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Abstract

To resolve structural ambiguitics in syntactic analysis of
natural language, which are caused by prepositional phrase
attachment, relative clause attachment, and so on, we de-
veloped an experiinental system called the Dependency An-
alyzer. The system uses instances of dependency structures
extracted from a terminology dictionary as a knowledge
base.  Structural (attachment) ambiguity is represented
by showing that a word has several words as candidate
madifices. The system resolves such ambiguity as follows.
First, it scarches the knowledge base for modification re-
lationships (dependencies) between the word and each of
its possible modifiees, then assigns an order of preference
to these relationships, and finally sclects the most prefer-
able dependency. The knowledge base can be constructed
semi-automatically, since the source of knowledge exists in
the form of texts, and these sentences can be analyzed by
the parser and transformed into dependency structures by
the system. We are realizing knowledge bootstrapping by
adding the outputs of the system to its knowledge base.

1 Introduction

The bottleneck of sentence analysis, structural ambi-
guity, occurs when a sentence has scveral alternatives
for modifier-modifiee relationships {(dependencies) between
words or phrases. This kind of ambiguity cannot be re-
solved merely by applying grammatical knowledge: there
is a need for semantic processing. Resolution of struc-
tural ambiguities seems to be a problem of selecting the
most preferable dependency from several candidates by us-
ing large-scale knowledge on dependencies among words.
There are two problems in realizing practical semantic pro-
cessing: one is that knowledge must be large-scale, and
must be constructed automatically or semi-automatically;
the other is that the mechanism for utilizing knowledge,
inference, must be efficient or tractable. We developed a
system called the Dependency Analyzer that resolves these
problems.

The Dependency Analyzer is a system for structural dis-
ambiguation. One of its characteristics is that it selects
the most preferable-dependency by using a knowledge base
containing terminological knowledge in the form of depen-
dency trees. The knowledge base can be constructed semi-
automatically, as described in Section 2. The inputs of
this system are parse trees, which are outputs of the PEG
parser, a broad coverage English parser [5]. The system
translates the phrase structures into dependency struc-
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tures that explicitly represent modifier-modifiee relation-
ships between words. The main processes of the systemn
arc executed if attachment ambiguitics are included in the
phrase structures. In the dependency structures, attach-
ment ambiguities are represented by showing that some
words have several candidate modifiees. From these de-
pendency structures, several candidate dependencies are
extracted. The system decides which of these should be
adopted by using background knowledge and context. The
decision is made via the mechanisms of path search and
distance calculation. A precise description of path scarch is
given in Section 3. An explanation of distance caleulation
is given in Section 4. Another problem for disambigua-
tion, namely interaction (or constraints) between attach-
ment ambiguities, is discussed in Section 5.

2 Knowledge Base

The knowledge must be large-scale, since natural language
semantics should have a broad coverage of lexical items.
Since dependency structures are built by analyzing sen-
tences and by transforming phrase structures in a straight-
forward way, if knowledge is assumed to consist of depen-
dency structures, a knowledge base is easily constructed
by using already-existing on-line dictionaries. This idea
of using on-line dictionary definitious as a knowledpe base
was originally proposed by Karen Jensen and Jean-Louis
Binot (6]. Jun-ichi Nakamura and Makoto Nagao [10] eval-
uated the automatic extraction of semantic relationships
between words from the on-line dictionary. We emphasize
that a data structure for representing knowledge should be
as simple as possible, because it must be easy to construct
and efficient.

We selected the tree structure as a means of representing
knowledge, because it is a very simple and manageable
data structure, and because tree structures are suitable
for describing dependency structures.

The tree structure is defined as follows. A Tree consists
of a Node and recursions (or null) of Tree, and a Node con-
sists of repetitions of a paired attribute name and wtiribute
value.

For example, Figure 1 shows a tree (dependency) struc-
ture for the clause “the operating system stores the files in
the disk.” In this tree, “WORD,” “POS (part of speech),”
and “CASE” are ettribute names, and “store,” “VERB,”
and “AGENT” are attribute values.

In our system, the knowledge can be extracted from dic-
tionaries of terminology, and is of two types: (1) depen-
dency structures and (2) synonym and taxonym relation-



( ((WORD "store") (POS . VERB))
(((WORD . "operating system")
(CASE . AGENT) (POS . NOUN)))
(((WORD "file") (CASE . PATIENT)
(POS NOUN)))
(((WORD "disk") (CASE . LOCATICN)
(PGS . NOUN))) )

Figure 1: Tree structure for the clause “the operating sys-
tem stores the files in the disk”

ships.

