Functor-Driven Natural Language Generation with
Categorial-Unification Grammars

Dale Gerdemann
Beckman Institute for Advanced
Science and Technology
University of Illinois
at Urbana-Champaign
405 N. Mathews
Urbana, IL 61801
USA

1. Introduction

In this paper we develop a functor-driven approach
to natural language generation which pairs logical
forms, expressed in first-order predicate logic, with
syntactically well-formed English sentences. Gram-
matical knowledge is expressed in the framework of
categorial unification-grammars developed by Kart-
tunen {1986), Wittenburg (1986), Uszkoreit (1986),
and Zeevat et. al. (1987). The semantic component
of the grammar makes crucial use of the principle of
minimal type assignment whose importance has been
independently motivated in recent work in natural
language semantics (see Partce and Rooth 1983).
The principle of type-raising as necessary which fol-
lows from minimal type assignment has been imple-
mented using Wittenburg's (1987,1989) idea of su-
percombinators. This use of supercombinators to
achieve semantic compatibility of types generalizes
Wittenburg’s strictly syntactic use of such combina-
tors.

The use of categorial unification grammars makes
it possible to develop an efficient top-down control
regime for natural language generation. Rather than
generating the syntactic output string in a left-to-
right fashion, our algorithm always generates that
part of the output string first that belongs to the
functor category in a given phrase, before it gener-
ates any of the arguments of the functor category.
This functor-driven strategy is similar to the head-
driven approach to natural language generation de-
veloped by Shieber et. al. (1989). However, unlike
the head-driven approach, which uses a mixed regime
of top-down and bottom-up processing, our algo-
rithm always has sufficient top-down information to
guide the generation process. Moreover, due to the
principle of minimal type assignment in the seman-
tics, our approach avoids problems of efficiency that
arise for the head-driven approach for those classes
of grammars that do not satisfy this principle. The
work reported here is implemented in the natural
language system UNICORN, which can be used for
natural language parsing (see Gerdemann and Hin-
richs 1989) and natural language generation.

Erhard W. Hinrichs
Beckman Institute for Advanced
Science and Technology
University of Illinois
at Urbana-Champaign
405 N. Mathews
Urbana, IL 61801
USA

2. The Grammar Formalism: Catego-
rial Unification Grammar

The grammatical formalism that we adopt for cat-
egorial unification grammar is similar to that pro-
posed in Uszkoreit {1986). Following the schema for
syntactic rules developed for PATR-style prammars,
we formulate the categorial grammar rule of funec-
tional application by the rule schema in fig. 1. The

x0

Figure 1: Function Application

z1 node (i.e. the node at the end of the path (z1))
represents a functor category that combines with an
argument at z2 to yield as a result the category at
0. The rule also specifies that the semantic trans-
lation (trans) of the result category z0 is inherited
from the functor 1. As is characteristic of categorial
grammars, our syntactic rules are highly schematic,
with most of the grammatical information encoded
in the categorial lexicon. For example, constraints on
word order are encoded in lexical representations of
functor categories, rather than in the syntactic rules
themselves. To this end we adopt an attribute phon
(for: phonology) which is used to encode linear order
for syntactic strings. The values for phon are struc-
tured as difference lists. The use of this data struc-
ture, inherited from PROLOG, allows us to concate-
nate functor categories with their arguments either
to the left or to the right, It also allows us to state
syntactic rules without having to make reference to
constituent order.! The graphs in fig. 2 display par-
tial lexical entries for the intransitive verb smules,

1n this respect, our representation is more compact than
other categorial-unification grammar formalisms which state
order constraintsin the categorial lexicon and in each syntac-
tic rule. In particular, we don’t need to distinguish between
forward application and backward application

145

b.

smiles

Figure 2: Phonology Rules

for the proper name Tom and for the sentence Tom
smiles. The phon attribute for argument categories
such as proper names is encoded as a singleton list
which contains the argument string in question, e.g.
Tom. The phon attribute for functor categories is
designed to combine the string for the functor cate-
gory with the phon feature structure of its argument
categories. In the case of the intransitive verb smaules,
the morpheme smiles appears as the first element in
a list that is appended to the difference list for its
subject argument. When the phonology attributes
for Toem and smales are combined by function ap-
plication, the resulting sentence exhibits the correct
word order, as fig. 2¢ shows. For the sake of com-
pleteness, we also include the representation of the
preposition from as an example of a forward functor
in fig. 2d.

