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A b s t r a c t  

We have designed and implemented a text 
processing system that can extract impor- 
tant information from hundreds of para- 
graphs per hour and can be transported 
within weeks to a new domain. The sys- 
tem performs efficiently because it deter- 
mines the level of processing required to un- 
derstand a text. This "skimming" method 
identifies surface relations in the input text 
that are likely to contribute to its interpre- 
tation in a domain. This approach differs 
from previous skimming techniques in that 
it uses conceptual information as part of 
bottom-up linguistic processing, thus using 
linguistic knowledge more fully while limit- 
ing grammatical complexity. 

1 I n t r o d u c t i o n  

Natural language systems that extract information 
from volumes of text have matured during the last 
several years. While these systems still operate in 
fairly limited domains, they can produce useful struc- 
tured information from text with reasonable accu- 
racy. Volumes of text information, low cost comput- 
ing power, and scarce labor resources increase the 
motivation for using computers to manage informa- 
tion. The question that stands in the way of the 
widespread installation of text processing systems is 
"Are they good enough yet?" 

Performance is a major issue in the evolution of 
text processing systems from "toy" research prob- 
lems to real applications. In spite of the rapid ad- 
vances in computing technology, most text process- 
ing systems are simply too slow, because applications 
and thorough testing both demand higher through- 
put. Excess grammatical complexity clearly accounts 
for much of the performance shortfall. Most compu- 
tational methods of analysis overlook the human-like 
capability to "skim" texts, limiting computation to 
sections of importance. 

Unfortunately, the "skimming" approach has come 
to be identified with systems that abandon grammat- 
ical knowledge as well as syntactic processing, thus 
sacrificing accuracy and other performance features. 
The ideal skimming system would need no less lin- 
guistic knowledge than a full syntactic parser; in fact, 
knowing what not to parse may require as much lin- 
guistic information as parsing itself. Our approach 

to skimming is relation-driven: the program makes 
a low-cost first pass through the texts, determining 
what conceptual relations could be relevant. Then 
it segments the text to limit grammatical analysis 
to sections that affect those conceptual relations. In 
sections of text with high information content, the 
program still performs a complete analysis. In other 
cases, the skimming technique leads to three types of 
performance improvements. The following examples 
illustrate these features in the context of SCISOR, 
a system that reads news stories about corporate 
takeovers [Rau and Jacobs, 1988]: 

1. Skipping irrelevan~ text. 
Example:  The company said it expects 1989 
daily output to average 10,500 barrels of oil and 
liquids. 
Effect: Do not parse the sentence. 

2. Limited processing of intervening phrases. 
Example:  Fidelity Federal Savings ~ Loan As- 
sociation said its board held a meeting on Dec. 
2 and declined a proposal to amend the acquisi- 
tion agreement by BEI Holdings Ltd. 
Effect :  Parse to determine the roles of "de- 
clined" and "acquisition" only. 

3. Limited attachment. 
Example:  Revere said it had received an offer 
from an investor group to be acquired for $16 a 
share, or about $127 million. 
Effect: Break the sentence into three sections 
to limit complexity. 

In each of the above examples, relation-driven 
skimming limits processing by concentrating on in- 
formation that. is necessary to satisfy the information 
requirements of the program, such as identifying the 
target and suitor of a takeover. In the first case, 
the program can skip an entire sentence because it 
does not contribute at all. In the second example, 
the sentence contains relevant information, but one 
clause (about the meeting of the board) does not re- 
ally contribute. In the third example, the sentence 
is packed with relevant material, but the program 
can still limit grammatical complexity by discarding 
alternatives that do not contribute to semantic pro- 
cessing. 

Relation-driven skimming is part of our text pro- 
cessing system, which has been applied to several pro- 
totype domains. The first accomplishment of the al- 
gorithm was to deliver a factor of six improvement 
in performance to SCISOR, which reads Dow Jones 
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financial news stories at a rate of  over 500 per hour. 
The  same sk imming program applied successfully to 
an evaluat ion set of naval operat ions  reports used in 
the Message Unders tanding  Conference (MUCK-I I )  
held in San Diego in June,  1989 [Sundheim, 11990]. 
This  paper  will describe the relation-driven skimming 
a lgor i thm and discuss the sort of performance im- 
provements  tha t  can be expected from this approach.  

