
Parsing Incomplete Sentences

Bernard LANG
INRIA

B.P. 105, 78153 Le Chesnay, France
lang@inria.inria, fr

A b s t r a c t

An efficient context-free parsing algorithm is presented
that can parse sentences with unknown parts of unknown
length. It pa'oduees in finite form all possible parses (of-
ten infinite in number) that could account for the missing
parts. The algorithm is a variation oa the construction
due to Earley. ltowever, its presentation is such that it
can readily be adapted to any chart parsing schema (top-
down, bottom-up, etc...).

1 I n t r o d u c t i o n

It is often necessary in practical situations to a t tempt parsing an
incorrect or incomplete input. This may take many forms: e.g.
missing or spurious words, misspelled or misunderstood or oth-
erwise unknown words [28], missing or unidentified word bound-
aries [22,27]. Specific techniques may be developed to deal with
these situations according to the requirements of the application
arcs (e.g. n~tural language processing, progrmrmfing language
parsing, tea:i-time or off-line processing).

The con~lext-fi.ee (CF) parsing of a sentence with unknown
words hss been considered by other authors [28]. Very simply,
an unknown word may be considered as a "special multi-part-of-
speech word whose pa'ct of speech can be anything". This multi-
psi't-of-speech word need not be introduced in the CF grammar
of the lang0age, but only implicitly in the construction of its
parser. Thi;~ works very well with Earley-like (chart) parsers
tha t can simulate all possible parsing paths tha t could lead to
a correct parse.

In this paper, we deal with the more complex problem of
parsing a ser*.tence for wtfich one or several subparts of unknown
length are roissing. Again we can use a chart parser to try all
possible parses on all possible inputs. However the fact tha t the
length of th~ 1*fissing subsequence is unknown raises an addi-
tional difficulty. Many published chart parsers [24,28,23,21] are
constructed ~,ith the assumption tha t tim CF grammar of the
language ho~', no cyclic rules. Tlfis hypothesis is reasonable for
the syntax ol natural (or programming) languages. However the
resulting simplification of the pm'ser construction does not allow
its extension to parsing sentences with unknown subsequenees
of words.

If the length (in words) of the missing subsequence were
known, we could simply replace it with as many unknown words,
a problem we know how to handle. When this length is not
known, the tdgorithm has to simulate the parsing of an arbi-
t rary numbe~: of words, and thus may have to go several t i m ~
tht'ough reduction by the same rules of the grammar 1 without
ever' touchinl; the stack present before scanning the unknown
t~equenee, aml without reading the input beyond that sequence.
If we consider the unknown sequence as a special input word,
wc are in a si tuation that is analogous to tha t created by cyclic
grammars, i.~. g~amrnars where a nonterminal may derive onto

IThis grammar oriented view of the computation of the autonmton is
only meant as a support for intuition.

itself without producing any terminal. This explains why tech-
niques limited to non-cyclic grammars cannot deal with this
problem.

It may be noted tha t the problem is different fi'om that of
parsing in a word lattice [22,27] since all possible path in the
lattice have a known bounded length, even when the lattice
contains separated unknown words, tIowever the technique pre-
sented here combines well with word lattice parsing.

The ability to parse unknown subsequences may be ~seful
to parse badly t ransmit ted sentences, and sentences that arc
interrupted (e.g. in a discussion) or otherwise left unfinished
(e.g. because the rest may be inferred from the context). It
may also be used in programming languages: for example the
programming language SETL [9] allows some statements to be
left unfinished in some contexts.

The next section contains an introduction to all-paths pars-
ing. In section 3 we give a more detailed account of our basic
algorithm and point at the features that allow the handling
of cyclic grammars. Section 4 contains the modifications that
make this algorltlml capable of parsing incomplete sentences.
The fifll algorithm is given in appendix C, while two examples
are given in appendices A and B.

2 All-Paths Parsing

Since Earley's first paper [10], many adaptations or improve-
ments of his ~flgorithm have been published [6,5,24,28]. They
are usually variations following some chart parsing schema [16].
In a previous paper [18], the author a t tempted to unify all these
results by proposing an Earley-like construction for all-paths in-
terpretat ion of (non-deterministic) Push-Down-Transducers
(PDT). The idea was that left-to-right parsing schemata may
usually be expressed as a construction technique for building a
recognizing Push-Down-Automaton (PDA) from the CF gram-
mar of the language. This is quite apparent when comparing
the PDA constructions in [12] to the ctmrt sche,nata of [16]
which are now a widely accepted reference. Thns a construc-
tion proposed for general PDTs is de facto applicable to most
left-to-right parsing schemata, and allows in particular the use
of well established PDT construction teclmiques (e.g. prece-
dence, LL(k), LR(k) [8,14,2]) for general CF parsing.