For the remainder of this paper we will concen-
trate on the interplay between syntax and semantics
for the purposes of language generation. We will as-
sume that information about word order propagates
from the lexicon in the manner we just outlined by
example.

3. Natural Language Generation with
Categorial-Unification Grammars

In this section we describe our functor-driven ap-
proach to natural language generation which pairs
logical forms (represented in first-order predicate
logic) with syntactically well-formed expressions of
English. Tor example, given a first-order formula
such as

(1) Vz|person’(z) — smile’(z)]
we want to generate a sentence such as Fveryone
smeles.

In order to produce the appropriate sentence, the
generator is supplied with a start Dag as in fig. 3.

146

person

Tigure 3: Start Dag for Fuveryone smiles

The first order formula (1} is represented in fig. 3
under the attribute trans (for: logical form transla-
tion). The value for the attribute cat specifies that
the translation corresponds to a syntactic expression
of category s (for: sentence). Unlike functional cat-
egories which take other syntactic categories as ar-
guments, s is a basic category, i.e. a category which
does not take an argument,.

The task of the generator is to further instantiate
start Dags such as that in fig. 3 so that appropriate
syntactic expressions are generated in the most efhi-
clent manner possible.

3.1 A Functor-Driven Generation Algorithm

One advantage of the use of categorial grammars
is that efficient generation can be effected by a com-
pletely general principle: at each step in the deriva-
tion of a syntactic expression, constituents that cor-
respond to functor categories are to be generated be-
fore the generation of constituents that correspond
to the functor’s argument categories. The strategy
underlying this principle is that in any grammatical
construction, functor categories always provide more
syntactic and semantic information than any of the
argument categories. By generating the functor cat-

person

S np ~ smile

Figure 5: Generating

Mgure 4: Start Dag unifies with function application
rule

sgory first, shie choice of argument categories will be
severely constrained, which significantly prunes the
scarch space in which the algorithm has to operate.

We will iHustrate our approach by discussing the
lunctor-driven order of processing for the generation
of the sentence Foeryone srules. Tirst the genera-
tor will make a top-down prediction by unifying the
start Dag in fig. 3 with the z0 node of the functional
application rule shown in fig. 1. The resulting Dag
is shown in fig. 4.

The predicted Dag in fig. 4 then becomes sub-
ject to the principle of generating functor categories
firat. Identification of a functor category in a rule
of categorial-unification grammar is straightforward:
the functor category is represented by the subdag
whose value for the attribute cat is a Dag with at-
iributes arg and result and whose resull arc is reen-
trant with the value of the subdag rooted in 20.

Lveryone smiles

Thus, in the case of fig. 4, the functor category is
z1.? At this point there iz enough infermation on
the z1 node to uniquely determine the cheice of a
funtctor category, whercas the choice of an argument
category would be completely unconstrained. When
the lexical entry for everyens (fig. 5a) unifies with
the 1 node, the result is the Dag in fig. 5b.° Then,
at this point, the 22 node 1z fully enough instantiated
to uniquely determine the choice of emiles {fig. 5¢)
from the lexicon.

3.2 Non-minimally Type Raised Functors

Now consider what happens when non-quantified
NPs like T'om are type-raised as in Montague (1974).
That 12, suppose that the lexical entry for Tom is the
Dag in fig. 6a rather than the lower type in fig. 6b.
It turns oat that if the type raised NP is used, it
will not be possible to constrain the choice of func-
tor in generation. For example, fig. 7a shows the
rule of function application (fig. 1) in which the z0
node has been unified with a start Dag appropriate
to generate T'om smales. In fig. 7b, the z1 node has
anified with a type-raised entry for Harry, show-
ing that the start Dag has done nothing to constrain
the choice of functor. Thus, apart from introducing
spurious ambiguity into the grammar (see Witten-
burg 1987 for detailed discussion), the operation of
type-raising, when used unconstrained, can also lead
to considerable inefficiency in generation. In order

2 Alternatively, one could could simply take z1 to always
be the functor since, given our use of the phon attribute, the
order of z1 and z2 no longer corresponds to linear order.

3A problem that arises here is that the 21 node in fig. 4
will also unify with the lexical entry for smiles (fig. 5c) giving
a nonsensical translation. Clearly, what needs to be done is
to modify the semantic representations so that quantified ex-
pressions will not unify with non-quantified expressions. One
line that could be investigated would be to have a type system
which distinguishes quantified and non-quantified signs as in
Pollard and Sag (1987).

