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Abstract

An efficient context-free parsing algorithm is presented
that can parse sentences with unknown parts of unknown
length. It produces in finite form all possible parses (of-
ten infinite in number) that could account for the missing
parts. The algorithm is a variation on the construction
due to Farley. However, its presentation is such that it
can readily be adapted to any chart parsing schema (top-
down, hottom-up, etc...).

1 Introduction

It is often necessary in practical situations to attempt parsing an
incorrect or incomplete input. This may take many forms: e.g.
missing or spurious words, misspelled or misunderstood or oth-
erwise unknown words [28], missing or unidentified word bound-
aries [22,27). Specific techniques may be developed to deal with
these situations according to the requirements of the application
arca (e.g. nntural language processing, programming language
parsing, real-time or off-line processing).

The contest-free (CF) parsing of a sentence with unknown
words has been considered by other authors [28]. Very simply,
an unknown word may be considered as a “special multi-part-of-
apeech word whose part of speech can be anything”. This multi-
part-of-speech word need not be introduced in the CF grammar
of the language, but only implicitly in the construction of its
parser. This works very well with Earley-like (chart) parsers
that can simulate all possible parsing paths that could lead to
a correct parse.

In this paper, we deal with the more complex problem of
parsing a sentence for which one or several subparts of unknown
length are missing. Again we can use a chart parser to try all
possible parses on all possible inputs. However the fact that the
length of the missing subsequence is unknown raises an addi-
tional difficulty. Many published chart parsers (24,28,23,21] are
constructed with the assumption that the CF grammar of the
language has no cyclic rules. This hypothesis is reasonable for
the syntax ol natural (or programming) languages. However the
resulting siraplification of the parser construction does not allow
its extension to parsing sentences with unknown subsequences
of words.

If the length (in words) of the missing subsequence were
known, we could simply replace it with as many unknown words,
8 problem we know how to handle. When this length is not
known, the ulgorithm has to simulate the parsing of an arbi-
trary number of words, and thus may have to go several times
through reduction by the same rules of the grammar! without
ever touching the stack present before scanning the unknown
sequence, arl without reading the input beyond that sequence.
If we consider the unknown sequence as a special input word,
we are in u situation that is analogous to that created by cyclic
grammars, i.c. grammars where a nonterminal may derive onto

Yhis grammar oriented view of the computation of the automaton is
only meant as a support for intuition.

itself without producing any terminal. This explains why tech-
niques limited to non-cyclic grammars cannot deal with this
problem.

It may be noted that the problem is different from that of
parsing in a word lattice (22,27] since all possible path in the
lattice have a known bounded length, cven when the lattice
contains separated unknown words. However the technique pre-
sented here combines well with word lattice parsing,.

The ability to parse unknown subsequences may be useful
to parse badly transmitted sentences, and sentences that are
interrupted (e.z. in a discussion) or otherwise left unfinished
(e.g. because the rest may be inferred from the context). It
may also be used in programming languages: for example the
programming language SETL [9] allows some statements to be
left unfinished in some contexts.

"The next section contains an introduction to all-paths pars-
ing. In section 3 we give a more detailed account of our basic
algorithm and point at the features that allow the handling
of cyclic grammars. Section 4 contains the modifications that
make this algorithm capable of parsing incomplete sentences.
The full algorithm is given in appendix C, while two examples
are given in appendices A and B.

2 All-Paths Parsing

Since Earley’s first paper [10], many adaptations or improve-
ments of his algorithm have been published [6,5,24,28]. They
are usually variations following some chart parsing schema [16].
In a previous paper [18], the author attempted to unify all these
results by proposing an Farley-like construction for all-paths in-
terpretation of (non-deterministic) Push-Down- Transducers
(PDT). The idea was that left-to-right parsing schemata may
usually be expressed as a construction technique for building a
recognizing Push- Down- Automaton (PDA ) from the CF gram-
mar of the language. This is quite apparent when comparing
the PDA constructions in [12] to the chart schemata of [16)
which are now a widely accepted reference. Thus a construc-
tion proposed for general PDTs is de facto applicable to most
left-to-right parsing schemata, and allows in particular the use
of well established PDT construction techniques (e.g. prece-
dence, LL(k), LR(k) [8,14,2]) for general CF parsing.