The process of knowledge extraction is as follows. First,
dictionary statements are rewritten manually as simple
sentences. Next, sentences are parsed into phrase struc-
tures by the PEG parser. Then, phrase structures are
transformed into dependency structures by the Depen-
dency Structure Budder, which is a component of the De-
pendency Analyzer.  Finally, semantic case markers are
manually added to the modification links in dependency
structures.  Synonym and taxonvm relationships are ex-
tracted from seutences of the form *N is a synouym for
Y7 and “X is a Y7 respectively. These sentences are au-
tomatically transformed into tree structures each of which
has two nodes for the words “X” and “Y” and a link from
“X” to “Y" with the label “isa.” In the case of “X is a
synonym for Y,” since “Y™ is also a synonym for #X,” “Y™
is connected with “X" at the same time by a link with the
label “isa.” We developed an interactive tree management
tool, the Tree Editor, which makes it easy for users to deal
with trees.

Aunother problem of natural language processing is the
knowledge acquisition bottleneck. Some ideas on how to
acquire knowledge from already-existing dictionaries auto-
matically or semi-automatically have been proposed {10,4].
But it is still difficult to develop a knowledge base fully au-
tomatically because of ambiguities in the natural language
analysis of dictionary definitions. & more practical way to
overcome the bottleneck is so-called knowledge bootstrap-
ping. By knowledge bootstrapping, the Dependency Ana-
lyzer extends its knowledge automatically by using a core
knowledge base that includes manuaily edited dependency
structures. Since the Dependency Analyzer uses depen-
dency structures as knowledge and outputs a dependency
structure with no ambiguity (cese ambiguity is also re-
solved by the system), the output can be added to the
knowledge base. Of course we still need to evaluate the
automatically constructed knowledge base. But the relia-
bility (performance) of the knowledge base is rising grad-
ually, so it is expected that human intervention will be
preatly reduced in the near future.

3 Path Search - An Efficient Algo-
rithm

Paih search is a process for finding relationships between
the words in a candidate dependency by using a knowledge
base. Since relationships between words in these candi-

dates do not always exist in the knowledge base, relation-

Table 1: Tree Index Table

word | synonym and tezonym trees | dependency trees

a t6(0) t10(0) £22(0) t101(0 1) tis50(1 0)
b t5(1) t52(0) te2(0) t11{1) t110(1)

c t2(0) ¢15(0) t72(1) t101(1 1) tase(0 2 3)
d tg(1) tz25(1) ts2(0) tas{1 0) t119(1 1 0)
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Figure 2: Tree and Node Location

ships between synonyms and taxonvms of these words can
also be targets. Path sewrch is done in the following steps:

1. Synonyms and taxonyms of words in the candidate
dependencies are found by using the knowledge base.
In the knowledge base, synonym and taxonym rela-
tionships are also defined in the form of trees. All the
synonyms and taxonyms can be collected by transiting
relationships.

2. Dependencies between elements of each synonym and
taxonym set (including the original words) are also
found by using the knowledge base.

We developed an efficient algorithm for path search, us-
ing the table of indices shown in Table 1. In this table, ¢,
represents the pointer of the tree in which the word on the
same line appears, and the numbers in parentheses repre-
sent the node location of the word in the tree. Relation-
ships between the numbers and the node are shown in Fig-
ure 2. The left side of the table shows trees in which a syn-
onyvin or a taxonym of the word on the same line appears as
its parent node. For example, in the tree tg, the word a is
on the node of location (0), and by traversing ¢y up by one
node from location (0) we can find that the word b is on the
node of location (), so bis a synonyfn or a taxonym of a, as
shown in Figure 3. Thus, in order to find a synonym or a
taxonym of a word, we just traverse up the tree on the left
side of the table by one node. We assume that synonym
and taxonym relationships are transitive. that is, that a
synonyui/taxonym of one of the synonyms/taxonyms of a
word is also a synonym/taxonym of the word itself. We can

to — b
Tsynonym/tm{onym (isa)

a

Figure 3: Synonym/Taxonym Tree
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Figure 5: Path

collect all its synonyms/taxonyms by iteration of that pro-
cess. The next stage of path search is to find whether there
arc dependencies between words within each set of syn-
onytus/taxonyms. This process searches trees that involve
both words and checks whether there is a path from one
word to the other. In the dependency trees, the words’ lo-
cations show whether there is a dependency between them.