147

Figure 7: Generating Tom smzles

>
o
tom
op tom

Flgure 6: Lexical entries for Tom

to constrain the use of type-raising, we adopt the
principle of minimal type assighment suggested on
independent grounds by Partee and Rooth (1983).
Partee aund Rooth argued for the principle of mini-
mal type assignment to account for scopal properties
of NPs in a variety of coordinate structures. Among
the examples they discuss is the contrast between
sentences such as (2} and {3).

{2) Every student failed or got a D.

{(3) Every student failed or every student got a D.
(2) and (3) have different truth conditions. (2) is
true if some students failed and did not get a D),
while others got a D and did not fail. (3), however,
would be false in that situation. Partee and Rooth
point out that appropriate truth conditions for (2)
can only obtained if intransitive verbs are given a
non-type-raised interpretation and if their conjunc-
tion is represented by the A-abstract in (4). When
(4) is combined with the translation for cvery stu-
dent, the desired reduced formula in (5) is obtained.

(4) Az[fail’(z) V got.a.D’(z)]

(5) Va[student’(z) — [failed’(x) V got_a_D’(5)}]

148

The use of conjoined type-raised predicates asin (6),
however, would incorrectly yield the formula in (7),
which is appropriate for (3) but not for (2).

(6) Ap.p(Az.fail’(z)) v p(Az.got.a D’ (z))

{7} Yz[student’(z} — failed’(z)} v
Vai{student’(z) ~ got.a D’(z})]
On the other hand, Partee and Rooth pomnt out
that for the interpretation of sentences such as (8),
intransitive verbs do have to be type-raised, since (9)
is a paraphrase of (8).

(8} A tropical storm was expected to form off the
coast of Florida and did form there within a few
days of the forecast.

(9} A tropical storm was expected to form off the
coast of Florida and A tropical storm did form
there within a few days of the forecast.

In order to recouncile this conflict, Partee and
Rooth propose that extensional intransitive verbs
such as formed should be assigned to the lowest pos-
sible type and be type-raised only when they are con-
joined with an intensional verb such as be ezpected.

Given the principle of minimal type assignment,
the entry for smales fig. 5¢ will now be the main func-
tor in generating the sentence Tom smales. It can be
seen that smiles (and no other non-type-raised cat-
egory) will unify with the z1 node of fig. 7a. The
resulting prediction is shown in fig, 7c. At this point
the z2 node is constrained to unify with the mini-
mal, non-type-raised entry for Tom (fig. 6b). Thus,
the principle of minimal type assignment turns out
to be crucial for constructing efficient generation al-
gorithms for categorial-unification grammars.

3.3 Allowing Type-Raising as Needed
As scen in the previous section, efficient genera-

tion requires the use of basic (non-type-raised) NPs,
whenever possible. However, this is not to suggest

Figure 8: Type-Raising

that the operation of type-raising can be eliminated
from the grammar altogether. For example, type-
raising needs to apply in the case of conjoined NP’s
such as Tom and every boy. If we assume, as in Wit-
tenburg (1986}, that and is assigned the category in
(10),* then to parse or generate a conjoined NP like
Tom and every boy the category for Tom will have
to be raised so that its type will match that of every
boy.

(10) (x

X)X

What 1s needed then is some operation that will
convert the non-type-raised entry for Tom in fig. 6b
to its raised counterpart in fig. 6a. One way of in-
corporating the necessary operation into the gram-
mar would be via the type-raising rule in fig. 8a, in
which the non-type-raised entry unifies with the 21
node to yield the type-raised result at z0° However,
the problem with the rule in fig. 8a is that it will
allow type-raising not just as needed but also any-
where else. So the problem of spurious predictions
like that in fig. 7b reemerges.

Clearly, what 18 needed is some way of allowing
type-raising only in those cases where it is needed.
Partee and Rooth suggest that type raising should
be constrained by some kind of processing strategy,’
without indicating how such a processing strategy

4We use a non-directional calculus here, since word order
is encoded into lexical items. The domain is to the right of
the bar and the range is to the left. The capital Xs represent
a variable over categories. This is just a schernatic represen-
tation of a considerably more complicated category.