In this earlier paper, our basic algorithm is proved correct,
and its complexity is shown to be O(n?%), i.e. as good as the
best general parsing algorithms®. As is usual with Earley’s
construction®, the theoretical complexity bound is rarely at-
tained, and the algorithm behaves linearly most of the time.
Further optimizations are proposed in [18] that improve this
behavior.

Most published variants of Earley’s algorithm, including Eaz-
ley’s own, may be viewed as (a sometimes weaker form of } our
construction applied to some specific PDA or PDT. This is the

#Theoretically faster algorithms [29,7] can achieve O(n24%) but with an
unacceptable constant factor. Note also that we do not require the grammar
to be in Chomsky Normal Form.

3And unlike tabular algorithms such as Cocke-Younger-Kasami's [13,15,
30,11].
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explicit strategy of Tomita [28] in the special case of LALR(1)
PDT construction technique. A notable exception is the very
general approach of Sheil [25], though it is very similar to a
Datalog extension [19] of the algorithm presented here.

An essential feature of all-paths parsing algorithms is to be
able to produce all possible parses in a concise form, with as
much sharing as possible of the common subparses. This is
realized in many systems [6,24,28] by producing some kind of
shared-forest which is a representation of all parse-trees with
various sharings of common subparts. In the case of our al-
gorithm, a parse is represented by the sequence of rules to be
used in a left-to-right reduction of the input sentence to the
initial nonterminal of the grammar. Sharing between all pos-
sible parses is achieved by producing, instead of an extension-
ally given set of possible parse sequences, a new CF grammar
that generates all possible parse sequences (possibly an infinite
number if the grammar of the input language is cyclic, and if
the parsed sentence is infinitely ambiguous). With appropri-
ate care, it is also possible to read this output grammar as a
shared-forest (see appendix A). However its meaningful inter-
pretation as a shared-forest is dependent on the parsing schema
(cf. [12,16]) used in constructing the PDT that produces it as
output. Good definition and understanding of shared forests
is essential to properly define and handle the extra processing
needed to disambiguate a sentence, in the usual case when the
ambiguous CF grammar is used only as a parsing backbone
[24,26]. The structure of shared forests is discussed in [4].

Before and while following the next section, we suggest that
the reader looks at Appendix A which contains a detailed exam-
ple showing an output grammar and the corresponding shared
forest for a slightly ambiguous input sentence.

3 The Basic Algorithm

A formal definition of the extended algorithm for possibly in-
complete sentences is given in appendix C. The formal aspect
of our presentation of the algorithm is justified by the fact that
it allows specialization of the given constructions to specific
parsing schema without loss of the correctness and complex-
ity properties, as well as the specialization of the optimization
techniques (see [18]) established in the general case. The exam-
ples presented later were obtained with an adaptation of this
general algorithm to bottom-up LALR(1) parsers [8)].

Our aim is to parse sentences in the language £{G) gen-
erated by a CF phrase structure grammar G = (V,E,II,I?J)
according to its syntax. The notation used is V for the set of
nonterminal, & for the set of terminals, II for the rules, and N
for the initial nonterminal.

We assume that, by some appropriate parser construction
technique (e.g. [14,8,2,1]) we mechanically produce from the
grammar G a parser for the language £(G) in the form of a
(possibly non-deterministic) push-down transducer (PDT) Tg.
The output of each possible computation of the parser is a se-
quence of rules in IT1* to be used in a left-to-right reduction of
the input sentence (this is obviously equivalent to producing a
parse-tree).

We assume for the PDT 7g a very general formal defini-
tion that can fit most usual PDT construction techniques. It
is defined as an 8-tuple 7a¢ = (Q,%, A, I1, 4, q, %,F) where: Q
is the set of states, X is the set of input word symbols, A is the
set of stack symbols, IT is the set of output symbols (i.e. rules

of G), q is the initial state, % is the initial stack symbol, F
is the set of final states, § is a finite set of transitions of the