In this earlier paper, our basic algorithm is proved correct,
and its complexity is shown to be O(n3), i.e. as good as the
best general parsing algorithms 2. As is usual with Earley's
construction 3, the theoretical complexity bound is rarely at-
tained, and the algorithm behaves linearly most of the time.
Further optimizations are proposed in [18] that improve this
behavior.

Most published variants of Earley's algorithm, including Ear-
ley's own, may be viewed as (a sometimes weaker form of) our
construction applied to some specific PDA or PDT. This is the

~Theoretically faster algorithms [29,7] can achieve O(n ~'4~6) but with an
unacceptable constant fi~ctor. Note also that we do not require the grammar
to be in Chomsky Normal Form.

SAnd unlike tabular algorithms such as Cocke-Younger-Kasami's [13,15,
30,11].

365

explicit strategy of Tomita [28] in the special case of LALR(1)
PDT construction technique. A notable exception is the very
general approach of Shell [25], though it is very similar to a
Datalog extension [19] of the algorithm presented here.

An essential feature of all-paths parsing algorithms is to be
able to produce all possible parses in a concise form, with as
much sharing as possible of the common subparses. This is
realized in many systems [6,24,28] by producing some kind of
shared-forest which is a representation of all parse-trees with
various sharings of common subparts. In the case of our al-
gorithm, a parse is represented by the sequence of rules to be
used in a left-to-right reduction of the input sentence to the
initial nonterminal of the gramnmr. Sharing between all pos-
sible parses is achieved by producing, instead of an extension-
ally given set of possible parse sequences, a new CF grammar
that generates all possible parse sequences (possibly an infinite
number if the grammar of the input language is cyclic, and if
the parsed sentence is infinitely ambiguous). Wi th appropri-
ate care, it is also possible to read this ontput grammar as a
shared-forest (see appendix A). However its meaningful inter-
pretat ion as a shared-forest is dependent on the parsing schema
(cf. [12,16]) used in constructing the PDT that produces it as
output. Good definition and understanding of shared forests
is essential to properly define and handle the extra processing
needed to disambiguate a sentence, in the usual case when the
ambiguous CF grammar is uscd only as a parsing backbone
[24,26]. The structure of shared forests is discussed in [4].

Before and while following the next section, we suggest tha t
the reader looks at Appendix A which contains a detailed exam-
ple showing an output grammar and the corresponding shared
forest for a slightly ambiguous input sentence.

3 The Basic Algor i thm

A formal definition of the extended algorithm for possibly in-
complete sentences is given in appendix C. The formal aspect
of our presentation of the algorithm is justified by the fact tha t
it allows specialization of the given constructions to specific
parsing schema without loss of the correctness and complex-
ity properties, as well as the specialization of the optimization
techniques (see [18]) established in the general case. The exam-
ples presented later were obtained with an adaptat ion of this
general algorithm to bot tom-up LALR(1) parsers [8].

Our aim is to parse sentences in the language / : (G) gen-

erated by a CF phrase s tructure g rammar G = (V,]E, YI,~)
according to its syntax. The notat ion used is V for the set of
nonterminal,]E for the set of terminals, YI for the rules, and
for the initial nonterminal.

We assume that , by some appropriate parser construction
technique (e.g. [14,8,2,1]) we mechanically produce from the
grammar G a parser for the language £:(G) in the form of a
(possibly non-deterministic) push-down transducer (PDT) TG.
The output of each possible computat ion of the parser is a se-

quence of rules in H a to be used in a left-to-right reduction of
the input sentence (this is obviously equivalent to producing a
parse-tree).

We assume for the PDT 7G a very general formal defini-
t ion tha t can fit most usual PDT construction techniques. It

o o

is defined as an 8-tuple T(~ = (q , E, A, II , 6, q, $, F) where: Q
is the set of states,]E is the set of input word symbols, & is the
set of stack symbols, I I is the set of output symbols (i.e. rules

of G), ~l is the initial state, $ is the initial stack symbol, F
is the set of final states, 6 is a finite set of transitions of the

4Implementations usually denote these rules by their index in the set II.

form: (pAa~--~ q B u) with p, q E q , A,BEZXU{E&},
a E ~ U { e ~) , a n d u E I I * .

Let the PDT be in a configuration p = (p Aa a~ u) where p
is the current state, Aa is the stack contents with h on the top,
ax is the remaining input where the symbol a is the next to be
shifted and x E ~E*, and u is the already produced output. The
application of a transit ion r = (p A a ~ q B v) results in a new
configuration p' = (q Ba x uv) where the terminal symbol a has
been scanned (i.e. shifted), A has been popped and n has been
pushed, and v has been concatenated to the existing output u.
If the terminal symbol a is replaced by e:~ in the transition, no
input symbol is scanned. If A (resp. B) is replaced by e~ then
no stack symbol is popped from (resp. pushed on) the stack.