2 T h e  T e x t  E x t r a c t i o n  T a s k  a n d  t h e  

S k i m r n i n g  P r o b l e m  

Skilrmling is of little use if the processing task de- 
mands  a complete analysis. The  skimming method  
presented here is aimed at the task of information 
extract ion f rom text,  where the program looks for rel- 
al;ively superficial facts tha t  appear  in texts with con- 
s lrained content .  Since the program is looking only 
for certain key information,  it should spend most  of 
its time analyzing sections thal; contain tha t  informa- 
tion. The more extraneous information there is in a 
text, the more skimming improves performance over 
full parsing. 

The  skirnmirig problem assunles tha t  a text prc~ 
c~-;sing program works from set of predefined con- 
ceptual  roles tha t  represent some of the information 
from a t.ext. These conceptual  roles forln a "temo 
plate" tha t  the program fills in while scanning a text, 
The words "relevant",  " impor tan t" ,  and "extrane- 
o~s" used th roughou t  this paper  describe the rela, 
t ionship of  port ions of text to this template-filling 
task. 

For example, the following is a l.ypical i)ow Jones 
m'w story, along with the template  s t ructure  repre- 
senting the ilaformat.ion extracted by SCIS()R:  

I ]~put  T e x t :  

th.uaswick Corp Up; Aclive amid Continued 
Takeover Talk 

New ~)rk -D J- Traders and market sources 
say shares of Brunswick Corp., the world's 
largest Inanufaeturer of recreatioaal boats, are 
trading actively for the second consecutive week 
amid growing speculal, ion that someone is accu- 
mulating a post{ion in the company. Brunswick 
is up 5-8 a.t 20 on NYSE-composite voluime 
(sic) of 1,I 60,400 shares, compared with an av- 
erage daily vohtme of 435,20(I shares. The stock 
rose 11-2 yesterday on more than 1.1 million 
shares. In the past two we(:ks, l~runswick shares 
have traded abow~" average daily v o h i i n c  on all 
bug one day, inching up from a low of 16 3-4 
on March 14. The, most often rttmored suitor 
for Brunswick is Miniieapolis investor and boat 
company owner Irwin Ja.eobs, whose name sur- 
faced about a. year ago when Brunswick shares 
made a similar move eli nnfounded specula- 
tion. One trader tells Dew Jones Professional 
hivestor Report a New Jersey-based "tape read- 
ing" service today named the stock as the target 
of a S30-a-share bid fl'om Jacobs. The service 
can't  be reached for confirmation. A secretary 
to ,Iacobs said late yesterda.y he'll be out of t, is 
office until Friday. Jacobs has become a popu- 
lar rumore.d shark since walking away with cash 
from his failed bid earlier this month for Shaklee 
Corp.. lie's also o n e  el' several rumored suitors 
for NWA In(:. 

T e l n p l a t e  S t r u c t u r e  P r o d u c e d :  

C o r p o r a t e - T a k e o v e r -  C o r e  
E v e n t :  lh imor  
S u i t o r :  dacobs 
T a r g e t :  Brunswick Corp. 
P e r - s h a r e - p r i c e :  $30 [price of the offer] 
E t f e e t - o f - r u l n o r "  Up 5/8  

[rite sys tem conht obtain the same minimal infor- 
mat ion if the text  read as follows: 

Brunswick is up 5-8 at 20....rumored._.the 
target of a $30-a-share bid from Jacobs. 

The  objective of skimrning is to read the text  as if it 
were closer to this condensed form. The  problem for 
text  skimming is thus (1) to identify sections of text 
tha t  will contr ibute  to information extraction,  and 
(2) to limit processing in those sections. The intro- 
duction outlined three different types of pertbrmance 
improvements  that  come f rom skimming. 'l 'he next 
section describes the relation-driven method  and how 
it achieves these improvements.  

3 R e l a t i o n - D r i v e n  S k i m m i n g  

t{elation-driven skimming takes advantage of the the- 
ory that  most  conceptual  information derives front 
linguistic relations tha t  do not depend on a com- 
plete surface s tructure.  Such relations, like subjecl- 
predicale and verb-complemenl, carry constraints 
such as agreement or selectional restrictions. Since 
the bulk of the complexity of most  language analyz- 
ers comes from the combinatorics of parsing, finding 
relations without  a complete syntact ic  analysis helps 
p (? r f o r  Ir l  a, li c e .  

The relation-driven skimming algori thm has three 
components :  

® 73e coT~ccpl aclivalion component makes a first 
pass th rough  the text and selects candidate con- 
cepts tha t  may contr ibute to its semantic inter- 
pretation.  

The scgmc~zlalion compone~t tells the program 
what to parse, what  to skip, and where to use 
seinantic inlbrmation for a t tachment .  

, The allachmer, l cornpo'acnZ identifies linguistic 
relations in the input  text  tha t  contribute to 
its semantic  interpretat ion,  even where segments 
have been skipped. 

