
Reversible Unification Based Machm. Franslatlon

Gertjan van Noord
OTS RUU Trans 10

3,512 JK Utrecht
Valmoord~hutruu59.BH~net

March 28, 1990

Abstract

[n this paper it will be shown how unification g rammars
can be used to build a reversible machine t ranslat ion
system.

Unification g rammars are often used to define the re-
lation between strings and meaning representat ions in
a declara t ive way. Such grammars are somet imes used
in a bidirecLional way, thus the same grammar is used
for both parsing and generation, in this paper 1 will
show how ~.o use bidirect ional unification grammars to
dethle reversible relations between language dependent
meaning representat ions. Fur thermore it is shown how
to obtain a completely reversible MT system using a
series of (bidirectional) unification grammars .

l Introduct ion

The notion of a rew:rsible MT system was first ex-
pressed by Landsbergen [11]. Such a system will in
principle produce a set of possible translations, by em-
ploying linguistic knowledge only. Choosing the best
i ranslat ion from the set. of l inguistically possible trans-
lations will rsually require other sources of knowledge,
ei ther incorporated in the systenl or provided (interac-
tively) by the. user. The relation 'possible t ransla t ion ' is
symmetr ic whereas the relation 'best t rans la t ion ' is not.
Thus an MT system may consist of a reversible core,
implementi~:g the symmetr ic relation ~possible transla-
tion', and addit ional components (not necessarily re-
versible) to select tile best t ranslat ion.

Not only is it pos.siblc to build reversible (modules of)
MT systems; it has also been claimed that reversible
systems are preferable. For example Isabelle [6] clahns
that reversible MT systems are to be preferred to oth-
(:rs be(:~nlse in reversible MT systems a bet ter under-
s tanding of the t ranslat ion re.lation is achieved; such
systems will eventual ly exhibit bet ter practicM perfor-
mance. Moreover, the a rguments in favour of using
bidirectional g rammars in NL1), such as those given in
[1, 8] carry over to t ranslat ion as well.

Because o[tile declarat ive nature of unification- and
logic g rammar formMisms grammars writ ten in these
formalisms are increasingly used in a bidirectional way,
thus the sa.me g rammar is used for both parsing and
generation. Some recent developments are reported in

[3, 24, 16, 21, 2, 18, 19, 22, 20].
In this paper I will show how to use such bidirec-

tional unification g rammars to build a completely re-
versible, mult i l ingual , M T system. For each language
there is a unification g r ammar tha t defines a reversible
relation between strings and language dependent lnean-
ing representat ions (logical forms). Moreover, for each
language pair (or set of languages) there is a unifica-
tion g rammar that defines a reversible relation between
such language dependent logicM forms. Transla t ion is
thus detined by a series of three unification granrmars.

A specific version of the system that is described
here is implemented as the (:ore of the exper iments!
MiMo2 translat ion system [23]. This system aims at
t ranslat ing internat ional news i tems on f e l c t e x t . Apart
from unification g rammars the system rises a bidirec-
tional two-level or thography component . Langu age de.-
pendent meanings are represented as simple predicate
a rgument s t ructures with some ext ra labels indicating
'universal ' meaning such as tense and aspect. The cur.-
rent system (November 1989) includes g rammars for
Dutch, Spanish and English.

The paper is set up as follows. In section 2, I will
give some examples that show how bidirectional uni-
tication grammars can be used t.o define relation~ b e
tween logical forms of diiferent languages. In section 3,
reversibili ty is detined in terms of symmet ry and con>
patabil i ty. Possible approaches to obtedu reversibility
are discussed. In section 4, I wilt compare the current
approach with some other approaches in tile unification
based t ranslat ion paradigm and discuss some problems
and future directions.