Our algorithm consists in an Earley-like 5 simulation of the
PDT TG. Using the terminology of [2], the algorithm builds
an item set Si successively for each word symbol xi holding
position i in the input sentence x. An i tem is consti tuted of two
modes of the form (p A i) where p is a PDT state, A is a stack
symbol, and i is the index of an input symbol. The item set
Si contains items of the form ((p A i) (q B j)) . These items are
used as nonterminals of a grammar ~ = (S, II , P, Uf), where 6'
is the set of all items (i.e. the union of St), and the rules in
are constructed together with their left-hand-side i tem by the
algorithm. The initial nonterminal Uf of ~ derives on the last
items produced by a successful computation.

The meaning of an item U = ((p A i) (q n j)) is the following:
• there are computations of the PDT on the given input

sentence that reach a configuration pt where the state is
p, the stack top is A and the last symbol scanned is xi;

• the next stack symbol is then B and, for all these compu-
tations, it was last on top in a configuration p where the
s tate was q and the last symbol scanned was xj;

• the rule sequences in l-I* derivable from U in the grammar
are exactly those sequences output by the above defined

comput~:tions of the PDT between configurations p and p~.

In simpler words, an i tem may be understood as a set of
distinguished fl'agments of the possible PDT computations, tha t
are independent of the initial content of the stack, except for its
top element. I tem structures are used to share these fragments
between all PDT computations tha t can use them, so as to
avoid duplication of work. In the output grammar an item is
a nonterminal that may derive on the outputs produced by the
corresponding computation fragments.

The items may also be read as an encoding of the possible
configurations tha t could be at ta ined by the PDT on the given
input, with sharing of common stack fragments (the same frag-
ment may be reused several times for the same stack in the case
of cyclic grammars, or incomplete sentences). In figure 1 we
represent a partial collection of items. Each i tem is represented
by its two modes as (Kh Kh,) without giving the internal struc-
ture of modes as a triples (PDT-sta te × stack-symbol × input-
index). Each mode Kh actually stands for the triple (pa A h ih).
We have added arrows from the second component of every i tem
(Kh Kh,) to the first component of any item (Ku Kh,,). This
chaining indicates in reverse the order in which the correspond-
ing modes are encountered during a possible computat ion of the
PDT. In particular, the sequence of stack symbols of the first
modes of the items in any such chain is a possible stack con-
tent. Ignoring the output, an i tem (Kh K^,) represent the set
of PDT configurations where the current state is p~,, the next
input symbol to be read has the index ih + 1, and the stack con-
tent is formed of all the stack symbols to be found in the first
mode of all items of any chain of items beginning with (Kh Kh,).
Hence, if the collection of items of figure 1 is produced by a
dynamic programming computation, it means tha t a s tandard
non-deterministic computat ion of the PDT could have reached

5We assume the reader to be familiar with some variation of Earley's
algorithm. Earley's original paper uses the word s~ate instead of i~em.

366

Figure 1: f~ems as shared representations of stack eozffigurations

state I)1, having last read the input symbol of index il, and
having buitt any of tile following stack configurations (among
others), with tim stack top on the left hand side: A1A2As...,
A1A2A3A7 . ., A 1 A 2 A a A f A 6 . . . , A 1 A 2 A s A s A s . . . , A1A2A4AaAbAs . . . ,

A 1 A 2 A 4 A b A s . . . , a n d so on.

The transitions of tlm PDT are interpreted to produce new
items, and new associated rules in 5 ° for the output grammar ~,
as described in appendix C. When the same item is produced
several times, only one copy is kept in the item set, but a new
rule is produced each time. This merging of identical items
accounts for the sharing of identical subeomputations. The cot-
responding rules with stone left-hand-side (i.e. the multiply p r o
dueed item) account for santo of the sharing in the output (of.
appendices A & B). Sharing in the output also appears in the
use of the :,ame item in the right hand side of sevcral different
output rules. This directly results from the non-determinism of
the PDT computation, i.e. the ambiguity of the input sentence.

The critical feature of the algorithm for handling cyclic rules
(i.e. infinite ambiguity) is to be found in the handling of pap-
ping transitions 6. When applying a popping transition r =
(p A eI:i ~ r e~. z) to the item C = ((p A i) (q la j)) the alga-
rithm mu,*t find all items Y = ((q , j) (s D k)), i.e. all items
with first mode (q B j) , produced and build for each of then,
a new itera V = ((r Jl i) (s D k)) together with the output rule
(V - ~ YUz) to be added to 70. The subtle point is that the
Y-items must be all items with (q B j) as first mode, including
those that, when j = i, may be built later in the computation
(e.g. because their existence depends on some other V-item
built in that step).

4 Parsing Incomplete Sentences
In order to handle incomplete sentences, we extend the input
vocabulary with 2 symbols: "?" standing for one unknown word
symbol, and "*" standing for an unknown sequence of input
word symbols ~.

