
To P a r s e or N o t to Parse : R e l a t i o n - D r i v e n T e x t S k i m m i n g

P a u l S. J a c o b s
Artif icial Intel l igence P r o g r a m

G E Research and Deve lopment Cen te r

Schenectady, NY 12301 USA
psj a c o b s ~ c r d . g e . c o m

A b s t r a c t

We have designed and implemented a text
processing system that can extract impor-
tant information from hundreds of para-
graphs per hour and can be transported
within weeks to a new domain. The sys-
tem performs efficiently because it deter-
mines the level of processing required to un-
derstand a text. This "skimming" method
identifies surface relations in the input text
that are likely to contribute to its interpre-
tation in a domain. This approach differs
from previous skimming techniques in that
it uses conceptual information as part of
bottom-up linguistic processing, thus using
linguistic knowledge more fully while limit-
ing grammatical complexity.

1 I n t r o d u c t i o n

Natural language systems that extract information
from volumes of text have matured during the last
several years. While these systems still operate in
fairly limited domains, they can produce useful struc-
tured information from text with reasonable accu-
racy. Volumes of text information, low cost comput-
ing power, and scarce labor resources increase the
motivation for using computers to manage informa-
tion. The question that stands in the way of the
widespread installation of text processing systems is
"Are they good enough yet?"

Performance is a major issue in the evolution of
text processing systems from "toy" research prob-
lems to real applications. In spite of the rapid ad-
vances in computing technology, most text process-
ing systems are simply too slow, because applications
and thorough testing both demand higher through-
put. Excess grammatical complexity clearly accounts
for much of the performance shortfall. Most compu-
tational methods of analysis overlook the human-like
capability to "skim" texts, limiting computation to
sections of importance.

Unfortunately, the "skimming" approach has come
to be identified with systems that abandon grammat-
ical knowledge as well as syntactic processing, thus
sacrificing accuracy and other performance features.
The ideal skimming system would need no less lin-
guistic knowledge than a full syntactic parser; in fact,
knowing what not to parse may require as much lin-
guistic information as parsing itself. Our approach

to skimming is relation-driven: the program makes
a low-cost first pass through the texts, determining
what conceptual relations could be relevant. Then
it segments the text to limit grammatical analysis
to sections that affect those conceptual relations. In
sections of text with high information content, the
program still performs a complete analysis. In other
cases, the skimming technique leads to three types of
performance improvements. The following examples
illustrate these features in the context of SCISOR,
a system that reads news stories about corporate
takeovers [Rau and Jacobs, 1988]:

1. Skipping irrelevan~ text.
Example: The company said it expects 1989
daily output to average 10,500 barrels of oil and
liquids.
Effect: Do not parse the sentence.

2. Limited processing of intervening phrases.
Example: Fidelity Federal Savings ~ Loan As-
sociation said its board held a meeting on Dec.
2 and declined a proposal to amend the acquisi-
tion agreement by BEI Holdings Ltd.
Effect : Parse to determine the roles of "de-
clined" and "acquisition" only.

3. Limited attachment.
Example: Revere said it had received an offer
from an investor group to be acquired for $16 a
share, or about $127 million.
Effect: Break the sentence into three sections
to limit complexity.

In each of the above examples, relation-driven
skimming limits processing by concentrating on in-
formation that. is necessary to satisfy the information
requirements of the program, such as identifying the
target and suitor of a takeover. In the first case,
the program can skip an entire sentence because it
does not contribute at all. In the second example,
the sentence contains relevant information, but one
clause (about the meeting of the board) does not re-
ally contribute. In the third example, the sentence
is packed with relevant material, but the program
can still limit grammatical complexity by discarding
alternatives that do not contribute to semantic pro-
cessing.