2 Unif icat ion-based Transfer

in this section 1 wilt give some exan@les of the use of
a unification g rammar (in P A T R II [17] notat ion) to
define the relation between language dependent logi-
cal forms. For i l lustrat ive purposes I will assume log-
ical fl)rms are represented by feature s t ructures con-
sisting of the a t t r ibutes pred, ar.ql, art2 together with
some at tr ibu tes represent ing 'universM' meanings such
as tense, aspect, munber and person; I will not touch
upon issues such a~s quant if icat ion and modification.
The logical forlns of English and Spanish are labeled by
the a t t r ibutes 9 b and sp respectively. As an example

299

the logical form of 'The army opened fire at the civil-
ians' is represented as in figure 1. Such feature struc-

Figure 1: An example of a logical form

gb =

pred = open_fire_at

?~u l t t be r : . s g

[w e d = c i v i l i a n]
arg2 = number -- pl

tures will often be related ill a straightforward way to
a Spanish equivalent., except for the value of the prod
attributes. A very simple rule in PATR II style may
look as in figure 2. This rule simply states that the

Figure 2: A simple rule

0 - - + 1 2 3
(0 gb pred) = (1 gb)
(0 gb argl) = (2 gb)
(0 gb arg2> = (3 gb)
(0 sp pred) = <1 sp)
(0 sp gl) = (2 sp>
(0 sp arg2) = (3 sp)

translation of a logical form is composed of the transla-
tion of its arguments. If the rule applies to the feature
structure in 1 tile three daughters of the rule will be
instantiated as in figure 3, and the value of sp will be
bound to the sp values of these daughters. An example

Figure 3: Three ins tan t i a t ions

[gb = open_fire_at]

[1 gb = namber = pl

' ~ u m b e r ~- s g

of the rule for the first daughter will be a lexical entry
and looks as iu figure 4. The simple English expression
'army' has to be translated as a complex expression in
Spanish: 'Nerza militar'. The rule will look a.s in 5
where it is assumed that the construction is analyzed
in Spanish as an ordinary noun-adjective construction,
and where the logical form of the adjective takes the
logical form of the noun as its argument. The transla-
tion for 'civilian' is defined in a similar rule (although
the translation of 'number ' is different). Note that this
example of complex transfer is similar to the famous
'schimmel - grey horse' cases. As a result of the rule

Figure 4: A lexical en t ry

0 - -~

<0 gb) = open_fire_at
(0 sp> = romper_el_fuego_a

Figure 5: A rule for ' fuerza rni l i tar '

0 ---~

(0 gb pred) = ,army
(0 ap pred pred) = m i l i t a r
(0 sp a rg l pred) = fue rza
(0 sp a rg l nmnber) = (0 gb number}

applications the feature structure in figure 1 will get
instantiated to tile feature structure in 6, from which
the generator generates the strir~g 'La fllerza militar
rompio el fuego a la poblacion civil'.

Figure 6: The feature s t ruc ture after transfer

9b =

sp

p r e d = o p e n _ f i r e _ a t
[p r e d y]

a r g l :-x n.ur~zbe, e = s 9

p r e d = c i v i l i a n
a r g 2 =: t ~ u m b e r ---- pl

p r e d = r o m p e r _ e l _ f u e g o _ a

ar 9 1 =

a t 9 2 =

]

ar91 p r e d =] u e r z a
,zttrllbev ~. sff

p r e d = poblacioI~
a t 9 ! L ,;.,arnber = s 9

In the foregoing examples the relation between Iogi-
car forms is rather straightforward. Note however that
tile full power of a unification grammar can be used to
settle more difficult translation cases, because differellt
attributes can be used to represent the ' translational
syntax'. For instance we can build a tree as value of
the attribute tree to represetlt tile derivational history
of the translation process. Or we can %hread'informa-
tion through different nodes to be able to make transla-
tions dependent on each other. Translation parameters
such as style and subject field can be percolated as at-
tributes of nodes to obtain consistent translations; but
these attributes themselves need not be translated.