Normally a scanning transition, say (p e a ~ r e z), is ap-
plicable to ~tx~ item, say U = ((p A i) (q B j)) in ,-qi, only when
a == xi+l, wlmre xi+, is the next input symbol to be shifted. It
produces a ,law item in 5:1+1 and a new rule in 7 °, respectively
V ~-: ((rA i + l) (q l l j)) and (V-+ Uz) for the above transition
and item.

When the next input symbol to be shifted is xi+l = ? (i.e. the
unknown input word symbol), then any scanning transition may

6Popping transitions are also the critical place to look at for ensuring
O(n a) worst ease complexity.

7Several adjacent "*" are equivalent to a single one.

be applied as above independently of the input symbol required
by the transition (provided that the transition is applicable with
respect to PDT state and stack symbol).

When the next input symbol to be shifted is x~+l = * (i.e. the
unknowlt input subsequence), then the algorithm proceeds as
for the unknown word, except that the new item V is created in
item set 8~ instead of b'i+l, i.e. V = ((r A i) (q B j)) in the case
of the abow; example. Thus, in the presence of the unknown
symbol subsequence *, scanning transitions may be applied any
number of times to the same computation thread, without shift-
ing the input stream s .

Scanning transitions are also used normally on input sym-
bol xi+2 so as to produce also itetns in ,S~+:, for example the
item ((r A i+2) (q B j)), assuming a =-- xi+~ in the case of the
above example 9. This is how computation proceeds beyond the
l t l l k n o w n s u b s c q u e n e e .

There is a remaining difficulty due to tile fact that it may be
hard to relate a parse sequence of rules in II to the input sen-
tence because of the unknown nmnber of input symbol actually
assumed for all occm'rence of the unknown input subsequence.
We solve this difficulty by including tile input word symbols in
their propel" place in parse sequences, which can thus be read
as postfix polish encodings of tile parse tree. In such a parse
sequence, the symbol * is included a number of times equal to
the assumed length of the corresponding unknown input subse-
qucnce(s) for that parse (cf. appendix B).

A last point concerns simplification of the resulting gram-
mar (~, or equivalently of the corresponding shared-parse-forest.
In practice an unknown subseque, nce may stand for an arbi-
trarily complex sequence of input word symbols, with a c o l
rcspondingly complex pars(" structure. Since the subsequence
is unknown anyway, its hypothetical structures (:all be summa-
rized by the nonterminal symbols that dominate it (thanks to
context-fl'eeness).

Hence the output parse grammar ~ produced by our algo-
rithm may be simplified by replacing with the unknown subse-
quence terminal *, all nonterminals (i.e. items) that deri ,e only
on (occurrences of) this symbol. However, to keep the output
readable, wc usually qualify these * symbols with the appro-
priate nonterminal of tile parsed language grammar G. The
substructures thus eliminated can be retrieved by arbitrary l~e
of the original CF grammar of the parsed language, whici~ thus
complements the simplified output gramma.P °. An example i,~;
given in appendix B.

5 C o n c l u s i o n

We have shown that Earley's construction, when correctly ac-
cepting cyclic grammars, may be used to parse incomplete sen-.
tences. The generality of the construction presented allows its
adaptation to any of the classical parsing schemata [16], and
the use of well established parser construction techniques to
achieve efficiency. The formal setting we have chosen is to our
knowledge the only one that has ever been used to provc the
correctness of the constructed parse forest as well as that of the
recognizer itself. ~¢Ve believe it to be a good framework to study

SNote that in such a situation; a rule X -~ aX of the language grammar
G behaves as if it were a cyclic rule X --* X, since the parsing proceeds
as if it were ignoring terminal symbols. This does not lead to an infinite
computation since ohly a finite number (proportional to i) of distinct items
can be built in 8~.

SWe assume, only for simplicity of exposition, that * is followed by a
normal input word symbol. Note also that 8i+1 is not built.

l°If the input were reduced to the unknown subsequence alone, the output
grammar ~ would be equivalent to the original grammar 151 of the input
language (up to simple transformation). The output parse sequences would
then simplify into a single occurrence of the symbol * qualified by the initial
nonterminal I~ of the]augusta grammar G.

367

the structure of parse forests [4], and to develop optimization
strategies.

Recent extensions of our approach to recursive queries in
Datalog [19] and to Horn clauses [20] are an indication that
these techniques may be applied effectively to more complex
grammatical setting, including unification based grammars and
logic based semantics processing. More generally, dynamic pro-
gramming approaches such as the one presented here should
be a privileged way of dealing with ill-formed input, since the
variety of possible errors is the source of even more combina-
torial problems than the natural ambiguity or non-determinism
already present in many "correct" sentences.

Acknowledgements : Sylvie Billot is currently studying
the implementation technology for the algorithms described here
[3,4]. The examples in appendices A & B were produced with
her prototype implementation. The author gratefully acknowl-
edges her commitment to have this implementation running
in time, as well as numerous discussions with her, V~ronique
Donzeau-Gouge, and Anne-Marie Vercoustre.

