An Ffficient Execution Method

for Rule-Based Machine Translation

Hiroyuki KAJI

Systems Development Laboratory, Hitachi Litd.
1099 Ohzenji, Asao, Kawasaki, 215, Japan

ABSTRACT

A rule based system is an effective way to implement
a machine translation system because of its
extensibility and maintainability. However, it is
disadvantageous in processing efficiency. In a rule
based machine translation system, the grammar
consists of a lot of rewriting ruleg. While the
translation is carried out by repeating pattern
matching and transformation of graph structures,
most rules fail in pattern matching. It is to be
desired that pattern matching of the unfruitful
rules should be avoided. This paper proposes a
method to restrict the rule application by
activating rules dynamically. The logical
relationship among rules are pre-analyzed and a set
of antecedent actions, which are prerequisite for
the condition of . the rule being satisfied, is
determined for each rule. In execution time, a rule
is activated only when one of the antecedent actions
are carried out. The probability of a rule being
activated is vreduced to near the ocourrence
probability of its relevant linguistic phenomenon.
As most rules relate to linguistic phenomena that
rarely occur, the processing efficiency is
drastically improved.

1. Introduction

A practical machine translation system needs to deal
with a wide variety of linguistic phenamena. A
large and sophisticated grammar will be developed
over a long period. Accordingly, it is necessary to
adopt an implementation method which improves the
extensibility and maintainability of the system.
The rule based approach [1] is a promising one from
this viewpoint.

However:, a rule based system is generally
disadvantageous in processing efficiency. In rule
based machine translation, a grammar is comprised
with a lot of vrewriting rules [2][31[4].
Translation is carried out by . repeating pattern
matching and transformation of tree or graph
structures that represent the syntax or semantics of
a sentence. A great part of the processing time is
spent in pattern matching, which mostly results in
failure. The key to improve the processing
efficiency is how to avoid the pattern matching that
results in failure.)

A number of methods such as the Rete pattern match
algorithm [5] have been developed to improve the
processing efficiency of rule based systems.
However, peculiarities in machine translation
systems make it difficult to apply the whole of an
existing method. 'The general idea of existing
methods is to restructure the set of rules in a
network such as a cause-effect graph, or a
descriminant network, and maintain the state of the
object in the network. The following are
distinguishing features of a machine translation
system. First, the object data is a graph

824

structure, and the state of ithe object must be
handled as a collection of states of respective
subgraphs, which are created dynamically by applying
rules. Therefore, maintaining the state of the
object in a network causes a large amowt of
overhead. Secondly, rules ave applied in a
controlled manner, so .that a linguistically
ingignificant resalt is prevented. The
computational control of rules to luprove the
processing efficiency must be superimposed on the
linguistic control of rules.

This paper proposes a new method to improve the
processing efficiency of rule based systems having
the above mentioned features. Section 2 describes a
grammar description language which was developed for
a Japanese-English machine translation system.
though the proposed method is described on the basis
of this grammar description language, it is general
enough’ to apply to other systemns. Section 3
explains the problem of processing efficiency.
Then, Section 4 outlines the proposed method by
which essence is in dynamic rule activetion, based
on the logical relationship among rules. A method
to pre-apalyze the logical relationship among rules
is described. The improved grammar executor is algo
described. lastly, the effectiveness of the
proposed method is discussed in Section 5.

2. Grammar Description Language
for Rule Based Machine Translation

2.1 Object data structure

A machine translation system deals with the syntax
and semantics of a natural language sentence, which
is represented by tree or graph structures. The
object data in our machine translation system is a
dirvected graph. A directed graph consists of a set
of nodes and arcs connecting a pair of nodes. Fach
node has a number of attributes and each arc has a
label. fThe label of an arc can be rvegarded as a
kind of attribute in the tall node of the arc. The
attributes are divided into scalar-type attributes
and set-type attributes. A scalar-type attribute is
one in which only one value is given to a node., 5
set-type attribute is one in which wmove then onse
value may be given to a node.

In Japanese-Fnglish wachine translaticn, & wods
corresponds to a bunsetsu in & Japanese sentencs. B
bunsetsu 18 comprised with a content word and the
succeeding function words. the followlng are
treated as attributes of wnodes; parts of speech,
semantic features, function words, dependent types,
governor types, surface case markers, semantic roles
(case), and others.

