
Understanding of Stories for Animation

Hideo SHIMAZU *

Artificial Intelligence Laboratory,
3531 Boelter Hall, University of Califomia,

Los Angeles, CA 90024, USA

ABSTRACT

This paper presents the story understanding mechanism for creating

computer animation scenarios. The story understanding mechanism

reads a natural language story and creates its scenario for realistic

graphic animations. This paper presents three types of hidden

actions and relations of actions that must be discovered for realistic

animations of stories but which are not explicitly described in the

stories. They are: 1) causality check among actions; 2) interpolation

of a continuous action beyond a sentence; 3) interpolation of hidden

actions between neighboring sentences. This paper also describes

the inference mechanism which recognizes the need for interpolation

of these hidden actions. Multiple TMS is introduced in the mechan-

ism. The knowledge base is action-oriented, hence it is independent

of individual stories' domains.

1. In t roduct ion

Recently computer animations have been widely used in many

fields like conventional CAD, commercial films and movies. For

these kinds of applications, high-level languages are now provided

[Reynolds 82][Zeltzer 82]. However, because these languages are

programming languages and am hard to use for untrained personnel,

it is desirable to develop an easy-to-use computer animation system

to encourage more wide-spread use of computer animation.

The authors have been developing Story Driven Animation

(SDA) [Takashima et al. 87] which automatically generates the ani-

mation for a given story written in Japanese taken from a children's

story book.

SDA consists o f three modules: 1) story understanding; 2)

stage directing; 3) action generating. The first module reads a story

written in Japanese and makes an action-based scenario. The second

module receives the scenario and modifies it for stage setting. The

last module generates animations on a graphics display according to

* The author is a member of NEC Corporation, and is now staying at the
Artificial Intelligence Laboratory, UCLA during this academic year.

620

Yosuke TAKASHIMA
Masahiro TOMONO

C&C Information Technology Research Laboratories
NEC Corporation

4-1-1 Miyazaki Miyamae-ku Kawasaki
Kanagawa 213 Japan

the precisely specified scenario given by the stage directing module.

SDA differs from previous natural language processing sys-

tems, such as summarizing [Young & Hayes 85][Lytinen & Gersh-

man 86], depth understanding of stories [Dyer 83]° question-

answering [Wilensky 82][Harris 84] and story gunerating[Schank &

Riesbeck 81], in that it interpolates hidden actions among sentences

that must be discovered for realistic computer animations but are not

explicitly described in the story itself.

Since SDA can accept curtailed expressions in input stories,

story writers do not have to describe all the acts explicitly to get the

desired graphic animation. Consider the following sentences in "The

Hare and The Tortoise" in Aesop's fables:

(1), The hare ran.
(2). The hare looked back.
(3). The hare said, "the tortoise can never catch up with me".
(4). The hare lay down on the grass.

("The Hare and The Tor~ise", Aesop's fable)

It is never thought that the hare would lie down while running with

his face looking tn the reverse direction. If he were to do so, he

would do a dive and his neck would be brokenl Any person can con-

jure up an accurate image of the hate's actions. Naturally lacking

facts between sentences arc interpolated using the human reader's

common-sense. We imagine that the hare stopped between (1) and

(2), and looked forward between (3) and (4). However, if an anima-

tion producing program does not have this common-sense, it pro-

duces strange graphic animations when these sentences are not more

explicitly described. The above scenario is merely one example of

SDA's ability to interpolate curtailed expressions of action. In order

for a story understanding program to laccurately accept input sen-

tenees, it is imperative that such a common sense be built into the

program.

SDA story understanding mechanism was constructed based on

action-oriented knowledge. Knowledge related to actors' actions is

independent of the content of individual stories, and is common to

everyone since actors' movements are constrained by physical limi-

tations of a human body. Although this story understanding

approach is superficial, it allows for an extensive domain.

This kind of research which strictly infers occurrences of

actions among natural language sentences has not been done yet. In

this paper wo present various types of hidden actions among sen-

tences and the inference mechanism to identify and interpolate them.

The whole SDA system is roughly described in [Takashima et al.

87].