4Implementations usually denote thesc rules by their index in the set IT.
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form: (pAa - gqBwu) with p,q€Q,
a€ XU {eg}, and u e IT*
Let the PDT be in a configuration p = (p Ax az u) where p
is the current state, A is the stack contents with A on the top,
az is the remaining input where the symbol a is the next to be
shifted and 2z € £*, and v is the already produced output. The
application of a transition 7 = (p A & — q B v) results in a new
configuration p’ = (q Ba  uv) where the terminal symbol a has
been scanned (i.e. shifted), A has been popped and B has been
pushed, and v has been concatenated to the existing output u.
If the terminal symbol a is replaced by ex in the transition, no
input symbol is scanned. If A (resp. B) is replaced by ea then
no stack symbol is popped from (resp. pushed on) the stack.
Our algorithm consists in an Earley-like® simulation of the
PDT 7g. Using the terminology of {2], the algorithm builds
an ttem set S; successively for each word symbol z; holding
position ¢ in the input sentence z. An item is constituted of two
modes of the form (p A ¢) where p is a PDT state, A is a stack
symbol, and ¢ is the index of an input symbol. The item set
§; contains items of the form ((p A7) (@B j)) . These items are
used as nonterminals of a grammar G = (8,11, P, U;), where S
is the set of all items (i.e. the union of &;), and the rules in P
are constructed together with their left-hand-side item by the
algorithm. The initial nonterminal Uy of G derives on the last
items produced by a successful computation.
The meaning of an item U = ((p A4) (q B §)) is the following:
e there are computations of the PDT on the given input
sentence that reach a configuration p’ where the state is
p, the stack top is A and the last symbol scanned is z;

o the next stack symbol is then B and, for all these compu-
tations, it was last on top in a configuration p where the
state was q and the last symbol scanned was z;;

¢ the rule sequences in IT* derivable from U in the grammar
G are exactly those sequences output by the above defined
computations of the PDT between configurations p and p'.

ABEAU {GA},

In simpler words, an item may be understood as o sct of
distinguished fragments of the possible PDT computations, that
are independent of the initial content of the stack, except for its
top element. Item structures are used to share these fragments
between all PDT computations that can use them, so as to
avoid duplication of work. In the output grammar an item is
a nonterminal that may derive on the outputs produced by the
corresponding computation fragments.

The items may also be read as an encoding of the possible
configurations that could be attained by the PDT on the given
input, with sharing of common stack fragments (the same frag-
ment may be reused several times for the same stack in the case
of cyclic grammars, or incomplete sentences). In figure 1 we
represent a partial collection of items. Each item is represented
by its two modes as (K Kp) without giving the internal struc-
ture of modes as a triples (PDT-state x stack-symbol x input-
index). Each mode K, actually stands for the triple (py Ay 24).
We have added arrows from the second component of every item
(K Ep) to the first component of any item (Kj Kj). This
chaining indicates in reverse the order in which the correspond-
ing modes are encountered during a possible computation of the
PDT. In particular, the sequence of stack symbols of the first
modes of the items in any such chain is a possible stack con-
tent. Ignoring the output, an item (K Ki) represent the set
of PDT configurations where the current state is pj, the next
input symbol to be read has the index 73 + 1, and the stack con-
tent is formed of all the stack symbols to be found in the first
mode of all items of any chain of items beginning with (&}, &)
Hence, if the collection of items of figure 1 is produced by a
dynamic programming computation, it means that a standard
non-deterministic computation of the PDT could have reached

5We assume the reader to be familiar with some variation of Eatley’s
algorithm. Earley’s original paper uses the word state instead of ftem.



Figure 1: Items as shared representations of stack configurations

state py, having last read the input symbol of index 4y, and
having built any of the following stack configurations (among
others), with the stack top on the left hand side: AjAzaq. ..,
AjAgAsAy. ., AAgAgAgAG ..., AfAgA3AsAg. .., A1AQA4A3A5Ag . . .,
AjAgAgAsAg. . ., and so on.

The transitions of the PD'T are interpreted to produce new
items, and new associated rules in P for the output grammar G,
as described in appendix C. When the same item is produced
several times, only one copy is kept in the item set, but a new
rule is produced each time. This merging of identical items
accounts for the sharing of identical subcomputations. The cor-
responding rules with same left-hand-side (i.c. the multiply pro-
duced itern) account for some of the sharing in the output (cf.
appendices A & B). Sharing in the output also appears in the
use of the same item in the right hand side of several different
output rules. This directly results from the non-determinism of
the PDT computation, i.e. the ambiguity of the input sentence.

