
An Efficient Execution Method

for Rule-Based Machine Translation

Hiroyuki KAJI

Systems Development Laboratory~ Hitachi Ltdo
1099 Ohzenji, Asao, Kawasaki, 215~ Japan

ABS'I~IACT

A rule based system is an effective way to impl~nent
a machine translation syste/~ because of its
extensibility and maintainability° However, it is
disadvantageous in processing effici~]Cyo In a rule
based machine translation system b the gran~ik~r
consists of a lot of rewriting rules° While -the
translation is carried out by repeating pattern
matching and ~ansformation of graph structures,
nDst rifles fail in pattenl matching. It is to be
desired that pattern matching of the unfruitful
rules should be avoided. This paper proposes a
method to restrict the rule application by
activating rules dynamically. • The logical
relationship among rules are pre-mmlyzed and a set
of antecede/lt actions, which are prerequisite for
the condition of 9/]e rule being satisfied~ is
determined for each ruleo In execution time, a rule
is activated only when one of the antecedent actions
are carried out. The probability of a rule being
activated is reduced to near the occurrence
probability of its relevant linguistic phenc~nono
As most rules relate to linguistic phenc~msa that
rarely occur, the processing efficiency is
drastically inrproved.

I. Introduction

A practical machine translation system needs to deal
with a wide variety of linguistic phencm~J%a. A
large and sophisticated grammar will be developed
over a long period~ Accordingly, it is necessary to
adopt an implementation method which ir~0r~;es the
extensibility and maintainability of the system°
.The rule based approach [i] is a prc*nising one from
this viewpoint.

However, a rule based systes~ is generally
disadvantageous in processing efficiency. In rule
based machine translation, a gr~,mar is comprised
with a lot of rewriting rules [2] [3] [4].
Translation is carried out by repeating pattern
matching and transformation of tree or graph
structures that represent the syntax or s~mtics of
a sentence. A great part of the processing time is
spent in pattern n~%tching~ which mostly results in
failure. The key to improve the processing
efficiency is how to avoid the pattern matching that
results in failure°

A number of methods such. as the Rete pattern match
algorithm [5] have been devel~ped to ini0rove the
processing efficiency of rule based systems.
However, peculiarities in machine 'translation
systems make it difficult to apply the whole of an
existing method° The general idea of existing
methods is to restructure the set of rules in a
network such as a cause-effect graph~ or a
descriminant network, and maintain the state of the
object in the network. The following are
distinguishing features of a machine translation
system° First, the object data is a graph

824

structttre, and tile st~rt~ of 19~e object must ~.m
handle~] as a collection of slates of respective
sub4]raphs~ which are created dynamically by applying
rules o Therefore, maintaining the state of the
object in a network causes a large amount of
overhead. Seoondly~ ~ules are a~plied in a
c~ntrolled m~mer ~ so tI~t a linguistically
insignificant result J.s prevented o [[%~e
computational control of rules to ~rove the
processing efficiency must ~x~ super[nkoosed on the
ling~dstic control of ~mles.

'l%,js paper proposes a nu~ 1~..thod to ~?fove iJ~e
processing efficiency of rule based syst~t~ having
t/le above mentioned featumeso S~tion 2 describes a
gran~ar description language which was developsd fo~7
a Japanese-English machine translation systexn o
'l~ough the proposed method is described on tJ~e basis
of this grars~ar description 16mguage~ it is general
enough to apply to other systems~ Section 3
exp] ains the probl~ of processing efficienoy.
Then, Section 4 outlines the proposed metb0d by
which essence is in dynastic rule activation~ based
on the logical relationship ar~)ng rules° A method
to pre-analyze the logic~l relationship anong zllles
is described° The Jmproved grar~ executor is also
described. Lastly, the effectiveness of %/le
proposed ~thod is discussed in Section 5~

