

FOR EACH arc IN validValueArcs DO
PDnodeAction(are.pdnode, dag) ;

ELSE failure ;
ELSE IF dag is complex value type THEN

FOR EACH arc IN dag.va:ue DO
IF Searcharc(arc.label, pathnode.featureArcs)

:~ Nil THEN
PathNodeAction(Searcharc(arc.label, pathuo(le.featureAras), arc.destin;ttion) ;

ELSE failure

Figure 5: Procedure of a path node

A c r e s DE COLING-92, NAI'/TES, 23-28 Aour 1992 3 5 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

3.4 P r e c o m b i n a t i o n

The precombiuation step is responsible for mak-
ing sequences of PD's from activated PD's under
certain constraints. A PD sequence is a rough
plan for a potential structure which can realize
a semantic specification of the node being ex-
panded a. If no sequence is obtained, the am-
biguity resolution process, discussed later, is in-
voked.

We divide PD's into two groups: propagation
type and non-propagation type. A propagation
type PD has has one propagation node. A prop-
agation node of a PD is a leaf node whose se-
mantic structure is identical with the semantic
structure of the root node of the PD 4. The rest
of the PD's, which have no propagation nodes,
are classified as non-propagation type PD's. This
distinction is an extension of Shieber's chain rule
and non-chain rule distinction.

A PD sequence PD1 PD,~ must satisfy the
following constraints.

1. semantic structure sharing constraints

(a) PDi(1 <_ i < n) is a propagation PD,

(b) PD~ is a non-propagation PD,

Under these constraints, the system can
make a partial phrase structure by unifying
the propagation node of PDI with the root
uode of PDi+l. Tile root node of the cre-
ated structure contains the unified semantic
structure of all semantic structures of PD's
in the sequence.

2. local unifiability constraints

(a) the root node of PDI is unifiable with
tile expanding node

(b) t>Di and t)Di+l are connectable

where PDI is connectable to PD 5 if PDI is a
propagation P]), and tim propagation node
of PDi is unitiable with the root node of
PDj.

These constraints are necessary conditions
for unifiability throughout the entire PD se-
quence, which is called the global nnifiability
of a PD sequence. In contrast to such global
uni/iability constraints, the local vnifiability
can be pre-computed, or compiled, before
generation process.

aA PD sequence is roughly corresponds to a bottom-up
chum in [6}

~Our current system does not allow PD's with multiple
semantic head

4.

covering constraint

Let fsl be the unified semantic structure of
all semantic structures of PD's in tile se-
quence. Fsl must contain every top feature
of the semantic structure of the expanding
node, where a top feature of a feature struc-
ture is defined as a top-level feature name.

The covering constraint ensures complete
generation [6]. If the constraint is not saris-
fled, a given semantic structure may not be
completely realized in the generation result.
For example, if all input semantic strucure
is (3) (in Section 1) and the unified seman-
tic structure of a PD sequence is (1), then
the resulting PD sequence lacks the locative
phrase for the "time" feature, which will not
appear in the generation result.

disjointness constraints

For each PD (PDi), there is no other PD
(PDj(i # j)), such that PDI has a top arc
whose label is included in the set of top arcs
of PDj. The definition of top arc is given
above.

If this constraint is not satisfied, the genera-
tion result may contain duplicated or invalid
expressions. For example, if a PD sequence
contains two distinct PD's each of which is
for a locative adjunct and has a "time" fea-
ture on the top level, the generation result
will have two locative adjuncts for one se-
mantic feature (i.e. tile "time" feature).

The disjointness constraint also ensures
compaetgeneration. Suppose a coherent and
complete generator produces a string w, and
the grammar assigns a semantic structure
fso to w using a set of rules R. String w is
minimal if every sub-structure of fso is sup-
plied from one rule in R. The generator is
compact if any string w is minimal.