The  trick to relation-driven skimming is to per- 
form a t t achment  as accurately as possible with as 
little g rammat ica l  analysis as possible. This is no 
simple task, because phrases with no relevant seman- 
tic content can always affect the a t t achment  of rele- 
vant phrases. In the sections tha t  follow, we will give 
for each of the components  above an observation of 
why it works, its main activity, and an example or 
two of its operat ion.  

3.1  C o n c e p t  A c t i v a t i o n  

Concept  activation uses lexical analysis of words, 
combinations,  and ()ther features to determine 

2 i95 



whether a portion of text is likely to be relevant. 
The concept activation component makes a single 
pass through the input text, producing a sequence 
of conceptual categories that  may contribute to the 
conceptual interpretation. 

Observation: The density of relevant content 
words in a section of text generally determines the 
degree of processing required for semantic analysis. 

A c t i v i t y :  Divide content words into two cate- 
gories: "triggers", or relation heads, and role fillers. 
Scan the text using domain knowledge for words or 
combinations that  might be triggers, and for words 
or combinations that  might be fillers. 

E x a m p l e :  The following is the input text and out- 
put of concept activation for the Revere example: 

I n p u t :  Revere said it had received an 
offer from an investor group to be acquired 
for $16 a share, or about  $127 million. 

O u t p u t :  (Company) (receive-offer) 
(investor-group) ( acqu i re ) (do l l a r )  (num- 
ber) (share) (dol lar) (number) .  

This process is more than a lexicM lookup. Some 
words, like rumor or target in the corporate takeover 
stories, are indeed "triggers" directly associated with 
important  concepts. However, considering all words 
that  might contribute to an important  concept is in- 
efficient; words such as make, take, iss~te or increase 
require more analysis of the surrounding context. In 
these cases, the skimmer looks for combinations of 
words or concepts (such as received and offer above). 
This prevents the parser from doing a lot of process- 
ing around low-content words. 

Whether  a word is contentful or not depends on 
context. Some words, like plan, do not themselves 
carry much information but must be understood be- 
cause they distinguish the agent of anot, her action. 
"Acme rejects an offer" and "Acme plans an offer" 
place Acme in different roles (i.e. the target and 
suitor, respectively). A concept like plan, therefore, 
appears in the list. of activated concepts only when 
there are takeover events in the local context. 

Concept activation eliminates processing of unim- 
por tant  sentences and clauses and helps efficiency in 
contentful sections, mainly by determining relations 
(such as role-filler) that  help to guide syntactic anal- 
ysis. The next phase, text segmentation, uses the 
results of concept activation to control parsing. 

3.2 Text S e g m e n t a t i o n  

The text segmentation phase groups the text around 
words that  are concept activators, identifying noun 
groups and complement structures after verbs, and 
finding punctuat ion or words that  separate segments 
of text. This phase determines (1) where to skip and 
(2) where to limit parsing. 

Observation: It is generally possible to recon- 
stucL the important  relations of a text in spite of 
skipping over intervening words and phrases. 

Aetivity: Skip over empty sentences and phrases, 
and break the combinatorics of parsing where a single 
parse will do. 

E x a m p l e :  In the Revere example, the segmented 
(and marked) text is as follows: 

Revere *skip* it }tad received an offer 
from a.n investor group *break* to be ac- 
quired for $16 a share *break* *skip* $127 
million. 

The *skip* token indicates to the parser that  there 
is intervening information, while the *break* token in- 
dicates that  it should "reduce" or complete all active 
linguistic structures. Both help to limit complexi ty--  
skipping tends to avoid wasted parsing ~m well as the 
combinatorics of at tachment ,  while the breaks help to 
avoid considering nmltiple a t tachments  where syntax 
contributes little or no information. 

The segmentation algorithm includes most impor- 
tant  noun phrases, even when separation information 
prevents them from being attached. This is because, 
as in the above example, these noun phrases implic- 
itly play a role in anaphoric references or infinitive 
phrases. 

A side effect of text segmentation is to mark the 
original text, highlighting sections that  are consid- 
ered relevant. This has a dual effect: (1) It helps to 
debug the skimming algorithm by showing visually 
what sections of the text the program has read, and 
(2) It allows the users of the program quickly to spot 
key information. 