2.2 Grammatical rules

A grammatical rule is written in the form of a
graph-to-graph rewriting rule. That is, a zule
consigts of a condition part and an action part.
The ocondition part specifies the pattern of a

condition
Ay o« T [v, &]
(a: @y) ;
QY ¢+ U =u ! u'
(a: @2) ;
Q% s V = @X.V ;

acvion
ax (+ a ¢ @82)
Qv (- a : @z) ;

(a) Coding form

ol

¥ Uymu
or U =t
.
7 —
a
z | V. =V
.

(b) rllustrative form

Fig. 1 An example of a grammatical rule

subgraph, and the action part does a transformation
to be periormed on subgraphs that match the pattern
specified in the condition part. Fig. 1 shows an
exanple of rule. In PFig. 1, (a) is the coding form
and {b) i an illustrative form. As nodes are
represented by variables (character strings headed
by @), rules should be applicable to any subgraph in
the object data. A rule has a key node variable,
v:zhich is indicated by *. ‘he key node plays a role
in specifying exactly the location where the rule is
applied in the object data.

The condition part of a rule 1is a logical
canbination of primitive conditions. A primitive
condition is related to either a node commection or
an attribute. Bquality is specified for a
s';calar~typ(s attribute, and an inclusion relationship
is specified for a set-type attribute. The
primitive conditions are also divided into
intra-node conditions and inter-node conditions.
~ An intra-node condition is one relating to only
one node.
e.g.y, OX : T £, '] ;
The set~type attribute T of node @X includes the
values t and t'.
- An inter-node condition is one relating to a pair
of nodes.
a.g., @X : T = @Y. 7 ;
the attribute T of node @X has the same value as
that of node @Y.

The action part of a rule is a sequence of primitive
actions. A primdtive action is related to either a
node connection or an attribute. Copnection and
disconnection are specified for a pair of nodes.
Substitution of a value is specified for a
scalar-type attribute, and addition and deletion of
a value arve: gpecified for a set-type attribute. The
actions are also divided into intra-node actions and
inter-node actions.

-~ An intra-node action is one relating to only one
node.

©ufe, BX 3 V=Tt]
Add a value t to the set-type attribute 1' of
node @X.
- An inter-node action is one relating to a pair of
nodes.
e.g., @X : 1= @vy.1 ;
substitute the value of attribute T of node @Y
for the attribute 7' of node @X.

2.3 dpplication control of rules

A grammar consists of a lot of rules, which play
their own roles in the translation process. They
must be applied in a controlled mamer, so that
linguistically insignificant results are prevented.
The gramwar description language provides a facility
to modularize a grammar and specify sophisticated
control in rule application.

A granmar is decanposed into a lot of subgrammars,
which are applied in a prescribed order. For
example, the analysis grammar for Japanese sentences
is decomposed into such subgranmars as
digambiguation of wultiple parts of speech,
determination of governor types, determination of
dependent. types, dependency structure analysis, deep
case analysis, tense/aspect enalysis, and others. A
subgranmar may be decomposed into further
subgrammars.

A mumber of control parameters for rule application
are specified for each subgrammar. The fol lowing
are examples. o

—~ Matual relationship among rules (Fxclusive,
Concurvent, Dependent or Unrelated): For instance,
when Exclusive 1is selected, rule application is
controlled so that successful application of a rule
should prevent the remaining rules from being
applied.

- Traverse mode in the object data (Pre-order or
rost-order): 'The object data is traversed in the
specified mode, and rules are applied at each
location in the object data structure.

— DPriority between rule selection and location
selection: When rule sgelection is selected, rule
application is controlled so that the next rule
should be selected after applying a rule at every
location.

3. Problem of Processing Efficiency

A maive implementation of grammar executor for such
a grammar description language as described in
Section 2 is illustrated in Fig. 2. The translation
is carried out by applying grammatical rules to the
cbject data in the working memory. The grammay
executor consists of the initializex, the
controller, the pattern matcher and the transformer.

The initializer creates an initial state of the
object data in the working memory, based on the
result of morphological analysis. It defines a node
for each bunsetsu and assigns it some attribute
values. The attribute values come fram the
dictionary and the result of morphological
analysis.

The controller ‘is initiated after the initial object
data is created. ‘'The controller determines both the
rule to be applied and the current node at which the
rule is to be applied, according to rule application
control parameters and the application result of the
previous rule.

The pattern matcher judges whether the condition

part of a rule is satisfied or not. The rule and
the current node is designated by the controller.