The critical feature of the algorithm for handling cyclic rules
(i.e. infinite ambiguity) is to be found in the handling of pop-
ping transitions®. When applying a popping transition 7 =
(pAes; — reaz) to the item U= ((pAi)(qBj)) the algo-
rithm must find all items Y = ({¢Bj)(sDk)), i.e. all items
with first 1node (qB j), produced and build for each of them
a new itera V = ((x B4) (sD k)) together with the output rule
(V = YUz) to be added to P. The subtle point is that the
Y-items must be all items with (¢ B j) as first mode, including
those that, when j = i, may be built later in the computation
(e.g. because their existence depends on some other V-item
built in that step).

4 Parsing Incomplete Sentences

In order to handle incomplete sentences, we extend the input
vocabulary with 2 symbols: “?” standing for one unknown word
symbol, and “+” standing for an unknown sequence of input
word symbels’,

Normally a scannsng transition, say (pea — rez), is ap-
plicable to nn item, say U = ((p Ai) (¢ B j)) in Si, only when
a = ¥iy1, where iy is the next input symbol to be shifted. It
produces a new item in S;14 and a new rule in P, respectively
V= ((v A1) (B j)) and (V ~+ Uz) for the above transition
and item. .

When the next input symbol to be shifted is ;41 = ? (i.e. the
unknown input word symbol), then any scanning transition may

SPopping transitions are also the critical place to look at for ensuring
O(n®) worst case complexity.

“Several adjacent “4” are equivalent to a single one,

be applied as above independently of the input symbol required
by the transition (provided that the transition is applicable with
respect to PDT state and stack symbol).

When the next input symbol to be shifted is 2443 = * (i.e. the
unknown input subsequence), then the algorithm proceeds as
for the unknown word, except that the new item V is created in
item set &; instead of iy, ie. V= ((rA%)(qBj)) in the case
of the above example. Thus, in the presence of the unknown
symbol subsequence #, scanning transitions may be applied any
number of times to the same computation thread, without shift-
ing the input streams?.

Scanning transitions are also used normally on input sym-
bol #iy2 so as to produce also items in Siya, for example the
item ((rA+2)(qBj)), assuming & = x;, in the case of the
above example®. This is how computation proceeds beyond the
unknown subsequence.

There is a remaining difficulty due to the fact that it may be
hard to relate a parse sequence of rules in II to the input sen-
tence because of the unknown number of input symbol actually
assumed for an occurrence of the unknown input subsequence.
We solve this difficulty by including the input word symbols in
their proper place in parse sequences, which can thus be read
as postfix polish encodings of the parse tree. In such a parse
sequence, the symbol # is included a number of times equal to
the assumed length of the corresponding unknown input subse-
quence(s) for that parse (cf. appendix B).

A last point concerns simplification of the resulting gram-
mar G, or equivalently of the corresponding shared-parse-forest.
In practice an unknown subsequence may stand for an arbi-
trarily complex sequence of input word symbols, with a cor-
respondingly complex parse structure. Since the subsequence
is unknown anyway, its hypothetical structures can be sumrna-
rized by the nonterminal symbols that dominate it (thanks to
context-freeness).

Hence the output parse grammar ¢ produced by owr algo-
rithm may be simplified by replacing with the unknown subse-
quence terminal , all nonterminals (i.e. items) that derive only
on (occurrences of) this symbol. However, to keep the output
readable, we usually qualify these * symbols with the appro-
priate nonterminal of the parsed language grammar G. The
substructures thus eliminated can be retrieved by arbitrary use
of the original CF grammar of the parsed language, which thus
complements the simplified output grammar'®. An cxample is
given in appendix B.

5 Conclusion

We have shown that Earley’s construction, when correctly ac-
cepting eyclic grammars, may be used to parse incomplete sen-
tences. The generality of the construction presented allows its
adaptation to any of the classical parsing schemata [16], and
the use of well established parser construction techniques to
achieve efficiency. The formal setting we have chosen is to our
knowledge the only one that has ever been used to prove the
correctness of the constructed parse forest as well as that of the
recognizer itself. We believe it to be a good framework to study

8Note that in such a situation, a rule X — X of the language grammar
G behaves as if it were a cyclic rule X — X, since the parsing proceeds
as if it were ignoring terminal symbols. This does not lead to an infinite
computation since ohly a finite number {proportional to 7) of distinct items
can be built in &;.