Relation-driven skimming is part of our text pro-
cessing system, which has been applied to several pro-
totype domains. The first accomplishment of the al-
gorithm was to deliver a factor of six improvement
in performance to SCISOR, which reads Dow Jones

19,4 i

financial news stories at a rate of over 500 per hour.
The same sk imming program applied successfully to
an evaluat ion set of naval operat ions reports used in
the Message Unders tanding Conference (MUCK-I I)
held in San Diego in June, 1989 [Sundheim, 11990].
This paper will describe the relation-driven skimming
a lgor i thm and discuss the sort of performance im-
provements tha t can be expected from this approach.

2 T h e T e x t E x t r a c t i o n T a s k a n d t h e

S k i m r n i n g P r o b l e m

Skilrmling is of little use if the processing task de-
mands a complete analysis. The skimming method
presented here is aimed at the task of information
extract ion f rom text, where the program looks for rel-
al;ively superficial facts tha t appear in texts with con-
s lrained content . Since the program is looking only
for certain key information, it should spend most of
its time analyzing sections thal; contain tha t informa-
tion. The more extraneous information there is in a
text, the more skimming improves performance over
full parsing.

The skirnmirig problem assunles tha t a text prc~
c~-;sing program works from set of predefined con-
ceptual roles tha t represent some of the information
from a t.ext. These conceptual roles forln a "temo
plate" tha t the program fills in while scanning a text,
The words "relevant", " impor tan t" , and "extrane-
o~s" used th roughou t this paper describe the rela,
t ionship of port ions of text to this template-filling
task.

For example, the following is a l.ypical i)ow Jones
m'w story, along with the template s t ructure repre-
senting the ilaformat.ion extracted by SCIS()R:

I]~put T e x t :

th.uaswick Corp Up; Aclive amid Continued
Takeover Talk

New ~)rk -D J- Traders and market sources
say shares of Brunswick Corp., the world's
largest Inanufaeturer of recreatioaal boats, are
trading actively for the second consecutive week
amid growing speculal, ion that someone is accu-
mulating a post{ion in the company. Brunswick
is up 5-8 a.t 20 on NYSE-composite voluime
(sic) of 1,I 60,400 shares, compared with an av-
erage daily vohtme of 435,20(I shares. The stock
rose 11-2 yesterday on more than 1.1 million
shares. In the past two we(:ks, l~runswick shares
have traded abow~" average daily v o h i i n c on all
bug one day, inching up from a low of 16 3-4
on March 14. The, most often rttmored suitor
for Brunswick is Miniieapolis investor and boat
company owner Irwin Ja.eobs, whose name sur-
faced about a. year ago when Brunswick shares
made a similar move eli nnfounded specula-
tion. One trader tells Dew Jones Professional
hivestor Report a New Jersey-based "tape read-
ing" service today named the stock as the target
of a S30-a-share bid fl'om Jacobs. The service
can't be reached for confirmation. A secretary
to ,Iacobs said late yesterda.y he'll be out of t, is
office until Friday. Jacobs has become a popu-
lar rumore.d shark since walking away with cash
from his failed bid earlier this month for Shaklee
Corp.. lie's also o n e el' several rumored suitors
for NWA In(:.

T e l n p l a t e S t r u c t u r e P r o d u c e d :

C o r p o r a t e - T a k e o v e r - C o r e
E v e n t : lh imor
S u i t o r : dacobs
T a r g e t : Brunswick Corp.
P e r - s h a r e - p r i c e : $30 [price of the offer]
E t f e e t - o f - r u l n o r " Up 5/8

[rite sys tem conht obtain the same minimal infor-
mat ion if the text read as follows:

Brunswick is up 5-8 at 20....rumored._.the
target of a $30-a-share bid from Jacobs.

The objective of skimrning is to read the text as if it
were closer to this condensed form. The problem for
text skimming is thus (1) to identify sections of text
tha t will contr ibute to information extraction, and
(2) to limit processing in those sections. The intro-
duction outlined three different types of pertbrmance
improvements that come f rom skimming. 'l 'he next
section describes the relation-driven method and how
it achieves these improvements.