825

Working Memory Initializer Grammar
P, —
™ " Control
Controller \ Parameter
Rule
Pattern >
. L
=S Matcher " Condition
Action
$—===23| nyransformer |<

Fig. 2 Grammar executor

The pattern matcher first binds the key node
variable in the rule with the current node. ‘Then,
it binds the other node variables with nodes in the
object data one after ancther, searching for a node
which satisfies the conditions relevant to each node
variable. If all the node varizbles in the rule are
bound with nodes, the pattern matcher -judges that
the condition part of the rule is satisfied at the
current node. ‘If there exists a node variable that
cannot be bound with a node, the pattern matcher
judges that the condition is not satisfied at the
current node.

The transformer performs the action part of a rule.
It is called only when the pattern matcher Jjudges
that the condition part of the rule is satisfied.
As the pattern matcher has bound each node variable
with a node in the object data, the appropriate
portion of the object data structure uridergoes the
transformation.

The grammar executor described above leaves room for
improvement in efficiency. The behavior of rules in
the naive grammar executor shows the following
characteristics.

~ The proportion of rules that succeed in pattern
matching is very small. It is less than one percent
in the case of our Japanese sentence analysis
grammar which is comprised of several thousand rules.
-~ The probability that a rule succeeds in pattern
matching varies widely with rules. While some rules
succeed fairly frequently, most other rules . rarely
succeed.

In the naive implementation of grammar executor, all
the rules are treated equally. As a result, a great
-part of ' the processing time is spent in pattern
matching of unfruitful rules. If application of
‘unfruitful rules can be avoided, the processing
efficiency will be drastically improved. Some rules
can be directly linked to specific words.
Application of such word specific rules can be
easily restricted by linking them with the
dictionary. Our concern here is how to restrict
application of general rules that cannot be linked
directly to specific words.

4, Dynamic Rule Activation

4.1 Basic idea -

Whether the condition part of a rule is satisfied or
826

not generally depends on the results of preceding
rules. The logical relationship among rules can be
extracted by static analysis of the grammar. A
considerable application of unfruitful rules will be
prevented by using the logical relationship among
rules.,

First, we define an antecedent set for a condition.
The antecedent set for a condition is such a set of
actions ass

(i) carrying out a member action causes the
possibility that the condition is satisfied, and

(ii) the condition is never satisfied if no member
action is carried out.

Then, we define the inverse action for an antecedent
set. ‘The inverse action for an antecedent set is an
action that cancels the effect of any member action
of the antecedent set. 2An antecedent set and its
inverse action can be used to dynamically change the
status of a rule as follows. A rule is activated
when a member action of the antecedent set for the
condition of the rule is carrvied out. A rule is
deactivated when the inverse action is carried out.
Tt is obviously assured that a rule is active
whenever its condition may be satisfied. Thus, the
application of inactive rules can be skipped.

More than one antecedent set can usually be obtained
for a condition. The optimal antecedent set is one
that minimizes the probability of activating a
rule. The optimal antecedent set is one of minimal
antecedent. sets. The minimal antecedent set is such
an antecedent set as any subset is not an antecedent
set for the same condition. In order to choose the
optimal antecedent set among minimal antecedent
gsets, occurrence statistics of actions should be
gathered using a corpus of text.

4.2 Pre-analysis of grammar

4.2.1 Antecedent set for primitive condition

We are not interested in all the antecedent sets but
the optimal one for the condition of each rule.
Therefore, we turn our attention to intra—-node
conditions. Intra-node conditions usually give us
an effective antecedent set, while inter-node
conditions do not.

The minimal antecedent sets for an intra-node
condition are as follow. Here, antecedent sets are
defined separately for each node (indicated by i
below), as the truth value of a condition varies

with nodes. It is necessary to consider two cases.
One is that the attribute in the condition is not
related to any inter-node action. The other is that
the attribute in the oondition is related to some
inter-node actions.

(1) when the attribute is not related to any
inter-node action, the truth value of a condition at
a node i is effected only by actions at the same
node i. ‘therefore, only the actions at the same
node i are included in the antecedent set.
e.g., The minimal antecedent sets for a condition
T2 [t, &' lare[T3 =74 +[t]] and
[y =oy + 061 7.
A conment should be given on composite actions. For
instance, Ty = Ty + [t, t', t"] is also an
antecedent. action. However, it is decomposed into
o=+ [t), ™o=m1 + [t'] and
Ty = T3 + [t"). Therefore, we exclude it from
antecedent sets.
e.q., The minimal antecedent set for a condition
HNltt" 1@ is
[my =14 +[t] , Ty =14 +[t']].