For example, we can see that the word b is a dominator
of the word d fromn the locations of these words in the
common tree ;o (shown in Figure 4), which is included in
both the set of dependency trees that include b, {11,210},
and that of dependency trees that include d, {t35,t110}. In
the tree structures, if the node a is an ancestor of the node
b, then there is a unique path from b to a. Thus, finding
dependency between words is equivalent to checking their
node locations in the dependency trees. A path between
words wy and wy is found by the following processes:

1. The synonym/taxonym sets of these words, Sy, and
Suwqy are collected.

2. The common trees ¢, ... that involve both elements,
e; € Sy, and e; € Sy,, of each set are found.

3. The node locations of e; and e; in ¢, ... are checked.

For example, a path between the words a and ¢ is shown
in Figure 5.
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Figure 6: Ambiguous Dependency Structure

“keep”
on

“virtual disk”
Figure 7: Candidate Dependency

4 Distance Calculation - A Heuristic
Process for Selection of the Most
Preferable Dependency

Several couditions are added to paths, and the closeness
of dependency in a path is computed according to these
conditions. The degree of closeness of dependency is called
the dependency distance. This is calculated by using the
nummber of dependencies included in a path and the values
of the conditions. Three conditions are used to calculate
the dependency distance:

1. Cuse consistency

For example, in the sentence *VM/SP keeps the infor-
mation on the virtual disk,” there is a prepositional
phrase attachment ambiguity, as shown in Figure 6. If
the path shown in Figure 8 is found together with the
candidate dependency shown in Figure 7, then the se-
mantic case of the path’s dependency between “store”
and “disk” must be consistent with the grammatical
case of the sentence’s dependency between “keep” and
“virtual disk.”
the sentence and the path holds, since the grammat-
ical case “on” can have the role of the semantic case
“location.” If this consistency holds, then the value of
case consistency is 1; otherwise, it is 0.

Here, the case consistency between

2. Co-occurrence consistency

This is the consistency between the other modifiers of
the modifiee of the candidate dependency, called the
co-occurrent modifiers, and those of a path.

“store”
location

“keep” “disk”

isa
“virtual disk”

Figure 8: Path
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Figure 9: Co-Occurrence
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Figure 10: Dependency Tree

In the example sentence, for instance, there is a co-
occurrent modifier “VM/SP” of the candidate depen-
dency between “keep” and “virtual disk,” as shown in
Figure 9. In this case, “VM/SP” has the grammatical
case subject. On the other hand, if the path is given by
the dependency tree shown in Figure 10, then there is
also a co-occurrent modilier “operating system” that
has the semantic case of agent. In addition, there is a
taxonym relationship between “VM/SP” and “oper-
ating system” in the knowledge base, as shown in Fig-
ure 11. In this case, the co-occurrence consistency be-
tween “VM/SP” and “operating system” holds, since
there is a relationship between the words and both
cases are consistent (the grammatical case subject can
have a semantic case agent), as shown in Figure 12.
The value of co-occurrence counsistency is the num-
ber of co-occurrent modifiers that are consistent be-
tween the path and the sentence. Here, the value is
1, since only one co-occurrent modifier “VM/SP” is
consistent.

Context consistency

Context consistency holds if dependencies in a path

already exist in previous sentences. For example, if

the sentence “the data is stored in the storage device”
comes before the above sentence, then the dependency
structure shown in Figure 13 is in the context base in
which the dependency structures of previous sentences
are stored. Then the other path (shown in Figure 14),
which corresponds to the dependency between “store”
and “disk” in the “path,” is found by using the con-
text base. Thus the dependency between “store” and
“disk” is defined by the context. The value of context
consistency is the number of dependencies in the path
that are defined by the context. In this case, the value

“operating system”
isa

‘ “YM/SP”

Figure 11: Taxonym Relationship

agent location
“operating systemn” TR Ugpope’! ST gy
isa T isa T isa
subject on
“WM/SP”? > “keep” ¢ “virtual disk”

Figure 12: Diagram of Co-Occurrence Consistency

“store”
object in

“data” “storage device”

Figure 13: Dependency Tree in the Context Base

is 1, since there is one dependency iu the path and it
is defined in the context.