R e f e r e n c e s

[1] Aho, A.V.; Sethi, R.; and Ullman, J.D. 1986 Com-
pilers - - Principles, Techniques and Tools. Addison-
Wesley.

[2] Aho, A.V.; and Ullman, J.D. 1972 The Theory of
Parsing, Translation and Compiling. Prentice-Hall,
Englewood Cliffs, New Jersey.

[3] Billot, S. 1986 Analyse Syntaxique Non-D~terministe.
Rapport DEA, Universit~ d'Orl~ans la Source, and
INRIA, France.

[4] Billot, S.; and Lang, B. 1988 The structure of Shared
: Forests in Ambiguous Parsing. In preparation.

[5] Bouckaert, M.; Pirotte, A.; and Snelling, M. 1975 Ef-
ficient Parsing Algorithms for General C0ntext-Free
Grammars. Information Sciences 8(1): 1-26.

[6] Coeke, J.; and Schwartz, J.T. 1970 Programming
Languages and Their Compilers. Courant Institute
of Mathematical Sciences, New York University, New
York.

[7] Coppersmith, D.; and Winograd, S. 1982 On the
Asymptotic Complexity of Matrix Multiplication.
SIAM Journal on Computing, 11(3): 472-492.

[8] DeRemer, F.L. 1971 Simple LR(k) Grammars. Com-
munications ACM 14(7): 453-460.

[9] Donzeau-Gouge, V.; Dubois, C.; Facon, P.; and Jean
F. 1987 Development of a Programming Environment
for SETL. ESEC'87, Proc. of the 1 "t European Soft-
ware Engineering Conference, Strasbourg (France),
pp. 23-34.

[10] Earley, J. 1970 An Efficient Context-Free Parsing Al-
gorithm. Communications ACM 13(2): 94-102.

[l l]¢Graham, S.L.; Harrison, M.A.; and Ruzzo W.L.
1980 An Improved Context-Free Recognizer. ACId
Transactions on Programming Languages arid Sys-
tems 2(3): 415-462.

[12] Griffiths, I.; an(l Petrick, S. 1965 On the Relative Effi-
ciencies of Context-Frec Grammar Recognizers. Com-
munications A CM 8(5): 289-300.

368

[13] Hays, D.G. 1962 Automatic Language-Data Process-
ing. In Computer Applications in the Behavioral Sci-
ences, (H. Borko ed.), Prentice-Hall, pp. 394-423.

[14] Ichbiah, J.D.; and Morse, S.P. 1970 A Technique
for Generating Almost Optimal Floyd-Evans Pro-
ductions for Precedence Granmaars. Communications
A CM 13(8): 501-508.

[15] Kasami, J. 1965 An E~cient Recognition and Syn-
tax Analysis Algorithm for Context-Free Languages.
Report of Univ. of Hawaii, also AFCRL-65-758,
Air Force Cambridge Research Laboratory, Bedford
(Massachusetts), also 1966, University of Illinois Co-
ordinated Science Lab. Report, No. R-257.

[16] Kay, M. 1980 Algorithm Schemata and Data Struc-
tures in Syntactic Processing. Proceedings of the No-
bel Symposium on Text Processing, Gothenburg.

[17] Knuth, D.E. 1965 On the Translation of Languages
from Left to Right. Information and Control, 8: 607-
639.

[18] Long, B. 1974 Deterministic Techniques for Efficient
Non-deterministic Parsers. Proc. of the 2 na Collo-
quium on Automata, Languages and Programming,
J. Loeckx (ed.), S~rbrficken, Springer Lecture Notes
in Computer Science 14: 255-269.
Also: Rapport de Recherche 72, IRIA-Laboria, Roc-
queneour t (France).

[19] Long, B. 1988 Datalog Automata. To appear in Proc.
of the 3 rd Internat. Conf. on Data and Knowledge
Bases, Jerusalem (Israel).

[20] Long, B. 1988 Complete Evaluation of Horn Clauses,
an Automata Theoretic Approach. In preparation.

[21] Li, T.; and Chun, H.W. 1987 A Massively Parallel
Network-Based Natural Language Parsing System.
Proc. of 2 nd Int. Conf. on Computers and Applica-
tions Beijing (Peking), : 401-408.

[22] Nakagawa, S. 1987 Spoken Sentence Recognition by
Time-Synchronous Parsing Algorithm of Context-
Free Grammar'. Proc. ICASSP 87, Dallas (Texas),
Vol. 2 : 829-832.

[23] Phillips, J.D. 1986 A Simple Efficient Parser for
Phrase-Structure Grammars. Quarterly Newsletter
of the Soc. for the Study of Artificial Intelligence
(AISBQ) 59: 14-19.

Pratt, V.R. 1975 LINGOL - - A Progress Report. In
Proceedings Of the 4th IJCAI: 422-428.