Ill general, completeness, &lid conlpactness
cannot actually be judged until the entire gen-
eration fiulshes. Thus the last two constraints (3
and 4) do not reaiiy guarantee completeness and
compactness; rather, they help to limit search
space in a practical way.

3.5 P D A p p l i c a t i o n

The PD application step is responsible for creat-
ing phrase structure(s) fl'om PD sequence(s) and
attaching them to the expanding node. In this
section, we restrict ourselves to the simple case

ACRES DE COLING-92, NAN'YES, 23-28 AOt~T 1992 3 6 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

such that there is only one PD sequence obtained
during the previous step. The case of multiple
PI) sequences, (i.e., generation ambiguity), will
be discussed in the next section.

First, the module connects all PD's in the PD
sequence PDI...PD,, by unifying the propagation
node of PDi with the root node of PDI+1. All
unification operations are quasi-destructive, or
temporal [7]. The result of the unification is valid
until the module copies it (see below).

If this entire unification process succeeds (i.e.,
if every PI) in the sequence can indeed be uni-
fied, and the sequence thus proves to be globally
unifiable; see 3.7), then the module makes a copy
of the unified PD sequence. Otherwise expansion
failure (see next section) is signified. The copy,
which is a phrase structure tree, is called an in-
stance of the PD sequence.

Then the module attaches (unifies) the instan-
tiatted PD sequence to the expanding node.

Finally, the system stores in the exl)andiug
node agenda leaf nodes of expanded structures
which have no lexieal feature va lues . .

3 . 6 A m b i g u i t y H a n d l i n g

3 . 6 . 1 A m b i g u i t y p a c k i n g

If multiple PD sequences are applicable to an ex-
panding node, the substructure of the expanding
node can not be uniquely determined, because
each PD sequence indicates only an hypothesis
for' the potential substructure.

The system maintain these hyl)otheses in a
special hypotheses slot on the undetermined ex-
panding node.

For each PD sequence, a copy of the expanding
node (:ailed an hypothesis node is created. These
copies are stored into the hypotheses slot of the
original expanding node. Then the system ap
plies each PD sequence to the corresponding hy-
pothesis node, as described in the previous sec-
tion, and cont inues expansion.

In Figure 7, three suhtrees in the "hypo" slol.
on the undetermined node have been created for'
the hypothetical Pl) sequences.

The hyl)othetical PI) sequences are not unb
lied with the original expanding node, but unb
tied with copies of the expanding node. This pre
vents tire original feature structure of the unde-
termined node from being modilied by further
expansion of the hypothetical structures (T I-T3
in Figure 7).

q'he further expansion sometimes makes an
hypothesis node inconsistent with the original

vl, [inq

t 0 ~ " p0-------_~0p:
hypothesis T ~,,~'" -'" .,.-" - . . j
nodes ~ VP1 ~"~VP2 VP3 P '

Figure 7: generation ambiguity

node. This is detected in the ambiguity reso-
hltion process described in the next section.

3 . 6 . 2 E x p a n s i o n F a i l u r e a n d A m b i g u i t y
I L e s o l u t i o n

Expansion failure occurs when:

1.]to PD is activated in the PD activation, or

2. no PD sequences are obtained in the pre
combination, or

3. no PI) sequences satisfy global connectabil-
ity in the application.

The failure signifies that the feature strncture
of the current exl)anding node is inconsistent
with a set of Pl) ' s given as generation knowl-
edge.

The module searches tbr the ne;~rest (i.e., low-
est) hypothesis node (Nh) dominating the failed
expanding node and deletes Nh fi'om the hy-
potheses slot containing it.

If the number of hyl)othetical structures in the
hyl>otheses slot of a.n undetermined re>de (N,,)
hecomes one, then N,~ and the root node. of the
remaining structnre in the hypotheses slot are
unified. If the unilication f~tils, amlriguity resoh>
tion continues recursively upw~rd.