3 R e l a t i o n - D r i v e n S k i m m i n g

t{elation-driven skimming takes advantage of the the-
ory that most conceptual information derives front
linguistic relations tha t do not depend on a com-
plete surface s tructure. Such relations, like subjecl-
predicale and verb-complemenl, carry constraints
such as agreement or selectional restrictions. Since
the bulk of the complexity of most language analyz-
ers comes from the combinatorics of parsing, finding
relations without a complete syntact ic analysis helps
p (? r f o r Ir l a, li c e .

The relation-driven skimming algori thm has three
components :

® 73e coT~ccpl aclivalion component makes a first
pass th rough the text and selects candidate con-
cepts tha t may contr ibute to its semantic inter-
pretation.

The scgmc~zlalion compone~t tells the program
what to parse, what to skip, and where to use
seinantic inlbrmation for a t tachment .

, The allachmer, l cornpo'acnZ identifies linguistic
relations in the input text tha t contribute to
its semantic interpretat ion, even where segments
have been skipped.

The trick to relation-driven skimming is to per-
form a t t achment as accurately as possible with as
little g rammat ica l analysis as possible. This is no
simple task, because phrases with no relevant seman-
tic content can always affect the a t t achment of rele-
vant phrases. In the sections tha t follow, we will give
for each of the components above an observation of
why it works, its main activity, and an example or
two of its operat ion.

3.1 C o n c e p t A c t i v a t i o n

Concept activation uses lexical analysis of words,
combinations, and ()ther features to determine

2 i95

whether a portion of text is likely to be relevant.
The concept activation component makes a single
pass through the input text, producing a sequence
of conceptual categories that may contribute to the
conceptual interpretation.

Observation: The density of relevant content
words in a section of text generally determines the
degree of processing required for semantic analysis.

A c t i v i t y : Divide content words into two cate-
gories: "triggers", or relation heads, and role fillers.
Scan the text using domain knowledge for words or
combinations that might be triggers, and for words
or combinations that might be fillers.

E x a m p l e : The following is the input text and out-
put of concept activation for the Revere example:

I n p u t : Revere said it had received an
offer from an investor group to be acquired
for $16 a share, or about $127 million.

O u t p u t : (Company) (receive-offer)
(investor-group) (acqu i re) (do l l a r) (num-
ber) (share) (dol lar) (number) .

This process is more than a lexicM lookup. Some
words, like rumor or target in the corporate takeover
stories, are indeed "triggers" directly associated with
important concepts. However, considering all words
that might contribute to an important concept is in-
efficient; words such as make, take, iss~te or increase
require more analysis of the surrounding context. In
these cases, the skimmer looks for combinations of
words or concepts (such as received and offer above).
This prevents the parser from doing a lot of process-
ing around low-content words.

Whether a word is contentful or not depends on
context. Some words, like plan, do not themselves
carry much information but must be understood be-
cause they distinguish the agent of anot, her action.
"Acme rejects an offer" and "Acme plans an offer"
place Acme in different roles (i.e. the target and
suitor, respectively). A concept like plan, therefore,
appears in the list. of activated concepts only when
there are takeover events in the local context.

Concept activation eliminates processing of unim-
por tant sentences and clauses and helps efficiency in
contentful sections, mainly by determining relations
(such as role-filler) that help to guide syntactic anal-
ysis. The next phase, text segmentation, uses the
results of concept activation to control parsing.

3.2 Text S e g m e n t a t i o n

The text segmentation phase groups the text around
words that are concept activators, identifying noun
groups and complement structures after verbs, and
finding punctuat ion or words that separate segments
of text. This phase determines (1) where to skip and
(2) where to limit parsing.

Observation: It is generally possible to recon-
stucL the important relations of a text in spite of
skipping over intervening words and phrases.

Aetivity: Skip over empty sentences and phrases,
and break the combinatorics of parsing where a single
parse will do.