The dependency distance is computed from the following
formula:

|Dep| + Viegn X (0 — 1)
(VCu.lm + 1) X (‘/'Cum'. + 1) ’

Distance =

where |Dep| represents the number of dependencies in-
cluded in the path, Vouse is the value of case consistency,
Veooe 15 that of co-occurrence consistency, and Veone is that
of context consistency.

This formula assumes that case and co-occurrence consis-
tency affect the distance of the whole puth, but that context
consistency affects the distance of each dependency in the
path.

n is a real number in the range 0 < n < 1; it is a heuristic
parameter that represents the degree of unimportance of
context consistency.

The dependency distance between “keep” and “virtual
disk” that is calculated by using the path in the example is
0.125, because the number of dependencies is 1, the value
of case consistency is 1, that of co-occurrence consistency
is 1, and that of context consistency is 1 (n is defined as
0.5).

The ambiguity of an attachment is resolved by selecting
the candidate dependency that is separated by the shortest
distance.

“stqre”

in
“storage device”

isa

“disk™

Figure 14: Path of Context
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Table 2: Constraint Tables
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Constraint Table Ts.¢6

576 | L 5] As Bs | .5/7 |3 6] As Bs [ 6/7 [ 3 6 | As Bs |
1 I L[2 9 1 0 I[1 1 1 611 1
3 11120 3 1 1{2 0 5 1 1(2 0
A6 12 2(Cs0 A 1T 2G5 1 A7 |1 2 [ GCsl
Bg G 0| Cs0 B 1 0 Cy L By 1 0 C71
t Oree
——
~ —
/\ ~ ~—
2 O O _] 7
\ —~
Te—
/ ~
1O 5 O (1.3} / 7

Figure 15: Ambiguous Dependency Structure

5 Planning, Constraint Propagation,
and Process of Disambiguation

When there are several attachment ambiguities in one
sentence, the relationships of each pair of ambiguitics are
represented by a constraint network (9], The idea that am-
biguous syntactic structures can be represented by a data
structure of constraint network was originally developed
by Hiroshi Maruyama [7]. A constraint network consists
of constraint tables.

For example, the constraint tables shown in Table 2
are constructed from the ambiguous dependency structure
shown in Figure 15. In this dependency structure, words
5, 6, and 7 have attachment ambiguities, so their possi-
ble modifices are {1,3}, {1,5}, and {3,6} respectively. The
constraint table is a two-dimensional matrix that repre-
sents the possibility of simultaneous modification of two
ambiguous attachments. The rows and columns of the ma-
trix show the candidate modifiees of each modifier, and an
element in the matrix means the possibility (1 or 0) that
both dependencies can exist simultaneously. For example,
constraint table Tk v indicates that if word 5 modifies word
1, then word 7 cannot modify word 3 because of the rule
of no-crossing.

By using the constraint tables, the system decides which
ambiguity should be resolved first. This process is called
planning. In the above example, words 3, 6, and 7 have two
candidate modifices each. But from the constraint tables,
we can see that if word 7 modifies word 3, then words 5 and
6 cannot modify word 1. Thus, in this case, the ambiguity
concerning the modification of word 7 should be resolved
first. The algorithm for planning consists of the following
steps:

1. On each row of the constraint table T; ;, sum up the
element values (A; in Table 2), and subtract the sum
from the size of the row (B;). Then sum up the results
on all rows (C;). The result is the value of merit of
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the ambiguity of word 1.

2. Do the same in each column. The result is the value
of merit of the ambiguity of word j.

3. In all the constraint tables, sum up all the values of
merit of each ambiguity, and divide each of these val-
ues by the number of their candidate modifices.

4. The expected values of merit of all ambiguities are
given by the above process. Select the ambiguity that
has the highest expected value.

When an ambiguity is resolved, the system updates the
constraint tables by the filtering algorithin called con-
straint propagation. We apply Mohr and Henderson’s AC-
4 algorithm (8] for constraint propagation. We reduce the
computational cost of disambiguation by using planning
and constraint propegation.