3 R e v e r s i b l e U n i t i c a t i o n

G r a m m a r s

A unification grammar defined in formalisms such as
PATR II and 1)CG [12] usually defines a relation be-
tween a string of words and a logical form. In sign-
based approaches such as UCG [26] and flPSG [14] this
string of words is not assigned a privileged status but
is the value of one of the attributes of a feature struc-
ture. I will assume a formalism similar to PATR II,

300

but without the context-free ba~e; the string is repre-
sented as the value of one of the attributes of a feature
structure. Thus more generally, unification grammars
define relations between the values of two (or more 1)
attributes - for example the relation between the value
of the attributes string and If, or between the value of
the attributes sp and gb; these relations are all relations
between feature structures.

3.1]Reversibility
I will call a binary relation reversible if the relation is
symmetric and computable. Both symmetry and com-
putability will be explained in the following subsec-
tions. A grammar G is reversible for a relation R iff R
is reversible and defined by G. For example, a grammar
that relates strings to logical forms is reversible if both
the parsing and generation problem is computable, and
the relation between strings and logical forms is sym-
metric; the parsing problem is computable if for a given
string all corresponding logical forms can be enumer-
ated by some terminating procedure; such a procedure
should halt if the given string does not have a corre-
sponding logical form. Thus: reversible -- symmetric +
computable. Note that reversibility as defined here is
different from bidirectionality. The latter merely says
that grammars are to be used in two directions, but
does not state how the two directions relate.

It is easy to see that a composition of reversible re-
lations is a a reversible relation too; i.e. if some fea-
ture structure fl is related to some feature structure
f~ via the reversible relations .Ri(fi,fi+l), each de-
fined by some reversible grammar Gi, then R'(f l , fn)
is reversible. Thus an MT system that defines a rela-
tion R(,%, st) via the relations t~ (s~, 5), Ry (l~, lt) and
Ra(lt, st) is reversible if R1,2,3 are reversible.

3 .1 .1 S y m m e t r y

A relation R C A x B is symmetric iff R(a, b) implies
R(b, a ~) where a and a' are equivalent. For an MT sys-
tem we want to define 'equivalence' in such a way that
the translation relation is a symmetric relation between
strings, ttowever, strings are feature structures thus wc
must define equivalence for feature structures to obtain
this effect.

Unification grammars as they are commonly used
implement a rather weak notion of equivalence between
feature structures: feature structures a and b are equiv-
Ment if they ca~ ~if>.:

D e f i n i t i o n I (W e a k equ iva l ence)
Two feature structures f l , f2 are weakly equivalent iff
f l U f2 exists.

if feature structures are taken to stand for all their
grouml iustances this yields an acceptable version
of sym ;~e.try. Moreover, under the assumption that

1 Note that it is possible to define a unification gra~nmar
that relates several language dependent logical forms; in this
approach a multilingual transfer system consists of only one
transfer gramm,'m

feature structures which represent strings are always
ground (i.e. these feature structures cannot be ex-
tended), this results in a symmetric relation between
(feature structures that represent) strings.

It is also possible to define a 'strong' notion of equiv-
alence for feature structures that does not rely on this
assumption.

D e f i n i t i o n 2 (S t r o n g e q u i v a l e n c e) Two feature
structures f l , f 2 are strongly equivalent (fl =-- f2) iff
/2 E A and A E f2.

A grammar that defines a computable relation between
two attributes under the strong definition of equiva-
lence might be cMled strongly reversible. Similarly a
weakly reversible grammar is reversible under a weak
definition of equivalence. Again these results can be
generMized to a series of unification grammars. The
strong version of equivalence can be motivated on the
ground that it may be easier to obtain computability;
this is the topic of the next subsection. In section 3.2
I will discuss possible relaxations of the strong version
of equivalence to obtain 'mildly' reversible grammars.