2. Grammar D e s c r ~
for Rule Based Machine Translation

2 o i ~ect data structure

A machine translation syst~n deals with the syntax
and semantics of a natural l~guage sentenc~ which
is represented by tree or graph structures~ The
object data in our machine translation syst~n is a
directed graph. A directed graph consists of a set
of nodes and arcs connecting a pair of nodes. ~ch
node has a number of attributes and each arc has a
label. ~e label of an arc can be regarded as a
kind of attribute in the tail node of the arc~ The
attributes are divided into sca~pe attxibntes
and set-type attribetes. A scalar-type attribute is
e~le in which only ~ne value is given to a node° A
set-type attribute is one Jm whic~h ~ than ~
value nmy be given to a node~

In Japanese-~glish machine translations a ~e
corresponds to a bumm~tsu in a Japanese ~t~Oeo A
.b~nsetsu is o~rised witkt a co~itent ~rd and %k~
succeeding fnnction words o The follo~r'±ng a~e
treated as attributes of nodes; parts of speech,.
s~mm%tie features, function words~ dependent, types~
governor typese surface case markers~ se~mmtic roles
(case), and others.

2.2 Gramn~tical rules

A granm~tical rule is written in the form of a
graph-to-g, raph rewriting ruleo T]~t is8 a xu]e
consists of a condition part and an action part o
The condition part. specifies the pattern of a

condition
* @X ~ T :~ [t, t ']

(a : @Y) ;
@Y ~ U = u ! u'

(a : @z) ;

@Z ~ V ~ @X.V ;

a c t i o n
@X (+ a : @z] ;

@Y (- - a : @Z) ;

(a) Coding form

Eli)

(b) Illustrative form

F:i.go l An _exf?~J3]e of a ~ranm]atical rule

subgrapb, and tile action part does a transformation
to I~ p e r f o r m e d on subgraphs that **retch the p a t L e m l
s[~.oified .in the condition p a r t : . Fig. 1. shows an
emtmple of rule. In Fig° i~ (a) is the c~DdJ.ng forint
and (b) J.s an illustrative form~ As nodes are
represents3 by variables (character strings headed
by @), rules should be applicable to any subgraph in
the object data° A rule has a key node variable,
which is indicated by *o The key node plays a role
in specifying exactly the]ocmtion where the rule is
applied in the object £ata~

The (~nd~ tion part of a rule is a logical
cx]mbination of primitive conditions° A prlndtive
cx]ndition is related to either a node co~mection o r
an attribute. ~lality Js specified fox" a
s(mlar-ty~. ~ attribute~ and an inclusion relat.~onship
is specified for a set-ty[~ attribute o '[he
primitive conditions are also divided into
intra-node conditions and inter-node conditions.
- An intra-node condition is one relating to only
one node°
e.g.~ @X : T :~ [t~ t '] ;

'l~le set-type attribute • of node @X includes the
values t and t'.

• - ~ inten---node condition is one relating to a pair
of nodes.
eogo, @X : T = @Yo~' ;

¶['he attribute T of node @X has t/he same ~alue as
%trot ol ncx~e @Yo

The action pa~t of a rule is a sequ~ce of.- primitive
actions. A prJ~dtive action is related to eithe[a
node eonnection or an attribute° Cx)nneetion and
disconnection are s~eeifi6~ for a pair of nodes.
Substitution o f a value is specific~ for a
scalar-type attribute~ and addition and deletion of
a value ar_e specified for a set-type attribute° Y%~e
actions are' also divided into intra-node actions and
inter-node actions.
- 2~% intra--nede action is one relating to only one
node

eogo; @X : T = T + [t] ;
Add a value t to the set-type attribute q' of
n e d e @X.

- ~n inter-.node action is one relating to a [~ir of
nc~]es.

eogo~ @X : T = @YoT ;
Substitute the value of attribute T of node @Y
for tile attribute T of node @X0

A gra[m~ar ~.~msists of a lot of ru]es, which play
their own roles in -t~e translation process° ']hey
must be applie~] in a controlled ,intoner, so that
linguistically insignificant results are prevented°
The c3~'atl~sr description language provides a facility
to n~x]u].ar:i.ze a gralrwmu~ and specify sophJstJ.catc~d
control i n ru]e applicatJOno

A gra~t~,~r is deo~m~posed into a lot of subgr~m~mrs~
~hich are applied J.n a prescribed order° ~br
ex~m~ple, 'the analysis gra~ar for Japanese sentences
J.s deo~nposed into such snbgramtmrs as
6{J s~lnbiguation of multiple ~r'ts of s~eeh,
detel~niuation of governor types, detezminat~ on of
dependent types, dependency structure analysis, deep
case analysis, tense/aspect analysis, and ol.hers. A
s'ttb9 ran. m~r amy 1"~9 dec~m%oo sed into further
subgr6m~ars.