An examt)le of ambiguity resolution is illus
trated in Figure 8. The values of tire hyt)othe-
ses slot of node VI' are the hypothetical nodes
VPl , VP2, and vt'3, corresponding to hypothet
ical trees TI , T2, 'I'3 respectively. If expansion
failure occur in T I and '1'2, VP1 ;~nd V I'2 are
removed from the hypothesis slot. Then, Vl'3 is
unitied with VP, because there is only one hy
pothesis node left in the slot VP node.

If there is no hypothesis node dominating the
failed expansion node, the entire generation l)r~)-
cess fails.

AcrEs DE COLING-92, NAI~'aT..S, 23-28 AOI]'r 1992 3 7 I'ROC. OF COLING-92, NANTF.S, AUr3. 23-28, 1992

Nh

unify

.......

VP1 VP2 VP3

perform adjunct operation [9].
The algorithm is implemented in SL-Trans, a

spoken language translation system [8].

A c k n o w l e d g m e n t s

The author would like to thank M0zk Seligma~t
for helpful comments on this paper and also
would like to thank Akira Kurematsu, Tsuyoshi
Morimoto and other members of ATR for their
constant help and fruitful discussions.

Figure 8: an illustration of generation ambiguity
resolution

3 .7 P o s t p r o c e s s

Expansion halts when no node is selected in the
expanding node selection step. This does not
necessarily mean the agenda is empty, because
there m~y be some nodes without instantiated
smnantic structure.

ltow do such semantically empty nodes arise?
The problem is that feature structnres within hy-
potheticM nodes are not allowed to unify with
the feature structure on the "real" dominating
node.

The solution is: for each hypothetical node,
we create a complete tree using copies of the
"real" dominating structure, Feature structures
can then be permitted to unify with dominating
structures. Then, the system collects all unlexi-
calized leaf re)des as initial values of the expand-
ing node agenda and starts the normal expansion
loop again.

4 C o n c l u d i n g R e m a r k s

A semantic head driven generation method based
on feature structures is proposed in this pa-
per. This method efliciently generates all possi
ble phrase structures fl'om a given semantic fea-
ture structure. The method involves multiple
indexing of feature structures and a precombi-
nation nlechanisn]. These lnechanisnls constrain
applicable gralnmatical knowledge beR)re instan-
tiation; thus the method eliminates the copying
of fegture structures, which consunles conlputillg
resources.

The proposed grammar notation is appropri-
ate for describing idiomatic phrase structures
easily. To make the best use of the notation,
we are extending the Mgorithm so that it can

AcrEs De COLING-92, NAmes, 23-28 AO13"r 1992 3 8

R e f e r e n c e s

[11 Hovy, E.H., "Generating NaturM Language
Under Pragmatic Con-
stralnts",Ph.D.Dissertation, Yale Univ., 1987

[2] Jacobs, P.S., "A generator for natural lan-
guage interfaces", In D.l).McDonald et al., ed-
itors, NaturM Language Generation Systems,
Chapter 7, Springer-Verlag, 1988

[3] Shieber,S. M , "An introduction to
Unification-Based Approaches to Graznmar ' ,
CSLI, 1986

[4] Knight, K., "Unification: A Multidisci-
plinaxy Survey", ACM Computing Surveys,
VoL21, No.i, 1989

[5] Pollard,C. et ah, "Information-ba.sed Syn-
tax and Semantics Volume 1 Fundamentals" ,
CSLI, 1987

[6] Shieber, S.M. et al., "A Semantic-Head-
Driven Generation Algorithm", In Proceed-
ings of 27th ACL, t989

[7] Tomabechi, H., "Quasi-Destructive (]raph
Unification", In Proceedings of 29th ACL,
1991.

[8] Morimoto, "17., et a.l. "A Spoken Language
Translation System : SL-TRANS2". In Pro-
ceedings of COLING'92, 1!)92.

[9] Vijay-Shanker, K. et al., "Feature Structure
Based Tree Adjoining Grammars" , in Pro-
ceedings of COLING'88, 1988

PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