3 .1 .2 C o m p u t a b i l i t y

A relation R C A x B is computable iff for a given
a E A the set {b C B]R(a,b)} can be enumerated by
some terminating procedure. To discuss cornputabil-
ity it is useful to look a bit more careful at the re-
lations we are interested in. These relations are all
binary relations between feature structures, ttowever,
in tile case of the relation between strings and logical
forms, strings will always be related to logical forms and
logical forms will be related to strings. Similarly for
the relation between l)utch and Spanish logical forms.
Clearly, the domain and range of the relation is struc-
tured and can be partioned into two sets A and]3,
[or example the set of feature structures representing
strings and the set of feature structures representing
logical forms. The relation R C A U B x A U B can be
partitioned similarly into the relations r C A x I] and
its inverse, r -~ C B x A. The problem to compute R
is now replaced by two problems: the computation of
r and r -1. For example the problem to compute the
relation between logical forms and strings consists of
the parsing- and generation problem. It is now possi-
ble to incorporate the notion of equivalence, to obtain
a definition of a parser, generator and translator. For
example, an Mgorithm that computes the foregoing re-
lation r will enumerate for a given features structure
fl all feature strnctures fy, such that r(fa, fy) and f~
and f3 are equivalent. In the case of strong equivalence
this implies that f l ~ f3 (completeness), and fa U fl
(coherence). In other words, the input should not be
extended (coherence) and should completely be derived
(completeness). This usage of the terms completeness
and coherence was introduced in [24]. In the following
I will discuss ways to obtain computability of one such
partition.

It is well known that relations defined by unrestricted
unification grammars are not computable in general a~s

301

such grammars have Turing power [13]; it is thus not
decidable whether the relation is defined for some given
input. Usually some constraint on grammars is defined
to remedy this. For example the off-line-parsability
constraint [13, 5] ensures that the recognition problem
is solvable. Moreover this constraint also implies that
the parsing problem as defined here is computable; i.e.
the proof procedure will always terminate (because the
constraint implies that there is a limit to the depth of
possible parse trees for all strings of a given length).

llowever the off-line-parsability constraint assumes
a context-free base of the formalism. A generalization
of the off-line-parsability constraint for any binary re-
lation defined by unification grammars will consist of
three parts; the first and third of these parts are usually
implicit in the case of parsing.

Pirst, the value of the input must be built in a well-
behaved compositional way. For example in the case of
parsing: each daughter of a rule dominates part of the
string dominated by the mother of that rule. Similarly
for transfer and generation: each daughter of a rule
has a value for I f that is part of the value of If of the
mother.

Second, a special condition is defined for rules where
the input vMue of the mother is the same as the in-
put value of one of the daughters. [:or parsing such
rules have exactly one daughter. A chain of applica-
tions of such rules is disallowed by some constraint or
other; this is the core of most definitions of the off-
line parsabilityoconstraint. For example in [13] such a
chain is disMlowed as the principal functor of a term
may only occur once in a chain. For a slightly more
general definition, cf. [5]. For generation and transfer
a similar constraint can be defined. In the terminology
of [18, 19] the 'head' of a rule is a daughter with the
same logical form as its mother. A chain of these heads
must be disallowed.

Third, the input should not get extended during the
proof procedure. In the case of parsing this is achieved
eaMly because the input is ground 2. For generation
and transfer this is not necessarily the case. This is the
point where the usefulness of the coherence condition
comes in; the coherence requirement explicitly states
that extension of the input is not allowed. For this
reason strong reversiblity may be easier to obtain than
weak reversibility. In the next subsection I will discuss
two relaxations of strong symmetry that will not affect
the computability properties discussed here.

Generalizing the terminology introduced by [13] a
proof procedure is strongly stable iff it always termi-
nates for grammars that adhere to a generalized off-line
parsability constrMnt. In [15] a general proof procedure
for DCG based on head-driven generation [18, 19, 22]
is defined that is strongly stable for a specific instanti-
ation of the generalized off-line parsability constraint.

?'Note that this is the reason that most DCG parsers
expect that the input value of the string has an atomic
tail, i.e. parse([john, kisses,mary], ~) will work fine, but
parse([john, kisses, mary]X], X) will cause problenas.