A number of control £mrameters for ru]e application
are speeific~d for each subgra~nar° The following
a r e e x a m p l e s ° 7

- Mutual relationship ~m~ong rules (Exc] usiw~,
Conctrcrent, Dependent or Unrelated): For instance,
when ~clusive is selected, rule application is
cmntrolled so that successfu] application of a ru].e
should prevent the renmining rules frd~l being
applied.
- ~[~averse mode in the object data (Pre-order or
Post-order): '].~e object data is traverse~] in the
specified mode, and rules are applJ(~] at each
Icxzation :in the object data structure.
- Priority between ru]e selection }n~d]ocation
selection: When rule selection is selecte(I~ Yule
application is (x]ntro]led so that the next rule
should be selected after applying a rule at every
location°

3. Probl~n of Processing Efficienc Z

A naive Jmplersantation of grar~nar executor for such
a gra~r description language as describe<] in
Section 2 is illustrated in Fig. 2. q~e translation
is carried out by applying granmmtica] rules to the
object data in the working memory. The granmar
executor consists of the inJ tializer, the
controller, t/~e pattern nntcher and t~e transformer.

'l~e initializer creates all initial state of the
object data ill the working nm_r,~)ry, based on the
result of morphological analysis° It defines a node
for each bunsetsu and assigns it some attribute
values o 'fhe attribute values c~me from the
dictionary and 'the result of morphological]
analysis o

'l~ne controller 'is initiated after the initial objec~
data is created. The controller determines both the
rule to be app].iefl and the current node at which the
rule is to be applied, according to rule app]ic~tion
c~ontrol parameters and the application result of the
previous ruleo

The pattern nmtd~er judges whether the condition
part of a rule is satisfied or not. %~e rule and
the current node is designated by the controller°

825

Working Memory ~ r I--nitia li z-e rq

I Controller-]~

~-------'--~I" MatcherPattern "] ~

I J
I

Fig. 2 Grammar executor

Grammar

Control
l Parameter

Rule

I Condition

Action
!

The pattern marcher first binds the key node
variable in the rule with the current node. Then,
it binds the other node variables with nodes in the
object data one after another, searching for a node
which satisfies the conditions relevant to each node
variable. If all the node Variables in the rule are
bound with nodes, the pattern matcher judges that
the condition part of the rule is satisfied at %/~e
current node. If there exists a node variable that
caD/lot be bound with a node, the pattern marcher
judges t/]at the condition is not satisfied at the
current node.

The transformer performs the action part of a rule.
It is called only when the pattern matcher judges
that the condition part of the rule issatisfied.
As the pattern matcher has bound each node variable
with a node in the object data, the appropriate
portion of the object data structure undergoes the
transformation.

The grammar executor described above leaves room for
improven~nt in efficiency. The behavior of rules in
the naive grammar executor shows the following
characteristics.
- The proportion of rules that succeed in pattern
matching is very small. It is less than one percent
in the case of our Japanese sentence analysis
grammar which is ecmprised of several thousand rules.
- The probability that a rule succeeds in pattern
matching varies widely with rules. While some rules
succeed fairly frequently, most other rules rarely
succeed.

In the naive implementation of grammar executor, all
the rules are treated equally. As a result, a great
part of ~ the processing time is spent in pattern
matching of unfruitful rules. If application of

' • unfruitful rules can be avoided, the processing
efficiency will be drastically improved. Same rules
can be directly linked to specific words.
Application of such word specific rules can be
easily restricted by linking them with the
dictionary. Our concern here is how to restrict
application of general rules that cannot be linked
directly to specific words.

4. Dynamic Rule Activation

4.1 Basic idea

~ether the condition part of a rule is satisfied or

826

not ge~nerally depends on the results of preceding
rules, q~e logical relationship an~0ng rules can be
extracted by static analysis of the grammar° A
considerable application of unfruitful rules will be
prevented by using the logical relationship among
rules.