Shell, B.A. 1976 Observations on Context Free Pars-
ing. in Statistical Methods in Linguistics: 71-109,
Stockholm (Sweden), Proe. of Internat. Conf. on
Computational Linguistics (COLING-76), Ottawa
(Canna).
Also: Technical Report TR 12-76, Ceat~r f ~ Re-
search in Computing T~mology, A i k ~ Ccmaputa~
tion Laboratory, Harvard Univ., C a m b r ~ (M~-
sachusetts).

Shiebcr, S.M. 1985 Using Restriction to Extend
Parsing Algorithms for Complex-Feature-Based For-
malisms. Proceedings of the 23 ,~ Annual Meeting of
the Association for Computational 15inguistics: 145-
152.

[24]

[25]

[26]

[27] '£omita, M. 1986 An Efficient Word Lattice Pars-
ing Algorithm fox" Continuous Speech Recognition. In
Proceedings of IEEE-17~CE~ASJ I~terua~ional Con-
.fereuee on Aco~tstlc,, Speech, and Signal Processing
(ICASSP 86), Vol. 3: 1.569-1572.

[28] Tomita, M. 1987 An Efficient Augmented-Context-
?roe P~.rsing Algoxithm. Compufational Lingui~tica
l:~(1.2): :~-~6.

[29] geliant, L.G. 1975 GenerM Context-Free Recognition
~n Le~ than Cubic Time. dournM o$ Computer and
3ystcm Sc~en~:ea, 10: 308-315.

[3i~] 'gotmger, D.~. 1967 Recognition and Parsing of
l]ontext-Free Language~ in Time n 3. litformafion and
9outrol, 10(2): 189-208

A 3:im~)ie example wi~,hout unknown
input subsequence

Tbi,'~ first simple exanrple, without unknown input, is intended
to fiunilia~:ize the ' with our r e m : u ~ r constructions.

A.~I C r a x n x n a r o f t h e a n a l y z e d l a n g u a g e

' l ' i~ ia grmr.m~' is taken fl'om [28].
Nonterndna]s are in C~l)ital letters, and termimtls are in

lower ea~u,.. '£1.,e lh'zt r~le i~ treed for initialization and lmn--
dling of tim delinfitez' symbol $. The $ delimiters are implicit
in ~:b,~., r~e~aal input sentenc¢~.

(4) itP : :~ de~ n

(5) ~P : :~ t~P PP

(6) '?P ::~, pr(~p hip
(7) VP ::,~ v ~P

This inpn:; eo~'re~pondu (for example) to the sentence:
*~:i: ea.,] a ~lan wi~h a mirror"

:~ALY~:t:S [IF: (~ v do'~ ~ prep dot zt)

. ,&o i i {71*~t~;'~x~; g r ~ a ~ . ~ i a r i n : e d u c e d b y t h e p a r s e r

The gr~J~o~,~,~r output bg the paxser is given in figure 2. The
initial nol~te~mhLM is ~he left-hand side of the fh'st rule. l~br
re~l~l)i]i~;:~ t, he nonternfi:mfl/items have bemn given computer
g*'xte~n.t(~/names, (ff the f ens at.x, where :c is an integer. At this
point we. have forgotten ~he ixdermd structm'e of the items corre-

• spending ~o ¢~heix' x'o]e in the pa.~sing process. All other symbols
are ternfi~M. Integer terminals correspond to rule numbers of
the input language grammar (-~ (see. section A.1 above), and the
othe," tex'Jx,hm]f~ are symboh~ of the parsed language, i.e. symbols
in ~]. Not, ~. the ~.mbig~ity fi)r nonterminM at;3.

nt0 ::= n t l nt2 n t l 4 ::= det
n t l ::= $ n t l 5 ::= n
at2 ::= at3 nt28 n t l 6 ::= n t l7 6
nt3 ::= nt4 2 n t l 7 ::= n t l8 n t l 9
nt3 ::= nt23 1 ntl8 ::=prep

nt4 ::= nt5 ntl6 ntl9 ::= nt20 4

nt5 : : = nt6 1 nt20 : : = nt21 nt22
at6 ::= at7 nt9 nt21 ::= dot
nt7 ::= at8 3 nt22 ::= n
at8 : := n at23 ::= nt7 nt24
at9 ::= n t l0 7 nt24 ::= nt25 7
n t l0 ::= n t l l nt12 at25 ::= n t l l nt26
n t l l :::= v nt26 ::= nt27 5
n t l2 ::= n t l3 4 nt27 ::= n t l2 n t l6
n t l3 ::= n t l 4 n t l5 nt28 ::= $

Figm'e 2: The output grammar.

0

1 2

4 2 3

i i- J I
11 1 2 ~ , 4 11] 1 9 ~ 4

v I ,,r,,,,, I
1 3 2 0

14 1 5 21 22
d e t rl det n

Figure 3: Graph of the output grammar.