E x a m p l e : In the Revere example, the segmented
(and marked) text is as follows:

Revere *skip* it }tad received an offer
from a.n investor group *break* to be ac-
quired for $16 a share *break* *skip* $127
million.

The *skip* token indicates to the parser that there
is intervening information, while the *break* token in-
dicates that it should "reduce" or complete all active
linguistic structures. Both help to limit complexi ty--
skipping tends to avoid wasted parsing ~m well as the
combinatorics of at tachment , while the breaks help to
avoid considering nmltiple a t tachments where syntax
contributes little or no information.

The segmentation algorithm includes most impor-
tant noun phrases, even when separation information
prevents them from being attached. This is because,
as in the above example, these noun phrases implic-
itly play a role in anaphoric references or infinitive
phrases.

A side effect of text segmentation is to mark the
original text, highlighting sections that are consid-
ered relevant. This has a dual effect: (1) It helps to
debug the skimming algorithm by showing visually
what sections of the text the program has read, and
(2) It allows the users of the program quickly to spot
key information.

For example, a typical merger & acquisition story
from the Dow Jones examples will appear with rele-
vant sections in boldface, as shown below:

M a y f a l r G e t s B u y o u t P r o p o s a l
M a y t h l r S u p e r M a r k e t s Ineo said

that S t a n l e y P. K a u f e l t , its chairman,
president and chief executive, has proposed
a business combination with M a y f a i r in
which t h e h o l d e r s o f M a y f a i r ' s ou t -
s t a n d i n g c o m m o n s t o c k w o u l d r eee lv e
$23.50 a s h a r e in cash.

Text segnlentation confines processing to sections
of text that contain important information. The cor-
rect semantic interpretation of these text sections of-
ten depends on correct syntactic at tachment, as de-
scribed below.

3.3 A t t a c h m e n t

The a t tachment phase produces linguistic relations
from the segrnented text. This phase is part of the
bot tom-up parsing process; the nmin difference be-
tween a t tachment and full parsing is that the parser
nmst a t tempt to form linguistic relations where it has
skipped sections of text. At tachment in tile absence
of a complete parse relies on rules that combine lin-
guistic and conceptuM information; for example, "a.t-
tach a verb phrase or infinitive to the most recent
clause-level semanticly valid noun phrase".

O b s e r v a t i o n : Attachments by default are much
less costly computationally than at tachments by ex-
haustive consideration of possibilities.

A c t i v i t y : Prefer a t tachments within boundaries
separated by breaks, and use semantics and recency
to guide a t tachment otherwise.

E x a m p l e : In the Revere example, the following
relations guide the interpretation process:

Revere received an offer... (NP-VP)
an offer from an investment group (NP-PP)

196 3

Revere to be acquired... (NP-INFPHR.)
acquired for $16 a share (VP-PP)
$160 million (NP)

The combination of these simple relations permits
the correct semantic interpretation without a com-
plete parse (see [Rau and Jacobs, 1988] for a discus-
sion of the use of these relations for analysis). In this
example, the skimming algorithm reduces the num-
ber of parses considered by a factor of six. This is in
spite of the fact that the R.evere sentence contains a
fair amount of useful intbrmation; in less dense text
the skimming program can sldp sentences entirely or
extract only two or three relations from a complex
sentence (as in the Fidelity exmnple given in the in-
troduction).

The Revere example is more complex than most of
the c~es that occur in these texts because it illus-
trates a number of interacting rules and preferences.
It is, however, unusual in that flfll syntactic parsing
of this example could be misleading because it would
tend to attach "to be acquired" to "investor group"
rather than "Revere". The point of this example is
7~0t, however, that flflI syntactic processing is bad, but
rather that skimming can make the necessary attach-
ments without full parsing.