First, we define an ~tecedent set for a condition.
The anteoedent set for a condition is such a set of
actions as:
(i) carrying Out a member action causes the
possibility that the condition is satisfied, and
(ii) the condition is never satisfied if no men~xe.r
action is carried out.
Then, we define the inverse action for a/l antecedent
set. The inverse action for an antecedent set is an
action that cancels the effect of any me~ber action
of the antecedent set° An antecedent set and its
inverse action can be used to dynamically change the
status of a rule as follows. A rule is activated
when a member action of the antecedent set for the
condition of the rule is carried out. A rule is
deactivated when the inverse action is carried out°
It is obviously assured that a rule is active
whenever its condition may ~e satisfied. Thus~ the
application of inactive rt116s can be skipped.

More than one antecedeat set can usually be obtained
for a oondition. The optimal antecedent set is one
that minimizes the probability of activating a
rule~ The optimal antecedent set is one of min~nal
antecedent, sets. The minimal anteoedent set is such
an antecede/It set as any subset is not an anteoedent
set for the same condition. In order to choose the
optimal antecedent set among ,~inimal anteoedent
sets, occurrence statistics of actions should be
gathered using a corpus of texT.

4.2 ~ s of~ammar

4.2.1 Amtecedent set for 10rimitive oondition

We are not interested in all the antecedent sets but
the optimal one for the condition of each ruleo
q~erefore, we turn our attention to intra-node
cenditions. Intra-node conditions usually give us
an effective anteoedent set, while inter--node
conditions do not.

%~le minimal antecedent sets for an intra-node
condition are as follow. Here, antecedent sets are
defined separately for each node (indicated by i
below), as the truth value of a oondition varies

with nodes. It is necessary to consider two cases.
One is that the attribute in the condition is not
related to any inter-node action. ~ne other is that
the attribute in the condition is related to sQme
/ nter-node actions.

(I) When the attribute is not related to any
inter-node action, the truth value of a condition at
a node i is effected only by actions at the same
node i. "therefore, only the actions at the same
node i are included in the antecedent set.
e.g., The minimal antecedent sets for a condition

Ti p [t, t'] are [T i = T i + It]] and
Ti=Ti+[t']] .

A comment should be given on cfm~posite actions. For
instance, T i = T i + [t, t', t"] is also an
antecedent action. However, it is decomposed into
%'i = Ti + [t], T i = T i + [t'] and
T i = T i + [t"]. Therefore, we exclude it from
antecedent sets.
e.g., The minimal antecedent set for a condition

T in [t, t'] % ~ is
[T i = T i + [t] , T i = T i + [t']] .

(2) When the attribute is related to same inter-node
actions, the truth value of a condition at a node i
may be effected by actions at another node via an
inter-node action (See Fig. 3). Therefore, 'the
antecedent sets need to include the actions at all
the nodes.
e.g., The minimal antecedent sets for a condition

TiP [t, t'] are
[Tj = ~i + [t] , j=l,..,N] and
[Tj = T~ + It'] I j=l,",N] .

e.g°, -The ~tinimal antecedent set for a condition
Tin [L,t']¢@ is
[Tj = Tj + [t] , Tj -- Tj + It'] !
j=I,..,N] .

In this case, obviously the antecedent sets for a
rule are camDn to all the nodes.

On the other, hand, we cannot obtain effective
antecedent sets from an inter-node condition. For
instance, the minimal antecedent set for an
Jmter-node condition T i = Tj must include
actions Tj = T i + [t] (for any t), as T i =
T i + [t "] make true the condition together with
Tj = Tj + [t]. Accordingly, the minimal
antecedent set includes a large number of actions
and has a rather large occurrence probability.

4.2.2 Antecedent set for rule

A minimal antecedent set for a condition or a rule
is synthesized by those for the constituent
primitive conditions. For this purpose, 1"/~e
cendition)~rt of a rule is transforme~ into
con jtu~ctive canonical form. The conjunctive
'canonical form is a logical AkD of terms, each term
being a logical OR of one or more primitives. In
Fig. 4r the condition part of the rule in Fig. 1 is
shown in conjunctive canonical form.