NP
4

v d e t n

pp

6

prep d e t n

Figure 4: The shared parse forest

3 6 9

Ao4 Simplified output grammar

This is a simplified form of the grammar in which some of the
structm'e that makes it readable as a shared-forest has been lost
(though it could be retrieved). However it preserves all sharing
of common subparses. This is the justification for having so
many rules, while only 2 parse sequences may be generated by
that grarmnar.

ntO : : = $ nt3 $

nt8 ::= nt7 nt11 nt12 7 1 nt16 2

nt3 ::= nt7 ntll ntl2 nt16 5 7 1

nt7 : := n 3

nt11 : := v

nt12 ::= det n 4

nt16 ::= prep det n 4 6

The 2 parses of the input, which are defined by this gram-
maI'~ are:

$ n 3 v det n 4 7 1 prep de t n 4 6 2 $
$ n 3 v de t n 4 prep det n 4 6 5 7 1 $

Here again the 2 symbols $ must be read as delimiters.

A.5 P a r s e f o r e s t b u i l t f r o m t h a t g r a m m a r

To explain the construction of the shared forest, we first build
in figure 3 a graph from the grammar of section A.3. Here the
graph is acyclic, but with an incomplete input, it could have
cycles. Each node corresponds to one terminal or nonterminal
of the grammar in section A.3, and is labeled by it. The labels
at the right of small dashes are input grammar rule nmnbers
(eft section A.1). Note the ambiguity of node nt3 represented
by an ellipse joining the two possible parses.

From the graph of figure 3, we can trivially derive tim shared-
forest given in figure 4.

For readability, we present this shared-forest in a simplified
forra. Actually the sons of a node need sometimes to be repre-
sented as a binary Lisp like list, so as to allow proper sharing
of some of the sons. Each node includes a label which is a non-
terminal of the grammar Q, and for each possible derivation
(several in case of ambiguity, e.g. the top node of figure 4) there
is the number of the grammar rule used for that derivation.

The constructions in this section are purely virtual, and
are not actually necessary in an implementation. The data-
structure representing the grammar of section A.3 may be di-
rectly interpreted and used as a shared-forest.

B E x a m p l e w i t h an unknown input
subsequence

B.1 Grammar of the analyzed language

The grammar is the same as in appendix A.

1-3o2 I n p u t s e n t e n c e

This input corresponds (for example) to the sentence:
~... SaW , . . mirror ~

where the first " . . . " are known to be one word, and the last
" . . o" may be any number of words, i.e.:

ANALYSIS OF: (? v * n)

B.3 Output grammar produced b y t h e parser

Note that the nodes that derive on (several) symbol(s) • have
been replaced by * for simplification as indicated at the end of
section 4. This explnins the gaps in the numbering of nonter-
minals.

I

Figure 5: Shared=forest for an incomplete Sentence.

s
2

s PP
2

n NP PP prep

\
NP

5 /'/:
NP prep det

Figure 6: A parse tree extracted from the forest.

ntO ::~ ntl nt2 nt26 ::~ * nt27

ntl ::- $ nt27 ::ffi nt28

nt2 ::ffi nt3 nt38 nt27 ::~ nt32 5

nt3 ::~ nt4 2 nt28 ::~ nt29 4

nt3 ::ffi nt33 i nt28 ::- nt31 3

nt4 ::= nt5 nt25 nt29 ::- * n~30

nt5 ::ffi nt6 2 nt30 ::- n

nt5 ::- nt17 1 nt31 ::- n

nt6 ::- nt5 * nt32 ::- * nt25

nt17 ::- nt18 nt20 nt33 ::u nt18 nt34

nt18 ::- nt19 3 nt34 ::- nt35 7

n t l 9 : : - ? n t 3 5 : : - n t 2 2 n t 3 6

nt20 ::- nt21 7 nt36 ::- nt28

nt21 ::ffi nt22 * nt36 ::- nt37 5

nt22 ::- v n¢37i::- * n¢~5

n¢25 ::- n¢26 6 n¢38i::- $

B.4 Simplified output grammar
ntO ::= $ nt3 $ nt28 ::i ~ * n 4

nt3 ::= nt5 nt25 2 nt28 ::~ n 3

nt3 ::= ntl8 nt22 nt36 7 I nt25 ::~ * nt27 6

n¢5 ::- n¢5 * 2 ntl8 ::~ ? 3

nt5 ::= ntl8 nt22 * 7 I nt22 ::u v

nt27 ::= nt28 nt36 : := nt28

nt27 ::- * nt25 5 nt36 ::~ * nt25 5

370

A parse of the input, chosen in the infinite set of possible
parses defined by this grammar, is the following (see figure 6):

$? 8 v * 7 1 . 2 * * * * a 4 6 5 6 2 $

This itt not ~'eally a complete parse since, due to the first sim-
plification of the grammar, some * symbols s tand for a missing
nontermil~d, i.e. for any parse of a string derived from this
nontermil~d. For example the first • s tand for the nontermlnal
Np and cmdd be replaced by "* 3" or by "* * 4 * * 3 6 5".