3 . 2 P o s s i b l e r e l a x a t i o n s

It is easy to see that the completeness and coherence
requirenrents make life hard for the rulewriter as she/he
needs to know exactly what the possible values of in-
puts are for some component. It is possible to relax the
completeness and coherence requirement in two ways
that will not affect the reversibility properties between
strings. The useflfiness of these relaxations depends on
the analyses a user wishes to define.

3 .2 .1 C y c l i c a n d n o n - c y c l i c a t t r i b u t e s

The first relaxation assumes that there is a sort sys-
tem defined for feature structures that makes it pos-
sible to make a distinction between cyclic and non-
cyclic attributes (cf. [5]). For the moment a non-
cyclic attribute may be defined a.s an attribute with
a finite number of possible values (i.e. it is not recur-
sive). For example the attributes argl and arg2 will
be cyclic whereas number will be non-cyclic. The com-
pleteness and coherence condition is restricted to cyclic
attributes. As the proof procedure can only further in-
stantiate non-cyclic attributes no termination problems
occur because there are only a finite number of possi-
bilities to do this. The definition of 'equivalence' for
feature structures is now slightly changed. [[b define
this properly it is necessary to define the notion non-
cyclic extension. A non-cyclic extension of a feature
structure only instantiates non-cyclic attributes. This
results in the following definition of equivalence:

D e f i n i t i o n 3 (Non-cyc l i c e q u i v a l e n t) Two feature
structures f:, f2 are non.cyclic equivalent iff f~ _=__ f~
where f~ are non-cyclic extensions of f,~.

It will be clear that the usefulness of this definition
depends heavily on the style of grammar writing that
is used. Note that it is of course also possible to declare
for each non-cyclic attribute whether the completeness
and coherence requirements hold.

3 .2 .2 R e e n t r a n c l e s

The second relaxation is not without ramifications for
the organization of a transfer grammar. Tlfis relax-
ation has to do with reentrancies in feature structures.
Some constructions such as control verbs and relative
clauses may be represented using reentrancies; for ex-
ample 'the soldiers tried to shoot the president' may
be represented by a feature structure where the first
argument of ' t ry ' is reentrant with the first argument
of 'shoot', cf. figure 7. The translation of such logical
forms to Dutch equivalents can be defined as in rule 8.
In this rule the reentrancy is explicitly mentioned for
two reasons. The first reason is simply that in the
case of different possible translations of ar91 we want
the same translation for both argl and the embedded
argl. Note that the translation of 'soldier' into Dutch
can be both 'soldaat ' or 'militair ' . If the reentrancy is
not mentioned the system has to try to generate from
four different Dutch logical forms, two of which without
matching argl's.

302

Figure 7: A logical form conta in ing reen t rancy

gb=

pred = try
argl = [] [pred = soldier

number = pl]

ar.q2 = argl = [] pred = president
arg2 = nu'mber = sg

Figure 8: T rans la t ing subjec t control

0 - - . 1 2 3
(0 gb pred) = (1 gb)
<0 nl pred} = <~ ~p>

(0 n l argl) = (0 nl arg2 argl)
<o gb ~rg1> = <2 gb)
(0 nl ~rg1> = <2 ~p>
<0 gb arg2} = (3 gb>
<o n:L ~g2} = <3 ~p>

The reentrancy is also mentioned because this is re-
quired by the completeness condition. It is possible to
relax the completeness and coherence condition with
respect to these reentrancies, again without directing
the reversibility properties of the system by slightly
changing the definition of equiva]ence. There is a trade-
off between simplicity of the transfer grammar (in the
presence of this relaxation) and the efficiency of the
system. In the case of this relaxation the system will
eventually lind the good translations, but it may take a
while. On the other hand, if we are to mention all (pos-
sibly unbounded) reentrancies explicitly then the trans-
fer grammar will have to be complicated by a threading
mechanism to derive such reen trancies. Again, the spe-
cific use o:[reentrancies in the logical forms that are de-
fined will deterlnine whether this relaxation is desired

or not.