C o m p l i c a t i o n s o f L i m i t e d A t t a c h m e n t

The at tachment mechanism makes use of several
heuristics for constructing relations fi'om the text,
such as the infinitive phrase rule given earlier, re-
solving re.ferences before attaching pronouns, recon-
structing sentences fl'om verb phrases in incomplete
sentences, and determining voice before attaching
conjunctive verb phrases. These rules have derived
from the analysis of fairly large bodies of text. The
following are some observations about the sorts of
examples where "limited attachment" is necessary:

o Dangling Phrases. In many longer texts, prepo-
sitional phrases, infinitives, and other adjunct in-
formation "hang off" the ends of sentences. Typ-
ically, such phrases can be attached syntacticly
to rnnltiple heads. The effect of the skimming
algorithm is to give more weight to the semantic
at tachment of these phrases. Since many such
examples contain temporal, spatial, or other in-
formation associated with events, this semantic
at tachment seems to provide an advantage over
syntactic preferences.

o Conlunctive Clauses. Conjunctions introduce
linguistic complexity. If only part of a conjunc-
tive clause contains useful information, the pro-
gram (:an identify a relation involving one por-
tion of the coordinated clause without parsing
the whole sentence. For example, one news story
reads "Investor William Farley...said he plans to
seek a special meeting to discuss his proposal and
to wage a proxy fight tbr control of the board".
Only the second clause contains useful informa-
tion, although the first clause can help to attach
the second.

Negative h~.formalion. The skimming algorithm,
in its application of linguistic relations, must use
both positive and negative intbrmation in deter-

mining where to attach phrases. Lack of agree-
ment, for example, can override the attachment
of a verb phrase to a sernanticly valid subject.
Case constraints often guide the analysis of pro-
nouns. Semantic infbrrnation tends to provide
positive information in these cases, while syntac-
tic information provides negative information.
Oddly, this is tile reverse of the more typical
parsing strategy of using semantics to filter out
invalid interpretations.

It might seem that these complications prcsent
enough problems that it would be easier to perform
full parsing than to try to derive new heuristics for at-
tachment in all these examples. This is true in some
cases, but the vast majority of examples we have en-
countered require only a few simple attachment pref-
erences. In these "easier" examples, the performance
payoff has been enough to keep us from degrading to
:full parsing whenever possible.

4 C o m p a r i s o n w i t h O t h e r
A p p r o a c h e s

Most work in skimming or partial parsing [Deaong,
1979; Lebowitz, 1983; l,ytinen and Gershman, 1986;
Young and Itayes, 1985] uses template-based or
memory-based strategies, effectively using conceptual
information in place of linguistic constraints. This
approach seems to work in highly constrained texts
where conceptual knowledge is sufficient tbr deter-
mining role relationships. In the domains that we
have tested, the pure template-based approach fails
because some role relationships are determined al-
most entirely from linguistic intbrmat.ion such as com-
plernent structure or agreement, l'br example, the
target and suitor of corporate mergers are both com-
panies; thus there is little conceptual information
(other than the size of the companies) that helps
to determine role-filling. In many classes of tacti-
cal operations reports, the agent and object are both
military forces, thus correct linguistic attachmen~ is
essential in this domain as well.

Although the overall parsing style of our system
integrates template-based and language-based strate-
gies [Rau and Jacobs, 1988], the skimming algo-
ri thm is actually more bottom-up or language-based.
Like some of the other major text processing sys-
tems such as PI{OTEUS, PUNDIT, and qACH'US
[tIobbs, 1986; Grishman and Ilirschmau, 1986], tile
skimming program applies linguistic constraints and
maps linguistic structures into conceptual roles. In
these other systems, however, the bottom-up ap-
proach may cause the program to waste time on
irrelevant sections of text. The difference is that
these programs do not really use conceplual infof
mation until after the parser has generated its candi-
date structures. The relation-driven sldmming pro-
cess shortcuts bottom-up analysis by firs.t using con-
ceptual knowledge to block some fi'uitless paths. As
we have had the benefit of comparing our system in
some detail with these other programs after operation
on a common task, we believe that many such systems
could achieve an order of magnitude improvement in
processing speed by incorporating a similar method.