2. Types of Hidden Act ions to be Interpolated

There a~e three types of hidden actions and relations of actions

to be interpolated among sentences. The above example shows a

type of hidden actions to be interpolated. It can be stated as follows:

, Continuity of different actions between sentences: When an

action in a sentence is not consecutive to any action in the pre-

vious ~ntence, bridging action(s) has/have to been found and

added into the original text. The action "stop" between "run" at

(1) and "look hack" at (2) and the action "look forward"

between "look back" at (2) and "lie down" at (4) are examples.

SDA interpolates discriminately; if in the same context it must

interpolate, if not in the same context, then it must not try to

interpolate (e.g. "The frog lay down. The next morning, the

frog went out.").

The following example includes the other two types of interpolations

in it. The example is also from "The Hare and The Tortoise".

(5). The tortoise ran.

(6). The tortoise ran as kicking up a cloud of dust.

(7). The tort(rise sweat while running.

(8). The tort(~ise stopped at the top of the mountain.

The proper interpretation of these sequences may be the followings:

The tortoLve starts running at (5). The tortoise runs while

kicking up a cloud of dust at (6). Here, the action of

"kick-up-a-cloud-of-dust" must be caused by the action of

"run". The tortoise sweats while running and kicking up a

cloud oJ dust at (7), even though "klck-up-a-cloud-of-dust"

is not specOfed in (7). Here, the action of "sweat" must be

caused by the action "run", for the tortoise is not breaking

into a coM sweat. The tortoise stops running at (8). At this

time the tortoise also stops "kick-up-a-cloud-of-dust"-ing

and "sweat"-ing because these two actions were caused by

"run".

The other two types of hidden actions are:

• Causality among actions: When an action appears in a sen-

tence, it must be verified whether it is independent of any other

action or caused by other actions. If an action is caused by

another action, it also ceases when its dependent action stops,

(e.g. the relationship between "kick-up-a-cloud-of-dust" to

"ran" and "sweat" to "run"). This verification is done between

neighboring sentences whose agent is the same.

Continuity of an action beyond a sentence: An action is

assumed to continue until it is explicitly ordered to stop if this

action is a continuous type. Inference of the continuity of the

action "kick-up-a-eloud-of-dnst" from (6) to (7) is an example.

3. SDA Story Understanding Mechanism

In order to accurately understand an input story, SDA performs

four distinct operations:

[1] Extracting meanings of a sentence: Each sentence is parsed, its

meanings extracted, and the meanings put into an independent

block called world. Because our target story has a simple form,

the sequence of its sentences becomes a chronological sequence.

Each sentence in a story includes several assertions. An assertion

extracted from a sentence may not be true in context with time of

its succeeding sentence. Therefore, an individual worm is

assigned to each sentence in order to store assertions which

represent the situation inherent in a sentence. When a new world

is created, it is linked to the sequence of worlds which is linked

with each individual actors; the hare, the tortoise etc. Each worm

is compared with its previous world, and its assertions are

added/deleted/modified in the following processes, [3] and [4].

[2] Causality check among actions: When an action assertion is put

into a world, its causal relationship to other actions is checked. If

it is dependent on another action, the causality link is connected

between the action and its independent action.

[3] Interpolation of hidden actions between neighboring sen-

tences: Each action of the present sentence is also checked for its

continuity to actions in the previous world. If some action is hid-

den between the previous world and this sentence, it is identified

and added into the present world.

[4] Interpolation of a continuous action beyond a sentence: When

there exist actions ~vhich are not mentioned in the present sentence

but should continue from the previous sentence to the present sen-

tence, they are added into the present world.

621

Implementation

¢.1 Implementing worm

Each world consists of two stages: present-state and post-state.

Present-state, the upper part of a world, holds assertions which

represent the state of the moment when the sentence is uttered.

Post-state, the lower part of a world, holds assertions which

represent the state just after the time when the sentence is uttered.