4 F i n a l r e m a r k s

The objective to build a reversible MT system using
a series of unification grammars is similar to the ob-
jective of the C R I T T E R system as expressed in [3, 7],
and the work of Zajac in [25]. Instead of using unifica-
tion grammars C R I T T E R uses logic grammars; Zajac
uses a type system including an inheritance mechanism
to define transfer-like rules. In these two approaches
less attention is being paid to an exact definition of re-
versibility; although our work may be compatible with
these approaches.

A somewhat different approach is advocated in [9].
In that approach a system is described where an I, FG
grammar for some source language is augnlented with
equations that define (part of) the target level repre-
sentations. A generator derives from this partial de-
scription a string according to some LFG grammar of
the target language. Instead of a series of three gram-

mars this architecture thus assumes two grammars, one
of which both defines the source language and the rela-
tion with the target language. The translation relation
is not only defined between logical forms but may relate
~ll levels of representation (c.structure, f-structure,
a-structure). Although in this approach monolingual
grammars may be used in a bidirectional way it is un-
clear whether the translation equations can be used
bidirectionally 3

An important problem for the approach advocated
here is the problem of logical form equivalence. Shieber
[16] noted that unification grammars usually define
a relation between strings and some canonical logical
form. Depending on the nature of logical forms that
are being used, severM representations of a logical form
may have the same 'meaning'; just as in first order
predicate calculus the formulas p v q and q v p are logi-
cally equivalent; a unification grammar will not know of
these equivalences and, consequently, all equivalences
have to be defined separately (if such equivalents are
thought of as being translational equiwdents); for ex-
ample in a transfer grammar two rules may be defined
to translate p V q into both p' V q' and q' V p' if these
formulas arc thought of ,~ being equivalent. Of course
this technique can only be applied if the number of
equivalences is finite, i t is not possible to define that p
is equivalent with p for any even number of --'s.

The approach discussed so far can be extended just
as unification grammars for parsing and generation
have been extended. Apart from equationM constraints
it will be useful to add others such as disjunction and
negation. Moreover it seems useful to allow some ver-
sion of universal constraints or some inheritance mech-
anisrn to be able to express generalizations and excep-
tions more easily.

A c k n o w l e d g e m e n t s

I want to thank Joke Dorrepaal, Pim van der Eijk,
Maria Florenza, Dirk Iteylen, Steven Krauwer, Jan
Landsbergen, Michael Moortgat, IIerbert Ruessink and
Louis des Tornbe. I was supported by the Euro-
pean Community and the NBBI through the Eurotra
project.

R e f e r e n c e s

[1] Douglas E. Appelt. Bidirectional gr~nmars and the
design of natm'al language generation systems. In The-
oretical Issues in Natural Language Processing 3, 1987.

[2] Jonathaal Calder, Mike Rcape, and tlenk Zeevat. An
algorittma for generation in unification catcgorial gram-
mar. In Fourth Con.ference of the European Chapter of
the Association for Computational Linguistics, 1989.

[3] Marc Dymetman ~ld PielTe Isabellc. Reversible logic
grannnars for machine translation. In Proceedings of
the Second International Conference on Theoretical

3Although parsing of LFG's is decidable no such result
is available for generation; note furthermore that according
to [9] extension is Mlowed dm'ing generation.

3 0 3

and Methodological issues in Machine Translation of
Natural Languages, 1988.

[4] Barbara Qrosz, Karen Sparek Jones, and Bonny Lynn
Webber, editors. Readings in Natural Language Pro-
cessing. Morgan Kaufinann, 1986.

[5] Andrew Haas. A generalization of the offline parsable
grammars. In '27th Annual Meeting oJ the Association
for Computational Linguislies, 1989.

[6] Pien'e Isabelle. Towards reversible MT systems. In MT
Summit]I, 1989.

[7] Pien'e Isabelle, Marc Dymetman, and Elliott Macldo-
vitch. CRITTER: a translation system for a~'ieulturM
market reports. In Proceedings o/ the 12th Interna-
tional Conference on Computational Linguistics, Bu-
dapest, 1988.