For example, a typical merger & acquisition story 
from the Dow Jones examples will appear with rele- 
vant sections in boldface, as shown below: 

M a y f a l r  G e t s  B u y o u t  P r o p o s a l  
M a y t h l r  S u p e r  M a r k e t s  Ineo said 

that  S t a n l e y  P. K a u f e l t ,  its chairman, 
president and chief executive, has proposed 
a business combination with M a y f a i r  in 
which t h e  h o l d e r s  o f  M a y f a i r ' s  ou t -  
s t a n d i n g  c o m m o n  s t o c k  w o u l d  r eee lv e  
$23.50 a s h a r e  in cash. 

Text segnlentation confines processing to sections 
of text that  contain important  information. The cor- 
rect semantic interpretation of these text sections of- 
ten depends on correct syntactic at tachment,  as de- 
scribed below. 

3.3 A t t a c h m e n t  

The a t tachment  phase produces linguistic relations 
from the segrnented text. This phase is part  of the 
bot tom-up parsing process; the nmin difference be- 
tween a t tachment  and full parsing is that  the parser 
nmst a t tempt  to form linguistic relations where it has 
skipped sections of text. At tachment  in tile absence 
of a complete parse relies on rules that  combine lin- 
guistic and conceptuM information; for example, "a.t- 
tach a verb phrase or infinitive to the most recent 
clause-level semanticly valid noun phrase". 

O b s e r v a t i o n :  Attachments  by default are much 
less costly computationally than at tachments  by ex- 
haustive consideration of possibilities. 

A c t i v i t y :  Prefer a t tachments  within boundaries 
separated by breaks, and use semantics and recency 
to guide a t tachment  otherwise. 

E x a m p l e :  In the Revere example, the following 
relations guide the interpretation process: 

Revere received an offer... (NP-VP) 
an offer from an investment group (NP-PP)  
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Revere to be acquired... (NP-INFPHR.) 
acquired for $16 a share (VP-PP)  
$160 million (NP) 

The combination of these simple relations permits 
the correct semantic interpretation without a com- 
plete parse (see [Rau and Jacobs, 1988] for a discus- 
sion of the use of these relations for analysis). In this 
example, the skimming algorithm reduces the num- 
ber of parses considered by a factor of six. This is in 
spite of the fact that  the R.evere sentence contains a 
fair amount of useful intbrmation; in less dense text 
the skimming program can sldp sentences entirely or 
extract  only two or three relations from a complex 
sentence (as in the Fidelity exmnple given in the in- 
troduction).  

The Revere example is more complex than most of 
the c~es  that occur in these texts because it illus- 
trates a number of interacting rules and preferences. 
It is, however, unusual in that flfll syntactic parsing 
of this example could be misleading because it would 
tend to attach "to be acquired" to "investor group" 
rather than "Revere". The point of this example is 
7~0t, however, that flflI syntactic processing is bad, but 
rather that skimming can make the necessary attach- 
ments without full parsing. 

C o m p l i c a t i o n s  o f  L i m i t e d  A t t a c h m e n t  

The at tachment mechanism makes use of several 
heuristics for constructing relations fi'om the text, 
such as the infinitive phrase rule given earlier, re- 
solving re.ferences before attaching pronouns, recon- 
structing sentences fl'om verb phrases in incomplete 
sentences, and determining voice before attaching 
conjunctive verb phrases. These rules have derived 
from the analysis of fairly large bodies of text. The 
following are some observations about the sorts of 
examples where "limited attachment" is necessary: 

o Dangling Phrases. In many longer texts, prepo- 
sitional phrases, infinitives, and other adjunct in- 
formation "hang off" the ends of  sentences. Typ- 
ically, such phrases can be attached syntacticly 
to rnnltiple heads. The effect of the skimming 
algorithm is to give more weight to the semantic 
at tachment of these phrases. Since many such 
examples contain temporal, spatial, or other in- 
formation associated with events, this semantic 
at tachment seems to provide an advantage over 
syntactic preferences. 

o Conlunctive Clauses. Conjunctions introduce 
linguistic complexity. If only part of a conjunc- 
tive clause contains useful information, the pro- 
gram (:an identify a relation involving one por- 
tion of the coordinated clause without parsing 
the whole sentence. For example, one news story 
reads "Investor William Farley...said he plans to 
seek a special meeting to discuss his proposal and 
to wage a proxy fight tbr control of the board". 
Only the second clause contains useful informa- 
tion, although the first clause can help to attach 
the second. 

Negative h~.formalion. The skimming algorithm, 
in its application of linguistic relations, must use 
both positive and negative intbrmation in deter- 

mining where to attach phrases. Lack of agree- 
ment, for example, can override the attachment 
of a verb phrase to a sernanticly valid subject. 
Case constraints often guide the analysis of pro- 
nouns. Semantic infbrrnation tends to provide 
positive information in these cases, while syntac- 
tic information provides negative information. 
Oddly, this is tile reverse of the more typical 
parsing strategy of using semantics to filter out 
invalid interpretations. 

