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A b s t r a c t :  CLG(2) is the latest member of a family of 
grammar formalisms centered around the notion of 
complex constraint expression for describing phrasal and 
iexical information and principles of language. Complex 
constrains can be expressed in a slightly restriced form of 
first order predicate logic, which makes CLG(2) well suited 
for expressing, amongst others, HPSG-style of grammars. A 
sound implementation of the formal semantics of CLG(2) is 
achieved 'by resorting to delayed evaluation of non 
equational constraints. 

I n t r o d u c t i o n  

Recently a number of formalisms for grammatical 
description have been proposed with the aim of overcoming 
the expressive deficiencies of simple unification based 
formalisms like PATR-II.  Except for the more simple, 
although not unproblematic, extensions to PATR-II like 
the ones proposed by Karttunen (1984), most of these 
efforts have their root in the work by Rounds, Kasper and 
Moshier (Rounds & Kasper, 1986; Moshier & Rounds 
1987), who give the proof of the existence of a sound, 
although non classical, logical interPretation for disjunctive 
and negative feature specifications. 

Although Kasper (1987) has proposed an algorithm 
for handling grammars with disjunctive feature 
specifications, the computational tractability of complex 
constraints in unification based formalism remains an open 
problem (Pereira 1987). 

Furthermore since the introduction of Head Phrase 
Structure Grammar (HPSG) (Pollard & Sag, 1987) the 
desirability of complex constraint expression has become 
clear. The attractiveness of HPSG-style grammatical 
description has made classical first order logic the candidate 
par excellence for constraint expression, modulo the 
problem of computationa! tractability. 

Since 1988 we have ~ been engaged in the design and 
implementation~ Of a number of prototype formalisms 
sharing essentially the same constraint language, a slightly 
restricted f o r m  o f  first order predicate logic including 
explicit quantification (Damas& Varile 1989). In trying to 
achieve a logically sound and practical implementation, our 
work has been  influenced by the CLP paradigm in logic 
programming (Jaffar & Lassez, 1988) especially our delayed 
evaluation Scheme which amongst Other things avoids 
systematic ~mputat ions of normal forms of constraints. All 
CLG(n) prototypes have been implemented in Prolog using 

the YAP compiler developed at the University of Porto 
The results to date have been encouraging. Two of the 
CLG(n) prototypes have undergone extensive testing with 
non-trivial grammars of several European languages as 
reported in (Damas & VaNe 1989). 

In this paper we present CLG(2), the latest prototype 
of the CLG(n) family, a formalism which was influenced by 
the HPSG grammar model. Although different members of 
the family differ with respect to a number of characteristics 
like the structure of grammatical description and the data 
structures defined by the formalism, they all share the same 
complex constraint language. 

1. S y s t e m  O v e r v i e w  

In CLG(2) the data types defined are variables, 
constants, typed feature structures, list and sets of typed 
feature structures. Typed feature structure can be seen as 
directed graphs with labelled arcs, every node being indexcd 
with its type name. 

The main novel feature of CLG(2), and of the other 
members of the CLG(n) family, is its constraint language I., 
a slightly constrained form of first order predicate logic, 
including explicit quantification. Unification remains tlle 
sole building operation, under the control of complex 
constraints. 

The logical symbols of the complex constraint language 
consist of variables, constants, the logical connectives & 
(conjunction), I (disjunction), " (negation),-> (material 
implication), < ->  (logical equivalence), the binary predicatc 
symbol "=" and non-logical function and predicate symbols. 