For example, the world of (5) has the assertion "the tortoise runs" in

its present-state, the assertion "the-act-of the tortoise is run" in its

post-state (see Figure 1).

the tortoise runs.

the-act-of the tortoise
is run.

present-state

post-state

Figure 1 World of (5)

This means that the tortoise is running during the sentence (5) and

afterwards continues to run. Each post-state of each world is

independently monitored by Truth Maintenance System (TMS)

[Doyle 79]. This structure is similar to Viewpoints in ART [Clayton

85]. TMS works well in accomplishing the continuity chock of an

action beyond a sentence.

4.2 Causality Check Among Actions"

The dictionary contains action causalities of verbs. When a

verb or a verb phrase is processed, the SDA parser consults the dic-

tionary. The following is a part of the dictionary for the verb phrase,

"kick-up-a-eloud-of-dust":

kick-up-a-clond-o f-dnst
if the-act-of *actor is tun
then ;;; *actor is a variable, the agent of this action

present-state:
*actor kick-up-a.eloud-of-dust.

post-state:
true(the-act-of *actor is kick-up-a-clond-of-dusO

supported-by(
in(the assertion-id of "true(the-act-of*actor is run)")
outO)

else
present-state:

*actor kick.up-a-eloud-of-dust.
post-state:

true(the-act-of ~actor is kick-up-a-cloud-of-dus0 as-premise

If the tortoise kicks up a cloud of dust when it is running, the action

of "kick-up-a-cloud-of.dnst" is assumed to be caused by the "run"

~ction. Therefore, the corresponding assertion of tbe action "kick-

,i~-a-cloud-of-dnst" is supported by tim "run" assertion. If the tor-

,oise is not running at the time. the assertion of "kick-up-a-cloud-of-

dust" is justified as a premise, whic h means that the tortoise is kick-

ing up a cloud of dust while standing at a point, This causality

between different actions is used as a dependency directed link for

TMS.

4.3 Interpolation of Hidden Actions Between Sentences

Interpolation of bidden actions is accomplished by using goal

directed search. When a sentence is processed and its assertions arc

extracted, the system picks up each assertion, and then makes an

inspection to determine whether the action of each assertion is con-

tinuous from the state of the previous world or not. The continuity is

inspected by checking whether the pre-condition of the action is

satisfied in the post-state of the previous world or not. Each verb is

specified its pre-conditton and post-condition in the dictionary.

Pre-condition is the constraint to be satisfied just before the act of a

verb. Post-conditlon is the state to be achieved just after the act of a

verb. For example, the dictionary indicates that in order to "stop",

the agent must be going on foot (pre-condition), and after the agent

"stop"s, it must be standing (post-condition).

If an action in the present sentence is continuous from the

post-state of the previous world, it is simply put into the present

world. If it is not continuous, the system searches for a sequence of

actions which bridge it (goal point) and the post-state of the previous

world (starting points) by referring the pre-condition/post-condition

of verbs in the dictionary. This search process is similar to the exe-

cution of STRIPS [Nilsson 80]. If a bridging sequence of actions is

found, the abridged actions in the sequence arc added into the origi-

nal assertion. Then, the modified assertion is put into the world.

The sentence (2) "the hare looked back" is modified to "the

hare stopped and looked hack" in order to satisfy the pre-condition

of the verb phrase "looked back". The related pieces of the diction-

ary are shown below.

look-back
pre-eondition:

(
the-state-of the agent is not in the reverse direction
OR
nothing is mentioned regarding the direction
)
AND
the-state-of the agent is standing.

post-condition:
the-state-of the agent is in the reverse direction.

stop
pre-condition:

tbe-act-of the agent is go-on-foot.
post-condition:

the-state-of the agent is standing.

622

4.4 Interpolation of a Continuous Action Beyond a Sentence

Interpolation of a continuous action beyond a sentence is

accomplist~ d based on the assumption that actors' actions are

assumed to continue until they are explicitly ordered to stop. This

assumption is the same as the persistence problem in [Shoham 88].

After a sentence ts analyzed and its meanings are stored into

both the present-state and the post-state of the present worM, all the

assertions in the post-state of the previous world are copied into the

post-state of the present world. Then, the post-state of the present

world is choked its consistency by TMS. This ebeck prevents the

over-copying of continuous actions from the previous worM. TMS

works acemding to the following monitoring rules:

Duplication Elimination Rule: If there exist two or more same

assertions in the present world, the copied one from the previ-

ous world is diminated.