B , 5 P a r s e s h a r e d - f o r e s t b u i l t f r o m t h a t g r a m -

I~laF

The outpu~ grammars given above are not optimal with respect
to sharing. Mainly the nonterminals n t27 and s t36 should be
the same (they do generate the same parse fragments). Also
the .terminal n should appear only once. We give in figure 5
a stmred-ibrest corresponding to this grammar, build as in the
p r ev io~ example of appendix A, were we have improved the
shax'ing by merging a t27 mxd s t36 so as to improve readability.
We do not give the intermediate graph representing tha output
grannnar us we did in appendix A.

Our implementation is currently being improved to directly
achieve bet ter sharing.

In figure 6 we give one parse-tree extracted from the shared-
forest of fig~rc 5. i t corresponds to the parse sequence given as
example in scction B.4 above. Note that , like the corresponding
parse sequence, this is not a complete parse tree, since it Ires
nontermir~]s labeling its leaves. A complete parse tree may be
obtained by completing arbitrarily these leaves according to the
original grv.mmar of the language as defined in section A.1.

C T h e a l g o r i t h m

The length of this algorithm is due to its generality. Fewer types
of transitions axe usually needed with specific implementations,
typically only one for scanning transitions.

Coxmneats are prefixed with "- -" .

.... Begin parse with input sequence x o f length n

~ e ~ A : - - Ini t ial ization
: = : o o o o

((q$ O) (q$ 0));

:::: (0 ~ e);

So ::~ { 6 } ;
"p :=: {~};
i :=: O;

step-B: - - I terat ion

- - initial i t em

- - f irs t rule o f output g rammar

- - initialize i tem-se t ,.go

- - rules o f output g rammar
--- input-scanner index is set
- - before the f irs t input symbol

loop - - while i < n (el, exit in s tep-B.$)

i f xi+t # *

~tepoB.l: - - Normal complet ion of i tem-set St
--- with non-scanning transitions.

:l:or nve.vy item U = ((p A i) (q l ~ j)) i n 8/ do
~:or avery noa-scanuing transltion r in $ do

we distinguish five cases, according to r:

~ : -~ stack-flee transit ion
if r = (p e e ~-~ r e z)
t h e n V := ((r A i) (q B j)) ;

& := & u { V } ;
v := v u {(v --, uz)} ;

~ : - - push transi t ion
if r = (p e e ~-) r c z)
then V := ((r C i) (p A i)) ;

s, := & u { v } ;
v := v u ((v --, z)};

case-B. l ,3: - - pop transi t ion
i f r = (p A e ~-+ r e x)
then

~or eve ry i t em Y = ((q B j) (s D k)) i n Sj
do V := ((r n i) (s D k)) ;

& := & u { v) ;
V := P U {(V --+ YCz)};

case-B.l .~: - - pop-push transit ion
i f r = (p A e ~ r C z)
then V := ((r C i) (q B j)) ;

& := & u { V } ;
v := v u {(v -~ Uz)};

case-B.1.~:
- - Other non-scanning transit ions are ignored

else - - ~ .
--- t.e. the next input symbol

- is the unknown subsequenee:

s t e p - B * . h - - Completion of i tem-set Si
- - with non-scanning transitions
- - and with d u m m y scanning transitions.

--- This step is s imilar to step-B. 1,
- - but considering all transit ions as non-scanning.
for every i t em U = ((p A i) (q B j)) in Si do
for every transition v in 6 do

- - we distinguish five eases, according to r:

case-B*.1.~:
i~ ~ = (r , ~ e ~ r e ~) o~- ~ = (p ~ . ~ ~ ~ ' ~)
t hen V := ((r A i) (q 13 j)) ;

,s', := & u { v) ;
p := ~, u {(v - , u ,) } ;

- - and so on as in s t ep .B . l

s tep-B.2: - - Exit for ma in loop
i f i = n t h e n e x i t loop; ~- go to s tep-C
h := i + 1 ;
while X h = * do h := h+l;

step-B.3: - - Init ialization of i tem-set Sh
&:=¢;
for every item u = ((p A i) (q B j)) in e do
for every scanning transition r in ~ do

- - Proceed by eases as in s tep.B.1,
- - but with scanning transitions, and
- - adding the new i tems to Sh instead of St.
--- See for example the fol lowing case:

fase-B.$.2:
i f r = (p e a ~-~ r c z) w i th xh = a or x h = ?
t h e n V := ((r C h) (p A i)) ;

& := & u { v } ;
~, := , , u {(v - , z)};

~ : - - Inerementa t ion of scanning index i
i := h;

end loop;

step-C: - - Terminat ion

f o r eve ry i t em U =: ((f t n) (q $ O)) in an
such t h a t f 6 F do

7 :) := 7 ~ U (Uf --~ U) ; - - Ut is the initial non termina l o f 9 .

- - End of parse

371