(2) when the attribute is related to scme inter-node
actions, the truth value of a condition at a node i
may be effected by actions at another node via. an
inter-node action (See Fig. 3). ‘'Therefore, 'the
antecedent sets need to include the actions at all
the nodes.
e.g., The minimal antecedent sets for a condition

o2 [t t'] are

[2y=15+[t] 1 J1,N] and

[y =15+1t']1 51, NT.
e.g., ~The minimal antecedent set for a condition

Ty N [t,t‘]*¢ is

[T + [t] , T] = Tj + [t'] t

]"ll IN ?
In this case, ocbviously the antecedent sets for a
rule are camon to all the nodes.

On the other hand, we cannot obtain effective
antecedent sets from an inter-node condition. For
instance, the minimal antecedent set for an
inter-node condition Ty = T3 ~must include
actions Ty = T4 + [t | (for any t), as Ty =
Ti + [t 1 make true the condition together with
Ty = T4 + [t 1. BAccordingly, the minimal
antecedenit set includes a large number of actions
and has a rather large occurrence probability.

4.2.2 Antecedent set for rule

A minimal antecedent set for a condition or a rule
is synthesized by those for the ' oconstituent
primitive oconditions. For this purpose, the
condition part of a rule is transformed into
conjunctive ' canonical form. The oonjunctive
canonical form is a logical AND of terms, each temm
being a logical OR of one or more prlmitlves. In
Fig. 4, the condition part of the rule in Fig. 1 is
showm in conjunctive canonical form.

In the conjunctive canonical form, a term is true if
anyone of the primitives is true, and it is false if
all the primitives are false. Therefore, the union
of the minimal antecedent sets of the primitives is
that for the term., Here, the detailed procedure is
separated into two cases. In the case of the temm
being related to the key node variable in the rule,
the minimal antecedent sets for the node concerned
should be united. On the contrary, in case the term
is related to a node variable other than the key
node variable, the minimal antecedent sets for all
the nodes should be united, because any node may, as
a result of structural change, occupy the location
that oorresponds to the node variable the term is
related to (See Fig. 5).

The condition, a logical AND of terms, is totally
true if and only if all the terms are true.
Accordingly, each minimal antecedent set for one of

intra-node
action at j

Ty=tyt(t] —waayp[To o [T

<

inter-node
action

Ti=Tj

condition at i

N g
i
Ty o [E]]--» T3 t, t']

Fig. 3 Antecedent action via inter-node action

Fig. 4 Decomposition of a condition

action action at j
[iju, j=u’]-...)

Structural
Change

condition at i

Fig. 5 BAntecedent set via structural change

827

the terms is that for the condition. Ag
condition part of a rule usually includes one
more terms camprised of intra-node conditions,

the
or
it

does not matter that effective antecedent sets

cannot be obtained from inter-node conditions.

As an example of the minimal antecedent set for a
rule, those for the rule in Fig. 1 are given below.

[Ty=m+0t]],
[y =my+[t 11,
[Ly=al j=1,~N1],
[U5=u, Uy =u' t j=1,4,N] .

4.2.3 Inverse action

The inverse of an action can be easily defined,
€.9., The inverse action of Ty =Ty + [t]
is Ty =T ~-[t1. '
The inverse action for an antecedent set is obtai
by connecting all the inverse actions in the s

ned
et .

The following are the inverse actions corresponding

to the antecedent sets shown in 4.2.2.
Ty = Ty - [t} ,

Ty =15 - [&'], |

(Ij7=a) & -+ & (Iyr=a) ,
(Up7=u)&(U7=u)& - &
(LN"= u')

4.3 Modification of grammar

Amor_xg the minimal antecedent sets for each rule, the
optimal one is selected statistically using a corpus
of text. Then, the grammatical rules are modified

as follow. When the action part of a rule

Rl

includes a member action of the antecedent set for a
rule R, the action to activate R is added to the
action part of R'. Idikewise, when the action part
‘'of a rule R" includes the inverse action of the

antecedent set for a rule R, the action
deactivate R is added to the action part of R".

We should add a comment on the status of a rule.

to

In

principle, a status is defined for each node.

However, when the antecedent set is related to
node variable other than the key node variable,
an attribute relating to scme inter-node actions,
status common to all the nodes is defined.