• Exclusive Action Elimination Rule: If there exist exclusive

assertions, the one copied from the previous world is elim-

inated. The exclusion relations of actions and states are also

defined in the dictionary. The exclusion relations are like the

followings:

exclusive(act-of ran, state-of standing)

exclusive(act-of run , act-of walk).

TMS compares each of the assertions in a world with each

(6). The tortoise ran as kicking up a elond of dust,

Vtl~ tortoise'runs. [
Itbe tortoise kick-up-a-cloud-of- I
1 . 0 . s - I

f] the-act-of the tortoise is run. [
i the act of the tortoise's kick-up/ /
L.R-cloud-" .I -of-dnst. $'

/ (7). The tortoise sweat while running.

the tortoise sweats. I
copy ~tl~ wrtoise kick-up-a-cloud-of- I ' ~

the to ise ts
\ I ~te-aet-of the tortoise is sweat. I created

I the-act-of the tortoise is klck-up- I~,/
/ Lg-cloud-of-du 7 I/

[(8). The tortoise stopped at the top of the mountain.

copy I the tortoise stops at the top of the I
t ~ ~0untatrL :-----I

| t~-state-of the tortoise is stand- I
\ l ing . l \ , r/~-e- /
- - ~ / . o~.. ~ =, .,- 2~o. ~. L4 ~t, , , . I

Figure 2 Worm of (6), (7) and (g)

other. If two assertions cannot coexist, the one copied from the

previous world is deleted.

Figure 2 shows the worlds corresponding to sentence (6), (7) and (8).

Here, the world of(6) is already troth-maintained. After the sentence

(7) is analyzed and its meanings are stored into the world of (7), the

two assertions In the post-state of (6) are copied into the post-state of

(7). TMS then deletes the duplicated assertion, "the-act-of the tor-

toise is run". The assertion "the-act-of the tortoise is kick-up-a-

cloud-of-dust" remains in the post-state of (7).

Generally an assertion in a post-state corresponds to an asser-

tion which presents the causal action in a present-state of the same

world. For example, "the-act-of the tortoise is ran" is corresponding

to "the tortoise runs". When an assertion is added into the post-state

of the present world by copied from the previous world and has no

correspondence in the present-state of the present world, its

corresponding assertion is created and put into the present-state of

the present world by the system. Therefore, in this situation the

corresponding assertion, "The tortoise kick-up-a-cloud-of-dusts" is

created and added into the present-state of (7). The present-state of

world of (7) shows that the tortoise is running while sweating and

kicking up a cloud of dust (present-state), and afterwards continues

to mn while sweating and kicking up a cloud of dust (post-state).

After the meanings of the sentence (8) are stored into the worm

of (8), three assertions are copied from the world of (7) to the world

of (8). Next, because "act-of run" and "state-of standing" are

exclusive, the assertion "the-act-of the tortoise is run" is deleted by

TMS according to the exclusive action elimination rule. Then, two

other assertions in the post-state of (8) which were supported by the

deleted assertions are subsequently eliminated according to the

dependency-directed backtracking mechanism of TMS. Now, the

world of (8) has only one assertion, "the-state-of the tortoise is stand-

ing", in the post-state of (8), which means the tortoise is standing

and stopped kicking up a cloud of dust and sweating.

After all the story is processed and represented as chronologi-

eal sequences of worlds, assertions in thi~ present-state of each worm

are gathered and transformed into a scenario for the stage directing

module.

5. System Configuration

Figure 3 indicates a high level view of the whole story under-

standing system, Each sentence is processed individually and its

assertions are extracted by SENTENCE-PARSER. The sentence

grammar in SENTENCE-PARSER is described using Definite

623

Clause Grammar in Prolog [Pereira & Warren 80]. The assertions

are then put into the MORE-MEANING-EXTRACTOR which is

based on forward-reasoning. Here as many assertions as possible are

extracted from the inputs. For example, "If the weather is fine and it

is night, then the background for the drama stage is colored in black

with lots of stars", etc. The extracted assertions are put into a

separate worm for each sentence. Each world is monitored by TMS.