[8] Paul S. Jacobs. Achieving bidirection'Mity. In Proceed-
ings o] the 12th International Conference on Compu-
tational Linguistics, 1988.

[9] Ronald Kaplan, Klaus Netter, Jiirgen Wedekind, and
Annie Zaenen. Translation by structural correspon-
dences. In Fourth Conference o] the European Chap-
ter of the Association for Computational Linguistics,
1989.

[10] Margaret King, editor. Machine Translation, the State
o] the .4 ft. Edinburgh University Press, 1987.

[11] Jan Landsbergen. Isomorphic grammars and their use
in the Roset ta t ranslat ion system, 1984. paper pre-
sented at the tutorial on Machine Translation, Lugano
t984, Also appears in [10].

[12] Femando C.N, Pereira and David WaITen. Definite
clause grammars for language analysis - a survey of the
formMism and a comparison with augmented transit ion
networks. Artificial Intelligence, 13, 1980. reprinted in
114].

[13] Femando C.N. Pereira and David Wan'ca. Parsing as
deduction. In 21st Annual Meeting of the Association
/or Computational Linguistics, 1983.

[14] Carl Pollard and Ivan Sag. In.formation Based Syntax
and Semantics. Center for the Study of Langalage and
Information Stanford, 1987.

[15] Herbert Ruessink attd Gert jan van Noord, Remarks on
the bot tom-up generation Mgorithm. Technical report,
Depar tment of Linguistics, OTS RUU Utrecht, 1989.

[16] Stuart M. Stfieber. A mfiform architecture for parsing
and generation. In Proceedings o/ the 12th Interna-
tional Conference on Computational Linguistics, 1988.

[17] Stuart M. SIfieber, Hans Uszkoreit, Fernando C.N.
Pereira, J. Robinson, and M. Tyson. Tile formalism
and implementat ion of PATR-II. In B. J. Grosz and
M. E. Stickel, editors, Research on Interactive Acqui-
sition and Use o] Knowledge. SRI report, 1983.

[18] Stuart M. Shieber, Gert jan van Noord, Robert C.
Moore, and Fernando C.N. Pereira. A semantic-head-
driven generation Mgorithm for unification based for-
mMisms. In 27th Annual Meeting of the Association
.for Computational Linguistics, 1989.

[19] Stuart M. Shieber, Gert jan van Noord, Robert C.
Moore, and Fernando C.N. Pereira. Semantic-head-
driven generation. Computational Linguistics, 1990.
To appear.

[20] Tomek Strzalkowsld. Automated inversiot) of a unifica-
tion parser into a unification generator. Technical re-
port, Courant Inst i tute of Mathematical Sciences, New
York University, 1989. technical report 465.

[21] Gertjau van Noord. BUG: A directed lmttom-up gen-
erator for unification ba~sed fonnMisms. Working Pa-
persia Natural Language Processing, Katholieke Uni-
versiteit Leuven, Stichting Taaltechnologie Utrecht, 4,
1989.

[22] Gert jan van Noord. An overview of head-driven
bot tom-up generation. In Robert Dale, Chris Mellish,
and Michael Zock, editors, Current Research in Natu-
ral Language Generation. 1990.

[23] Gert jan vail Noord, Joke DorrepaM, Louis des Tombe,
and Pim van der Eijk. The MiMo2 research system.
OTS RUU Utrecht.

[24] Jiirgen Wedekind. Generation as structure driven
derivation. In Proceedings o/ the 12th International
Conference on Computational Linguistics, 1988.

[25] Rdmi Zajac. A transfer model using a typed feature
structure rewriting system with inheritcnce, In 27th
Annual Meeting of the Association for Computational
Linguistics, 1989.

[26] [leak Zeevat, Ewau Klein, and Jo Calder. Unification
categorial grammar. In Nicholas tIaddock, Ewan Klein,
and Glyn Morrill, editors, Categorial Grammar, Uni-
fication Grammar and Parsing. Centre for Cognitive
Science, 1987. Volume 1 of Working Papel.'s in Cogni-
tive Science.

304