In the oonj[mctive canonical form, a term is true if
anyone of t/~ primitives is trHe, and it is false if
all the pr~nitives are false. Therefore, the union
of the minimal antecedent sets of the primitives is
that for the term. Here, the detailed procedure is
separated J~to two cases. In the case of the term
being relat~ to the key node variable in the rule,
t/~e minimal antecedent sets for the node concerned
should be t~ited. On the contrary, in case the term
is related to a node variable other than the key
node variable, the minimal antecedent sets for all
the nodes should be united, because any node may, as
a result of structural change, occupy the location
that oorresixgnds to the node variable the term is
related to (See Fig. 5).

The condition, a logical A~) of terms, is totally
true if and only if all the terms are true.
Accordingly, each minimal antecedent set for one of

Fig. 3

il
intra-node I, J
action a~j J

Tj=tj+[t] ~ J D [t]~

~ter'nod~
action I

Ti=Tj)

condition at i
il
~Ti D [t]|----~ TiD [t, t']

k ,]
¢

A n t e c e d e n t a c t i o n v i a i n t e r - n o d e a c t i o n

Fig. 4 ~osition of a condition

l

[

£
Action at

[Uj=u, Uj=u']---~[

Fig. 5

3

pt uctura]
~Change J

~>
condition at i

i * X

.... 9~x=[t,t "T] I

Y T a " ,
..... ~Uy=u or Uy=u']

Iv, = vx]

Antecedent set via structural chan~e

827

the terms is that for the condition. As the
condition part of a rule usually includes one or
more terms comprised of intra-node conditions, it
does not matter tlmt effective antecedent sets
cannot be obtained from inter-node condJtions~

As an example of the nlinJ/~al antec6~]ent set for a
rule~ those for the rule .in Fig. 1 are given below.

[T i = T i + [t]] ,
[Ti = Ti + [t']]
[Lj = a ' j=I,-.,N]
[Uj U , Uj = u ! j=I,"~N] .

4.2.3 Inverse action

The inverse of an action can be easily defined°
e.g., The inverse action of Tj = T i + [t]

is T i = T i - [t] .
The inverse action for an antecedent set is obtained
by connecting all the inverse actions in the set°
The following are the inverse actions corresponding
to the antecedent sets shown in 4.2.2.

T i = T i - [t] ,
T i = T i - [t'] ,
(L]n--- a) & -. & (LN~= a) ,
(Ul~= u) & (Ul~= u') & . • &
(I,N~= u') .

4.3 Modification of .granmmr

Among tile minJlnal antecedent sets for each rule, the
optimal one is selected statistically using a corpus
of text. Then, t/he grammatical rules are modified
as follow. When the action part of a rule R'
includes a member action of the antecedent set for a
rule R, the action to activate R is added to the
action part of R'. Likewise, when the action part
'of a ~ule R" includes the inverse action of the
antecedent set for a rule R, the action to
deactivate R is added to the action part of R".

We should add a comment on the s£atus of a ruleo In
principle, a status is defined for ead] node.
However, when the antecedent set is related to a
ncde variable other than the key node variable, or
an attribute relating to scme inter-node actions, a
status cfmm~n to all the nodes is defined.

4.4 Improved 9rammar executor

An .improved grm~m~- executor whid~ exec[~tes the
l~odifJ.ed gran~k~r is il].ustrate<] in Fig° 6. A status
table indicating the status of rules is introduced°
It is updated by both the initializer and the
trensformer, and looked up by the contro]ler~ 'l~ne
initializer ac.~ivates the rules in whJ ch the
antecedent set includes an action in the process to
create the initial object data° The transformer
performs rule activating/deactivating actions
include~] in the m<x]ified grammar. The controller
looks up the status table whea it selec~.s the rule
to apply. While the control is transferred to the
pattern matcher if the rule is actJ ve ~ the
controller irm~diately selects the next rule to
al~ply if the rule is inactive°

5o Effectiveness

The ~0roveanent of processing efficiency by ~le
proposed ~thcx] is disc~assed frc~t two points of
vi£~: ~he probability that rnles are active and the
overhead cmused by dynamic ru]e activation°