The terms of the constraint language are variables, 
constants and path expressions. The atomic formulae are 
either equational constraints, i.e. formulae of the form 
t l= t2  for terms tl,t2, or r(tl,t2,...) for terms ti and relation 
symbols r. The complex constraints of CLG(2) are the non 
atomic well formed formulae of L, defined in the usual way: 
for well formed formulae (constraints) C1, C2 and variable 
X:  

C 1  
- C1 -> C2 
- c 1  & C2 
~C1 I C2 
- forall(X,S) C1 
- exist(X,S) C1 
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are also well formed formulae (constraints). The S in the 
quantified constraints are used to restrict the domain of the 
quantification and can be omitted. The interpretation of the 
constraint language L is the standard interpretation of first 
order predicate logic. In other words, we do not resort to 
intuitionistie or other non-standard interpretations, like for 
instance Moshier & Rounds (1987). Examples of 
constraints are: 

S.syn.local.head "=  n 
forall(C:compl dtrs) C.syn.local.head.maj = n. 

In order to facilitate the statement of constraints, a 
macro facility is available in all members of the CLG(n) 
family, which is a generalization of PATR-II templates in 
that it can take a list of formal parameters. In CLG(2) this 
facility has been extended in a fashion akin to UD (Johnson 
& Rosner, 1989) to include reeursive user defined relations. 
An example of such a relation is: 

discharge(E,E:L,L); 
diseharge(E,X:Ll,X:L2) <- diseharge(E,L1,L2); 

In section 3 it will be shown how such definitions 
contribute to the statement of linguistic principles. We turn 
now to describe the components of a CLG(2) grammar. 

Global type declara t ions:  CLG(2) relies on a strong 
typing scheme similar to the concept of abstract data type. 
The following is a detail of the syntactic feature hierarchy 
used for one type of linguistic sign in one of the grammars 
implemented in CLG(2): 

Sign = ( phon, syn, sem,dtrs); 
phon = word list; 
syn = ( local, bind); 

local = ( head, compls, funhead, select, lex ); 
head = ( vform, inv, agr, tense); 

vform = {fin, bse, psp, prp, pas, inf, ger }; 
inv= { - , +  }; 
agr = ( num, prs ); 

n u m =  { sg, pl }; 
prs = { fst, snd, thrd }; 

tense = { past, pre}; 
compls = Sign list; 
lex = (+,-}; 

bind = (slash, subj, wh); 
slash = Sign list; 
subj = Sign list; 
wh = {rei, que}; 

dtrs = (head._dtr,compl_dtrs) 
head._dtr = Sign ; 
compl..dtrs = Sign list; 

Other systems require typing information, including 
HPSG (Pollard & Sag 1987) and UCG (Moens et al. 1989). 
Type information is used in CLG(2) both to structure the 
grammatical information and to achieve a more efficient 
implementation. 

Global cons t ra in t s :  these encode HPSG-type of linguistic 
principles. A principle is of the form: partial-object- 
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specification -> constraints. For instance, HPSG's Head 
Feature Principle could be expressed as: 

[head_.dtr=[_ ]] -> 
syn.local.head = head_dtr.syn.local.head 

Par t ia l  descript ions of  lexical signs. Lexical and 
phrasal descriptions have both the same format consisting of 
a pair <DAG,CS> whose first element is a DAG specified 
by a set of equations and whose second element is a set of 
complex constraints. Both lexical and phrasal constraints 
have a number of alternative shorthand formats to suit user 
requirements. 

Par t ia l  descr ipt ions of  phrasa l  signs: these ;ire the 
CLG(2) rules. A number of different equivalent rule 
formats are supported. For instance: 

[comp= < >] -> head_dtr,coml_dtrs 

M -> H,C+ where M.syn.local.comp= < > 

are equivalent formulations. 

2. Formal Semantics 

We define in this section a denotational semantics 'for 
CLG(2) grammars in a similar way to what was done for 
CLG(0) grammars (Damas & Varile, 1989). For reasons of 
space, we present a slightly simplified version. 

Starting from primitive sets Labels and Atoms of 
attribute names and atomic values we would like to define 
the domain of objects and the domain of values as follows 

Objects = Labels --> Vals 
Vals = [Atoms + Objects]* 

Note that to simplify the semantics we are assuming 
that every label can have as value a list of sub-objects. 