4 197

5 S y s t e m Sta tus and Current
D irec t i o ns

The SC[SOR system [Ran and Jacobs, 1988] was the
initial testbed for this algorithm, is a completed pro-
totype that reads news stories at the rate of about 500
per hour. It extracts certain key information from
stories about corporate takeovers (typically about
10% of the texts), identifying target, suitor, purchase
price, and other information with about 90% accu-
racy.

The generic text processing components of
SCISOR, known as the GE NLToolset [Jacobs and
Rau, 1990], are used in applications in the opera-
tions of GE. Our group applied this core of text pro-
cessing tools, including the skimming procedures de-
scribed here, to the MUCK-II task, which consisted
of generating database templates from naval opera-
tions messages, during a period of several weeks be-
fore the conference. The skimming algorithm of the
NLToolset was the key to producing good results so
rapidly. The same text processing system has since
applied to a number of message sets in other domains.

The improvements in speed from skimming have
so far come without a degradation in accuracy. This
does not, however, mean that the attachment heuris-
tics are infallible. Clearly, examples can occur where
text that has been skipped influences the attachement
of key phra~ses, especially when texts contain ellipsis,
anaphorie references, and complex coordinated struc-
tures. Future enhancements to our algorithm must
refine the at tachment rules for these cases, and de-
grade to full parsing where necessary.

6 C o n c l u s i o n

Natural language text processing has reached a point
where efficiency is a reM issue. While it might be pos-
sible to design fundamentally faster text processing
algorithms, a more fruitflfl approach in the near term
is to try to eliminate much of the wasted processing
that is done in parsing text. This does not mean
using less syntactic knowledge, but does mean less
syntactic processing. Our approach uses the identifi-
cation of linguistic relations as a driver for producing
conceptual information while eliminating some of the
detail of parsing. This approach has been successflfl
in producing a program that operates ahnost an or-
der of magnitude faster in nm!tiple domains without
major effect on the design or accuracy of the system.

R e f e r e n c e s

[DeJong, 1979] Gerald DeJong. Skimming stories in
real time: An experiment in integrated under--
standing. Research Report 158, Department of
Computer Science, Yale University, 1979.

[Grishman mid Hirschman, 1986] Ralph Gr-
ishman and Lynette Hirschman. PROTEUS and
PUNDIT: Research in text understanding. PRO-
TEUS Project Memorandum 1, NYU, 1986.

[Iiobbs, 1986] Jerry R. tlobbs. Site report: Overview
of the TACITUS project. Computational Linguis-
tics, 12(3):220-222, 1986.

[Jacobs and Rau, 1990] Paul S. Jacobs and Lisa F.
Rau. The GE NUl'oolset: A software foundation
for intelligence text processing. In Proceedings of
the Thirteenth International Conference on Com-
putational Linguistics, Helsinki, Finland, 1990.

[Lebowitz, 1983] M. Lebowitz. Memory-based pars-
ing. Artificial h~telligence, 21(4), 1983.

[Lytinen and Gershman, 1986] Steven Lytinen and
Anatole Gershman. NI'I'tANS: Automatic process-
ing of money transfer messages. In Proceedings of
the Fifth National Conference on Artificial Intelli-
gence, Philadelphia, 1986.

[Rau and ,lacobs, 1988] Lisa F. Rau and Paul S. Ja-
cobs. Integrating top-down and bottom-up strate-
gies in a text processing system. In Proceedirtgs of
Second Conference on Applied Natural Language
Processing, pages 129-135, Morristown, NJ, Feb
1988. ACL.

[Sundheim, 1990] Beth Sundheim. Second message
understanding conference (MUCK-II) test report.
Technical Report 1328, Naval Ocean Systems Cen-
ter, San Diego, CA, 1990.

[Young and Hayes, 1985] S. Young and P. Hayes.
Automatic classification and summarization of
banking telexes. In The Second Conference on
Artificial h~telligence Applications, pages 402-208.
IEEE Press, 1985.

19 8 5