5Note again that, since phonology is encoded into lexical
items, we can get by with a single rule of type-raising whereas
most formalisms would require two. The phonological coun-
terpart of type-raising would be:

SPartee and Rooth were actually more interested in psy-
cholinguistic processing strategies. Still their ideas carry over
straightforwardly to computational linguistics.

can be implemented. It turns out that the processing
strategy that Partee and Rooth suggest can be stated
declaratively as part of the grammar, if the operation
of type-raising is incorporated into a supercombinator
(in the sense of Wittenburg 1987,89) that combines
type-raising and functional application into a single
operation,

Wittenburg himself was interested in constraining
type-raising in order to eliminate the spurious ambi-
guity problem of combinatory categorial grammars.
He noted that in some of Steedman’s (1985,1988)
grammazs type-raising was needed just in those cases
where an NP needed te compose with an adjacent
functor. He, therefore, proposed that the type-
raising rule be included into the function composition
rule. The use of type-raising in coordinate structures
that we have considered in this paper, is quite simi-
lar: We want type-raising to be licensed, just in case
an NP is adjacent to a functor that is locking for
a type-raised argument. We, therefore, incorporate
type-raising into the function application rule as seen
in fig. 8b. Now, the old type-raising rule in fig. 8a is
no longer needed, and spurious type-raising will no
longer be a problem.

The type-raising supercombinator schema in
fig. 8b is, for example, used in the generation of coor-
dinate structures such as Tom and every boy. Space
will not allow us to fully present an analysis of such
an NP here, but the important point is that a non-
type-raised lexical entry such as that in fig. 6b will
be able to unify with the 22 node, and when it does
s0, the subdag at the end of the path (z1 cat arg) will
become identical to the type-raised entry for Tom in
fig. Ga.

4. Conclusion

In this paper we have argued that a functor-driven
generation algorithm for categorial unification gram-
mars leads to efficient natural language generation,
if the algorithm incorporates Partee and Rooth’s
{1983) principle of minimal type assignment. In
order to have minimal type assignment and still
allow type-raising in restricted contexts, we have
adopted Wittenburg’s (1986) idea of supercombina-

149

tors. Type-raising has been incorporated into the
function application rule so that type-raising can
only apply when some functor is looking for a type-
raised argument. This use of supercombinators to
achieve semantic compatibility generalizes Witten-
burg’s strictly syntactic application of these combi-
nators.

References

Gerdemann, D. and Hinrichs, E. 1983. UNIL
CORN: a unification parser for attribute-value
grammars. Studies in the Linguistic Scrences,

18(2):41--86.

Karttunen, L. 1986. D-patr: a development envi-
ronment for unification-based grammars. In
COLING-86.

Montague, R. 1974, The Proper treatment of guan-
tification in ordinary English. In R. Thoma-
son (Ed.), Formal Philosophy: Selected Papers
of Richard Montague, Yale University Press,
New Haven.

Partee, B. and Rooth, M. 1983, Generalized conjunc-
tion and type ambiguity. In R. Banerle, C.
Schwarze, and A. von Stechow (Eds.), Mean-
ing, Use and Interpretation of Language, 361~
383, Walter de Gruyter.

Pollard, C. and Sag, I. 1987. An Information-Based
Approach to Syntax and Semantics: Volume
1 Fundementals. CSLI Lecture Notes No. 18,
Chicago University Press, Chicago.

Shieber, S. 1988. A uniform architecture for parsing
and generation. In COLING-88, 614-9.

Shieber, 5., van Noord, G., Moore, R. C.; and
Pereira, F. C. N. 1989, A semantic-head-
driven generation algorithm for unification-
based formalisms. In ACL Proceedings, £27th
Annual Meeting, T-117.

Steedman, M. 1985, Dependency and coordination in
the grammar of dutch and english. Language,
61:523-568.

Steedman, M. 1988. Combinators and grammar. In
R. Oehrle, E. Bach, and D. Wheeler (Eds.),
Categorial Grammer and Natural Language
Structures, 417442, Reidel, Dordrecht.

Uszkoreit, H. 1986. Categorial unification gramimar.
In COLING-86.

Wall, R. and Wittenburg, K. 1989. Predictive normal
forms for composition in categorial grammars,
In Proceedings of International Workshop on
Parsing Technologies, 152-161,

Wittenburg, K. 1986. Natural Language Pars-
ing with Combinatory Categorial Grammar in
a Graph-Unification-Based Formalism. PhD
thesis, The University of Texas at Austin.

150

Wittenburg, K. 1987. Predictive combinators: a
method for eflicient parsing of combinatory
categorial grammars. In Proceedings of the
25th Annual Meeting of the Assoctation for
Computational Linguistics, 73-80.

Zeevat, H, Klein, E, and Calder, J. 1987, Unification
categorial grammar. In N. Haddock, I. Klein,
and G. Morrill (Eds.), Edinburgh Working Pa-
pers in. Cognitive Science, 195-222, Centre for
Cognitive Science, University of Edinburgh.