Given a set Vats of variable symbols and a set Preds of 
predicate symbols we define the following syntactic domains: 

Path ::= Label I Path.Label 

Exp ::= Var I Atom I Path I Var.Path 
I Exp+Exp (list concatenation) 
I Exp:Exp (list cons ) 

Constraint : := Exp = Exp 
I p(Exp,...,Exp) 
] "Constraint 

. . . . . .  I Constraint & Constraint 
.... I Constraint I ~ns t ra in t  

Definition ::=q(xl,x2,...,xn) < ->  Constraint 

where we assume that every path which occurs m a 
definition is associated with a formal argument. 

Grammar ::= Constraintsx:Path* x Definition* ~: 
: ,~ , ~ . . . . .  • 



The Constraints comlxment in a Grammar denotes 
the conjunction of all principles with the disjunction of the 
descriptions of all lexical and phrasal signs. The Path* 
component specifies which paths are involved in the 
dominance relation for the grammar. 

Given an object o and a path p we will extend o to 
paths by 

o(p.l) = o(p)O) 

if o(p) has only one element and that element is not an 
atom, error otherwise 

In what follows we will omit the handling of error 
values, which should produce error if any partial result leads 
tO error. 

To define our semantic functions we still need the 
following domains: 

VEnv = Vars o-> Objects* 
PEnv = Preds--> U(n)Va l s - ->  {T,F} 

Now we define the following semantic functions 

V: Exps--> VEnv- ->  Objects-> Vals 
C: Constraint --> PEnv-o> VEnv - >  Objects 

- >  {T,F} 
D: Definition*--> PEnv 
G: Grammar -> Objects--> {T,F} 

V, which assigns a value to every expression, is defined 
by 

V [ v ] r o  = r [v ]  
V [ p ] r o  = o(p) 
V[ v.p ] r o = cardinality(r[ v ])=1 -> r[ v ](p) 

else bottom 
V[ e + e ' ]  r o = concatenate(V[ e ] r o, V[e '  ]r o) 
V[ e:e ']  r o = cons(V[ e ]r o, V[ e']r o) 

C, which assigns a truth value to every constraint, is 
defined by 

C [ e = e ' ] d r o  = V [ e ] r o = V [ e ' ] r o  
C[ p(el,...,en) ] d r o = 

d [ p ]  ( V [ e l  ] r o  ..... V [ e n ] r o )  
C [ c & e ' ]  = C [ c ] & C [ c ' ]  

D is defined by taking, for each sequence of definitions 
pi(xl,.. ,xn)<-> Di, the least fixed point of the function H: 
PEnv --> PEnv defined by: 

H[ pi ] d (vl, ..., vn) = C[ Di ] d [vi/xi] o_nil 

where o_nil is the empty object.We can now define G as 
follows: 

G[ < c, <p l ,  ...,pk>, Ds > ] o = T 

iff there is an environment r such that C[ c ] d r o=  T and 
for every path pi such that o(pi) = <o l ,  ..., o1>: 

G[ < c, < p l  ..... pk>,  <C1,...,Cn> > ] oj = T 

for j =  1,...,I, where d = D[ Ds ]. 

3, C o m p l e m e n t i z e r - T r a c e  Effects in CLG(2)  

We will illustrate the expressive power of CLG(2) with 
an analysis of those phenomena traditionally known ,~s 
complementizer-trace effects (Perlmutter, 1971; Chomsky 
& Lasnik, 1977). It is inspired by the HPSG framework 
(Pollard & Sag, 1987), but it departs from it in some 
respects. 

The most recent account of these phenomena within 
HPSG is that of Pollard (1985). There, he aims at showing 
that most of the GPSG insights (Gazdar, Klein, Pullum & 
Sag, 1985) can be preserved within a framework which does 
not express subcategorization directly in PS rules, and which 
does not make use of meta-rules. 

In our revision of the analysis we will follow Pollard 
(1989) in separating subjects selection from complement 
selection. Our grammar incorporates, however, some 
radical differences, most of them concerned with the typing 
of features structures, and the typology of lexical and 
phrasal categories it induces. 