It might seem that these complications prcsent 
enough problems that  it would be easier to perform 
full parsing than to try to derive new heuristics for at- 
tachment in all these examples. This is true in some 
cases, but the vast majority of examples we have en- 
countered require only a few simple attachment pref- 
erences. In these "easier" examples, the performance 
payoff has been enough to keep us from degrading to 
:full parsing whenever possible. 

4 C o m p a r i s o n  w i t h  O t h e r  
A p p r o a c h e s  

Most work in skimming or partial parsing [Deaong, 
1979; Lebowitz, 1983; l,ytinen and Gershman, 1986; 
Young and Itayes, 1985] uses template-based or 
memory-based strategies, effectively using conceptual 
information in place of linguistic constraints. This 
approach seems to work in highly constrained texts 
where conceptual knowledge is sufficient tbr deter- 
mining role relationships. In the domains that we 
have tested, the pure template-based approach fails 
because some role relationships are determined al- 
most entirely from linguistic intbrmat.ion such as com- 
plernent structure or agreement, l'br example, the 
target and suitor of corporate mergers are both com- 
panies; thus there is little conceptual information 
(other than the size of the companies) that helps 
to determine role-filling. In many classes of tacti- 
cal operations reports, the agent and object are both 
military forces, thus correct linguistic attachmen~ is 
essential in this domain as well. 

Although the overall parsing style of our system 
integrates template-based and language-based strate- 
gies [Rau and Jacobs, 1988], the skimming algo- 
ri thm is actually more bottom-up or language-based. 
Like some of the other major text processing sys- 
tems such as PI{OTEUS, PUNDIT, and qACH'US 
[tIobbs, 1986; Grishman and Ilirschmau, 1986], tile 
skimming program applies linguistic constraints and 
maps linguistic structures into conceptual roles. In 
these other systems, however, the bottom-up ap- 
proach may cause the program to waste time on 
irrelevant sections of text. The difference is that 
these programs do not really use conceplual infof  
mation until after the parser has generated its candi- 
date structures. The relation-driven sldmming pro- 
cess shortcuts bottom-up analysis by firs.t using con- 
ceptual knowledge to block some fi'uitless paths. As 
we have had the benefit of comparing our system in 
some detail with these other programs after operation 
on a common task, we believe that many such systems 
could achieve an order of magnitude improvement in 
processing speed by incorporating a similar method. 
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5 S y s t e m  Sta tus  and Current  
D irec t i o ns  

The SC[SOR system [Ran and Jacobs, 1988] was the 
initial testbed for this algorithm, is a completed pro- 
totype that reads news stories at the rate of about 500 
per hour. It extracts certain key information from 
stories about corporate takeovers (typically about 
10% of the texts), identifying target, suitor, purchase 
price, and other information with about 90% accu- 
racy. 

The generic text processing components of 
SCISOR, known as the GE NLToolset [Jacobs and 
Rau, 1990], are used in applications in the opera- 
tions of GE. Our group applied this core of text pro- 
cessing tools, including the skimming procedures de- 
scribed here, to the MUCK-II task, which consisted 
of generating database templates from naval opera- 
tions messages, during a period of several weeks be- 
fore the conference. The skimming algorithm of the 
NLToolset was the key to producing good results so 
rapidly. The same text processing system has since 
applied to a number of message sets in other domains. 

The improvements in speed from skimming have 
so far come without a degradation in accuracy. This 
does not, however, mean that the attachment heuris- 
tics are infallible. Clearly, examples can occur where 
text that has been skipped influences the attachement 
of key phra~ses, especially when texts contain ellipsis, 
anaphorie references, and complex coordinated struc- 
tures. Future enhancements to our algorithm must 
refine the at tachment rules for these cases, and de- 
grade to full parsing where necessary. 

6 C o n c l u s i o n  

Natural language text processing has reached a point 
where efficiency is a reM issue. While it might be pos- 
sible to design fundamentally faster text processing 
algorithms, a more fruitflfl approach in the near term 
is to try to eliminate much of the wasted processing 
that  is done in parsing text. This does not mean 
using less syntactic knowledge, but does mean less 
syntactic processing. Our approach uses the identifi- 
cation of linguistic relations as a driver for producing 
conceptual information while eliminating some of the 
detail of parsing. This approach has been successflfl 
in producing a program that  operates ahnost an or- 
der of magnitude faster in nm!tiple domains without 
major effect on the design or accuracy of the system. 
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