4.4 Improved grammar executor

a
or
a

An dmproved gramar executor which executes the
modified grammar is illustrated in Fig. 6. A status
table indicating the status of rules is introduced.
ft is updated by both the initializer and the
transformer, and looked up by the controller. ‘The
initializer activates the wules in which the
antecedent set includes an action in the process to
create the initial object data. The transformer
performs rule activating/deactivating actions
included in the modified grammar. ‘The controller
Joocks up the status table when it selects the rule
to apply. While the control is transferred to the
pattern matcher if +the rule is active, the
controller immediately selects the next rule to
apply if the rule is inactive.

The improvement of processing efficiency by the
proposed method is discussed from two points of
view: the probability that rules are active and the
overhead caused by dynamic rule activation.

(1) Probability that rules are active,

The probability that a rule succeeds in pattern
matching is a lower Limit for the probability that
the rule is activated. However, the lower Ilimit
cannot be realized, because a rule is activated with
prerequisite actions for its condition being
satisfied. “The state ‘active' implies Jjust the
possibility that the rule will be applied
successfully. The gap between the probabilities of
‘active' and ‘'success' varies with rules. Fig., 7
illustrates two extreme cases. Fig. 7(a) is a case
in which there is a minimal antecedent set for which
occurrence probability is near the probability of
the condition being satisfied. Fig. 7(b) is a case
in which there is no such minimal antecedent set.
As a matter of fact, (a) is a usual case and (b) is
a rare case. A rule usually has a key condition
featuring its relevant linguistic phenomenon, from
which an effective antecedent set can be obtained.
Therefore, the probability of 'active' is reduced to
the same order as the probability of 'success'.

(2) Overhead of dynamic rule activation.

No additional conditions are introduced to the
condition parts of rules to judge if an action to
activate/deactivate a rule should be performed.

Working Memory

Initializer

Grammar

o

<

Control

ller

Parameter

o

Modified Rule

" I Status Updatre]
Contro
I Status Lookwupj
i Pattern <
[ey

" y Condition
Mat.cher 0 0 20 s s s 5 s ot e s s
| Action
et oot s G
Rule Status Transformer <& Rule Activation
- A Rule De ivati
Table le Status Update ' <) activa ,,l,on,,

|

Fig. 6 Improved grammar executor

828

C

active

(a) Usual case

(b) Rare case
A, B, C : minimal antecedent set

Yiy. 7 Probability of 'active' vs.
Probability of ‘success’

Although rather a large number of actions to
activate/deactivate a rule are added to action parts
of rules, the action parts are infrequently
performed. Moreover, although looking up the status
of rules occurs frequently, its load is far smaller
than that of pattern matching, which would be
repeated if the dynamic rule activation were not
used. Uherefore, the overhead caused by dynamic
rule activation can be neglected.

Ancther effect of the proposed method is that it can
be applied to on-demand loading of rules when the
memory capacity for a grammar is limited. That is,
while rules with a large probability of 'active' are
made resident on the main memory, the other rules
are loaded when they are to be applied. Thus the
frequency of loading rules is minimized.

6. Conclusion

An efficient execution method for rule based machine
translation systems has been developed. 'The essence
of the method is as follows. First, a gramar is
pre-analyzed to determine an antecedent set for each
rule. The antecedent set for a rule is a set of
actions such that performing an action in it causes
the possibility of the condition of the rule being
satisfied, and the condition of the rule is
unsatisfied if any action in it is not performed.
At execution time, a rule is activated only when an
action in the antecedent set for the rule is
performed., ‘The rule application is restricted to
active rules. The probability of a rule being
active is reduced to near the occurrence probability
of its relevant linguistic phencmenon. Thus most
pattern matching of unfruitful rules is avoided.

Acknowledgement: I would like to acknowledge Dr.
Jun Kawasaki, Mr. Nobuyoshi Dcmen, Mr. Koichiro
Ishihara and Dr. Tan Watanabe for their wvaluable
advice and constant encouragement.

References

[1] Newell A. (1973). Production Systems: Models of
Control Structures, in Visual Information Processing
(ed. W. Chase; Academic Press).

[2] Boitet C., et al. (1982). Implementation and
Conversational Fnvironment of ARIANE 78.4, Proc.
COLINGS2.

[3] Nakamura J., et al. (1984). GCrammar Writing
System (GRADE) of Mu-Machine Translation Project and
its Characteristics, Proc. COLING84.

[4] Kaji H. (1987). HICATS/JE : A
Japanese—to~English Machine Translation System Based
on Semantics, Machine Translation Summit.

[5] Forgy C.L. (1982). Rete : A Fast Algorithm for
the Many Pattern / Many Object Pattern Match
Problem, Artificial Intelligence, Vol. 19.

829