In essence, our approach incorporates a much more 
articulated theory of minor categories which attributes them 
a more privileged role than it is generally assumed in PSG 
frameworks. We assume, then, that minor categories have n 
certain head-like status and, consequently, seleetion,~l 
properties (Chomsky, 1986; Warner, 1989). 

Thus, the top of our hierarchy of signs is as follows: 

Sign: Minor: Afftxes 

Clitics 

Major: Words 

Phrases 

The main difference between major and minor signs is 
that the latter contain information of type syntactic category 
and semantics only, while major signs may contain also 
binding information. 

Now consider, the following, schematic lexical entries 
for the English complementizers that  and for, which are 
minor signs of type clitic: 

that = 
[syn.iocal.select <v[subj < >,compl < >,fin ] bse] > ] 

for = [syn.local.select <v[subj < >,compl < > ,inf] > ] 

Where subj and compl abbreviate subject 
complements. 

And the schematic entries for the following verbs: 

think = 
[syn.local.compl <v[compl< >,fin]>, 

~lld 
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syn.bind.subj <np>]  

wantl = [syn.local.compl <v[compl< >,comp.for] I 
v[sb < np 1 >,cp < >,int'] >, 

syn.bind.subj < n p l > ]  

want2 = [syn.local.compl<npl,v[sb<npl>,cp< >,infl>, 
syn.bind.subj < rip>] 

complain = [syn.local.compl<v[comp.that]>, 
syn.bind.subj <np>]  

Tlaus, subject extraction from a clausal complement of 
think or want is impossible if the complement has a 
complementizer, because it violates its seleetional 
restrictions. 

We predict then that, "in English, subject extraction is 
only possible with bridge verbs (e.g. think), and that it is 
always impossible with non-bridge verbs (e.g. wantl, 
complain), while complement extraction is always possible 
(e.g. object extraction in object control verbs like want2). 

Note that the different syntactic properties of verbal 
complements (clauses, VPs) seems to have a direct semantic 
correlation in the property/proposition distinction which has 
been advocated in some recent analyses of control, e.g. Sag 
& Pollard (1988). 

The CLG(2) grammar which accounts for the above 
facts contains four rules and four principles. Two rules are 
the well known Complementation and TopicaUzation rules 
of standard HPSG. 

The other two are original: one, lhe Clitie Placement 
rule, licenees those stuetures in which a minor head is 
attached to a major head; it requires that the selectional 
restrictions of the minor head be satisfied and marks the 
mother node with whatever features come from the minor 
head (e.g., comp=that,  when the complementizer is 
attached to a clause). The other rule is like Topicalization, 
but for subject binding. As for the principles, we have a 
Head Feature Principle, a Complementation Principle, a 
Binding Principle, and a Control Principle. 

As an example, we provide the CLG version of the 
Complementation Principle, which given its formulation has 
the direct consequence of performing gap introduction 
when some complement is not found: 

Complementation Principle 

[head._dtr = [ _ ],compl dtrs= [ _ 1]- > 
merge(dtrs'head-dtr'syn'l°c'c°mpis' 
dtrs.compl_dtrs, 
syn.bind.slash) 

where merge is a user relation defined as follows: 

merge(Z,[l,Z); 
merge(X:L1,X:L2,X.syn.bind.slash + R 1) 

< - merge(L 1 ,L2,R 1 ); 
merge(X:L1,Y:L2,Y:R) <_ merge(L1,Y:L2,R); 

The slash is computed by merge by concatenating thc 
slashes of each of the complement daughters with thosc 
elements of the compls list for which there is no matching 
daughter. 

4. Implementation 

The CLG(2) parser has been implemented in Prolog. 
A CLG(2) grammar is compiled by successively compiling 
type declarations, partial descriptions of phrasal signs, 
principles, user defined relations and lexical information. 