(i} Probability that rules are active°
The probability t]mt a rule succeeds in patter~]
matching is a lower lJn/t for the probability that
the rule is activated~ However, the]¢~er limit
(~nnot be realized~ because a rule is activated with
prerequisite actions for its c~ondition being
satisfied~ q~e state ~active' implies just the
possibility t/]at the rule will be applied
successfully. The gap between the probabilities of
'active' and ' success' varies with rules. Fig~ 7
illustrates two extreme cases. Fig. 7(a) is a case
in which there is a minimal en~tecedent set for which
occurrence probability is near the probability of
t/~e condition being satisfied. Fig. 7(b) is a case
in w~dch there is no such ndnimal antecedent set.
As a matter of fact~ (a) is a usual case and (b) is
s rare case. A rule usually has a key condition
featuring its relevant]ing[d.stic phenomenon, from
which an effective antecedent set can be obtained°
~herefore~ the probability of 'active' is reduced to
the same order as the probability of 'success'.

(2) Overhead of dynamic rule activation.
No additional conditXons are introduced to the
condition parts of rules to judge if an acTXon to
activate/deactivate a mile should be performed°

828

 or ingMemory]

O (% (%1 C-- tter. t<==

R.lestotuYq l
Table] <~=======~~Status U ~ ~-~

%
Fig. 6 Im~edJ__q_rammar executor

Granm~ar

Control
Farameter

Modified Rule

Condition

Action

Rule Activation
Rule Deactivation

success success

a c t i v e

v e

(a) Usual case (b) Rare case

A, BF C : minimal antecedent set

Flu. 7 Probabilit~ of 'active ~ vs.
Probabilit~ of 'success'

Although rather a large number of actions to
activate/deactivate a rule are added to action parts
of rule~'~, the action parts are infrequently
performed. Moreover, although looking up the status
of rules occurs frequently, its load is far smaller
t/~1 that of pattern matching, which would be
repeated if the dynamic rule activation were not
used. ~erefore, the overhead caused by dynamic
rule activation can be neglected.

Another effect of the proposed method is that it can
be applied to on-d~d loading of rules when the
|1~anory a~pacity for a grammar is limited. That is,
while rules with a large probability of 'active' are
made resident on the main memory, the other rules
are loaded when they are to ~ applied. Thus the
frequency of loading rules is minimized.

6. Conclusion

An efficient execution method for rule based machine
translation systems has been developed. ~e essence
of the met21od is as follows. Firs t, a grammar is
pre-analyzed to determine an antecedent set for each
rule. The ~tecedent set for a rule is a set of
actions such that perfo~r£ing an action in it causes
the possibility of the condition of the rule being
satisfied, and the condition of the rule is
unsatisfied if any action in it is not performed.
At execution time, a rule is activated only when an
action in Ule antecedent set for the rule is
perfol~=d° qhe rule application is restricted to
active rules. The probability of a rule being
active is reduced to near the occurrence probability
of its relevant linguistic phenomenon. Thus most
pattern l,~tching of unfruitful rules is avoided.

Acknowledgement: I would like to acknowledge Dr.
Jun Kawasaki, Mr. Nobuyoshi Dc~en, Mr. Koichiro
Ishihara and Dr. ~n Watanabe for their valuable
advice and constant encouragement.

References
Newell A. (1973). Production Syst~ns: Models of

Control Structures, in Visual Information Processing
(ed. W. C~ase; Academic Press).
[2] Boitet C., et al. (1982). Impl~tation and
Conversational ~vironment of ARIANE 78.4, Proc.
O01~NG82.
[3] Nakamura J., et al. (1984). Grarsnar Writing
Systesl (GRADE) of Mu-Machine Translation Project and
its Characteristics, Proc. OOLING84.
[4] Eaji H. (1987). HICATS/JE : A
Japanese-to-English Machine Translation System Based
on Se~ntics, Mac/line Translation SLmmdt.
[5] Forgy C.L. (1982). Rete : A Fast Algoritl~n for
the Many Pattern / Many Object Pattern Match
Problems Artificial Intelligence0 Vol. 19.

~129