Structural disambiguation of a sentence is done as fol-
lows. The PEG parser parses a sentence aid constructs its
phrase structure. The Dependency Structure Builder trans-
lates the phrase structure into the dependency structure,
and constructs the constraint tables when the phrase strue-
ture contains several structural ambiguities. The Plan-
ner, which is the componeut for planning, gives the Dis-
ambiguator the information on an ambiguous dependency
and its candidate modifiees. The Disambiguator decides
which modifiee is the most preferable by doing path search
and distance calculation. After resolving one ambiguous
attachment, it calls the constraint propagation routine to
filter the other ambiguities’ candidates. After filtering, the
Transformer transforms the dependency structure into one
that has correct dependencies for all resolved attachments.
These processes are iterated until no ambiguity remains.

6 Related Work

There are several approaches to structural disambigua-
tion, including resolution of prepositional phrase attach-
ment. Wilks et al. [12] discussed some strategics for dis-
ambiguation based on preference semantics. Our frame-
work is closely related to their ideas. While their strate-
gies need hand-coded semantic formulas called preplates
to decide preferences, our system can construct depen-
dency knowledge semi-automatically. Dahlgren and Me-
Dowell [2] proposed another preference strategy for prepo-
sitional phrase disambiguation. It is based on ontological
knowledge, which is manually constructed. Whereas this
framework (and also that of Wilks et al.) was aimed at dis-
ambiguating single prepositional phrases in sentences, our
approach can handle the attachments of multiple preposi-
tional phrases in sentences. Hirst [3] developed a mech-
anism for structural disambiguation, called the Semantic
Enguiry Desk, which is based on Chraniak’s marker pass-
ing paradigm [1]. Our path search is partially equivalent
to marker passing. While marker passing involves a high
computational cost and finds many meaningless relations,
our path search is restricted and finds only paths that in-
clude synonym/taxonym relationships and dependencies.
Our system can reduce the computational cost by using a
limited knowledge search. Jensen and Binot {6} developed
a heuristic method of prepositional phrase disambiguation



using on-line dictionary definitions. Our approach is simn-
ilar to theirs in the sense that both use dictionaries as
knowledge sources. The differences are in the ways in
which dictionary definitions are used. While their method
searches for knowledge by phrasal pattern matching and
calculates certainty factors by complex procedures, ours
uses knowledge in a simple and efficient way, scarching
trees and traversing nodes, and calculates preferences by
a few simplified processes. Wermter [11] proposed a con-
nectionisi approach to structural disambiguation of noun
phrases. He integrated syntactic and semantic coustraints
on the relaxation network. Scmantic constraints on prepo-
sitional relationships between words are learned by a back-
propagation algorithm. Learned semantics is often very
useful for natural language processing, when semantic re-
lationships cannot be represented explicitly. We represcut
seiantic relationships between words by explicit relation-
ship chains, and therefore do not need learning by back-
propagation. We integrate semantic preferences and syn-
tactic constraints by using coustraint propagation, but it
Is w sequential connection and does not allow their iuterac-
tion. We are thinking of designing a framework that deals
with both syntactic and semantic constraints siimultanc-
onzly.

7 Concluding Remarks

We developed the Dependency Analyzer to resolve strue-
turnl ambiguity by semantic processing. [t aims to over-
coma two serious problems in realizing practical semantic
processing:  (semi-)automatic construction of knowledge
and efficient use of that knowledge. The kev ideas, path
search and distance calculation, were shown to be feasible.
We now have a knowledge base constructed by using
definitions given in the “1IBM Dictonary of Computing,”
which includes about 20,000 instances of dependency struc-
tures.  In addiilon. we evaluated the system by disam-
biguating the prepositional phrase atrachment of about
2,000 sentences. The results were as follows: (1) the nun-
ber of ambignons prepositional phrases was 4.290, (2) the
nutnber of correctly disambiguated attachiments was 3.569,
and (3) the success ratio of disambiguation was 83.2'%.

Further enhancement plans are listed below:

e We are exploring the formalization of dependency dis-
tance with reference to graph theory. Dependency dis-
tance is assumed to be a score for the consistency of a
dependency with the background knowledge and con-
text. The backpround knowledge and context are rep-
resented as trees (special cases of graphs), and cousis-
tency might be defined by a degree of maitching be-
tween trees.

« We are planning to enhance the system for other prob-
lems such as adverb attachment and scope of conjunc-
tions. To resolve general structural ambignity prob-
lems, we must design a general ambiguity-packed syn-
tactic structure, since the systemn can deal with locally
packed ambiguities.
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