This implementation, uses a simple bottom-up parser 
with backtracking and handles constraints using ~ln 
extension of the ideas described in Damas &.Varile (1989). 
The parser is implemented as a predicate of the form 

derive(Tree,[Head I Input],Output ) :- 
complete(Head,Input,Output,Tree). 

complete(Tree,Input,Input,Tree). 

complete(FirstDaughter,Input,Output,Tree) :. 
apply_rules(FirstDaughter,Input,Output 1,Tree 1), 

complete(Treel,Output 1,Output,Tree). 

where the apply_rules predicate is produced by 
compiling each grammar rule into a clause for this 
predicate, which attempts to apply the rule. These clauses 
also apply all the principles, which are partially evaluated at 
compile time. This technique usually results in verifying only 
those principles which are relevant for the particular rule. In 
the actual implementation the amount of backtracking 
involved is reduced by introducing other clauses for the 
complete predicate which handle rules known to have ~ 
fLxed number of  daughters. 

Constraints are handled in a way similar to the one 
described in Damas & Varile (1989) by adding two extr~ 
arguments to each of the predicates mentioned above. 
These arguments contain a list of constraints at clause entry 
and exit, respectively. From time to time a rewriting process 
is applied to the list of constraints which may result into 
failure or new set of  simpler constraints. Note that this 
rewriting process may also cause variable instantiation as ~ 
side effect. 

Constraints imposed by principles are implemented by 
a call to a predicate addconstraint  which first attempts to 
decide if the constraint holds or not. If not enough 
information is available at that time for that purpose the 
constraint is added to the list of unresolved constraints for 
latter re-evaluation. 

However, the recursively defined constraints (e.g. the 
user defined relations) have a special treatment. 
Backtracking is allowed in its application, but some 
restrictions are imposed, namely they are applied only when 
sufficiently instantiated to insure that they finitely fail. In 
particular, for each recursively defined constraint, we must 
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specify which are the minimum conditions of application 
(for instance which arguments may not be undefined). 

Constraints on complex objects require some care on 
their interpretation and implementation. Consider, for 
instance, an object description such as 

[syn.loeal.subj <NP1 > 
syn.loeal.compls <v[compls < >,comp for] I 

v[subj < NP 1 >,compls < >,inf] > ]]. 

which is represented internally as a complex term 
containing only variables plus a constraint on those 
variables. Note that, if a variable that refers to a atomic 
value is envolved in a simple equality constraint (or 
conjunction o f )  that can be evaluated in compile time. 

For the above example we could have (here in the user 
language, for simplicity) objeet(Spec,Const), and if in Spec 
we identify 

syn.local.subj = NP1 
syn.local.compls = CP1 
CP 1.syn.loeal.head.maj =CM 
CP 1.syn.local.compls = CP2 
CPl.syn.loeal.subj = NP2 
CPl.syn.loeal.head.form = F1 
CP 1.syn.loeal.head.comp = CO 

then 

Const =(  CM = v & CP2 = [] & 
((NP2 = NP1 & F1 = int') I CO = for)). 

Final Remarks 

It is clear that the highly structured nature of CLG(2) 
grammatical descriptions has a number of advantages with 
respect to more classical approaches, amongst which not 
least the possibility to express powerful generalization about 
languages in a highly structured way while maintaining the 
necessaiy capability for expressing exceptions. 

A drawback of this approach is however that while it is 
possible to give a clean and simple formal semantics to each 
individual component, the formalization of the complete 
grammatical system is certainly more complex than 
desirable and, as a consequence, the possibility to achieve an 
efficient implementation is unnecessarily complicated. 

We are currently investigating the possibility of making 
the type theory underlying the Global Declarations a first 
class citizen, namely being the unifying formal framework 
for all the grammar components (at least for all non iexical 
information). 

By this we mean that a type declaration system in the 
form of an algebra of sorts can cover essentially the 
expressive requirements of our current formalism while 
providing a simple and uniform formal framework for the 
whole. 
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