Path #1 between neighboring worlds indicates the interpolation of a

continuous action beyond a sentence. Path #2 indicates goal

directed search to discover the path of transition between different

actions. The whole story understanding system is implemented using

Prolog on vax111780.

6. C o n c l u s i o n

This paper presents the story understanding mechanism for

creating computer animation scenarios. The story understanding

mechanism reads a natural language story and creates its scenario for

realistic graphic animations. This paper presents three types of hid-

den actions and relations of actions that must be discovered for real-

istic animations of stories but which are not explicitly described in

the stories, This paper also describes the inference mechanism

which recognizes the need for interpolation of these hidden actions

and relations. The transition in a story is reflected by chronological

sequences of multiple worlds, each of which is monitored by TMS.

A world holds extracted assertions representing the situation inherent

in a sentence. Each world is compared with its neighboring worms,

and assertions in the worm are added/deleted/modified in the follow-

ing three processes:

• Causality check among actions.

• Interpolation of a continuous action beyond a sentence.

• Interpolation of hidden actions between neighboring sentences.

The knowledge base is aedon-oriented, hence it is independent of

individual stories' domains. Currently, the story understanding

mechanism works well for several fables.

Acknowledgements: The authors would like to express their appreci-

a t ion for continuous encouragement from Kunihiko Niwa and

Takashi Arasekt. This research could not have been started without

the encouragement of Kazumoto linuma. Stephen Berkov provided

many useful comments.

Chronological sequence

sentence-I
sentence- i +1

SENTENCE I
PARSER(DCG)

sentence-i+2

I MORE-MEAN ING-ICXTRkK TOR
(Porward-Reasoning)

WORLD- i ,~ WORLD- i+ l .~ WORiD- i+2

Figure 3 Whole Story Understanding System

624

~ eferences

[Clayton 851 B.D. Clayton, "ART Programming Tutorial, A First

Look at Viewpoints", Inference, 1985.

[Doyle 79] L Doyle, "A Glimpse of Troth Maintenance", Artificial

Intelligence: An MIT Perspective, The MIT Press.

[Dyer 83] M. G. Dyer, "In-Depth Understanding", The MIT press;

1983.

[][lards 84] L.R. Harris, "Experience with INTELLECT: Artificial

Intelligence Technology Transfer", THE AI Magazine summer 1984.

[Lytinen & Gershman 86] S. Lytinen & A. Gershraan, "ATRANS:

Automatic Processing of Money Transfer Messages", Proceedings

AAAI-86, 1986.

[Nilsson 80] N. Nilsson, Principles of Artificial Intelligence", Tioga.

[Percira & Warren 80] F. Pereira & D. Warren, "Definite Clause

Grammar for Language Analysis -- A Survey of the Formalism and a

Comparison with Augmented Transition Networks", Artificial Intel-

ligence, 13, 1980.

[Reynolds 82] C. Reynolds, "Computer Animation with Scripts and

Actors", ACM Computer Graphics, vo1.16, no.13, July, 1982.

[Schank & Riesbeck 81] R. Schank & C.K. Riesbeck, "Inside Com-

puter Undelstanding", Hillsdale, New Jersey: Lawrence Eflbaum

Associates.

[Shoham 88] Y. Shoham, "Reasoning About Change", The MIT

Press.

[Takashima et al. 87] Y. Takashima, H. Shimazu and M. Tomono,

"Story Driven Animation", Proc. ACM SIGCFtl and Graphics Inter-

face '87 Joint Conference, 1987.

[Wilensky 82] R. Wilensky, "Talking to UNIX in English: An Over-

view of an Onqine Consultant", Report No. UCB/CSD 82/104

internal ~poct of UCB, 1982.

[Young & Hayes 85] S.R. Young & P.J. Hayes, "Automatic

Classification and Summarization of Banking Telexes", the 2nd conf,

on Artificial Intelligence Applications, Dec. 1985.

[Zcltzer 82] D. Zcltzer, "Motor Control Techniques for Figure Ani-

mation", IEEE Computer Graphics and Applications, Vol. 2, No, 9,

November, 1982.

625