9We assume, only for simplicity of exposition, that * is followed by o
normal input word symbol. Note also that Siyy is not built.

101f the input were reduced to the unknown subsequence alone, the output
grammar G would be equivalent to the original grammar G of the input
language (up to simple transformation). The output parse sequences would
then simplify into a single occurrence of the symbol * qualified by the initial

nonterminal N of the langnage grammar G.



the structure of parse forests [4], and to develop optimization
strategies.

Recent extensions of our approach to recursive queries in
Datalog [19] and to Horn clauses [20] are an indication that
these techniques may be applied effectively to more complex
grammatical setting, including unification based grammars and
logic based semantics processing. More generally, dynamic pro-
gramming approaches such as the one presented here should

be a privileged way of dealing with ill-formed input, since the
variety of possible errors is the source of even more combina-
torial problems than the natural ambiguity or non-determinism
already present in many “correct” sentences.
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Figure 2: The output grammar.

A Simple example without unknown
input subsequence

This first simple exeraple, without unknown input, is intended
to familiarize the reader with our constructions.

Al Graommar of the analyzed language

This gramanay is taken from [28).

Nouteiminals are in capital letters, and terminals are in
lower case. The fivst vole i vsed for initinlization and han-
dling of the delimiter symbol §. The § delimiters are implicit
in the uctual input sentence.  °

(0) BAK 1:= & s ¢
(1) g o= HP WP
¢)) 3 = 8 Py
(3) HP s n 14 15 21 22
(4) HP i:= det n det " det "
§) HP 1= HP Py
(6) PP iie prep WP Figure 3: Graph of the output grammar.
n TP oirs v Hp
A Input seutence
This inpuwd correaponds (for exaraple) to the sentence:
“Y saw a man with a mirror”
$ vp
AMALYSIS UF: (w0 v det n prep det n) 1 7
A Outpus wesimar produced by the parser NeovP Ny
The gravamur output by vhe passer is given in figure 2. The /7
initial norderdnal is the left-hand side of the first rule. For Np PP
rendability, the nonterminal/items have been given computer 4 6
generated nomes, of the form v, where » is an integer. At this '
point we have forgotien the internal structure of the items corre- NE
_sponding to theix vole in the persing process. All other symbols 4
are terminal. Integer terminals correspond to rule numbers of /\
the input language graminer & (see section A.1 above), and the n v det n  prep det n
other texivinals are symbols of the parsed language, i.e. symbols

in ¥1. Nota the nmbiguity for nonterminal nt3. . \
! Bty tov Figure 4: The shared parse forest
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A.4 Simplified output grammar

This is a simplified form of the grammar in which some of the
structure that makes it readable as a shared-forest has been lost
(though it could be retrieved). However it preserves all sharing
of common subparses. This is the justification for having so
many rules, while only 2 parse sequences may be generated by
that grammar.

ntd ::= $ nt3 §

nt3 ::= nt?7 ntll nti2 7 1 ntlé 2
nt3 ::= nt7 ntil ntl12 nt16 5 7 1
nt7 1:= n 3

ntll ::= v

ntl2 ::= det n 4

ntl6 ::= prep det n 4 6

The 2 parses of the input, which are defined by this gram-
mar, are:

$n3vdetn47 1 prepdetnd62$
$n3vdetn4prepdet n 4657 1§

Here again the 2 symbols $ must be read as delimiters.

A5

To explain the construction of the shared forest, we first build
in figure 3 a graph from the grammar of section A.3. Here the
graph is acyclic, but with an incomplete input, it could have
cycles. Fach node corresponds to one terminal or nonterminal
of the grammar in section A.3, and is labeled by it. The labels
at the right of small dashes are input grammar rule numbers
(cf. section A.l). Note the ambiguity of node nt3 represented
by an ellipse joining the two possible parses.

From the graph of figure 3, we can trivially derive the shared-
forest given in figure 4.

For readability, we present this shared-forest in a simplified
form. Actually the sons of a node need sometimes to be repre-
sented as a binary Lisp-like list, so as to allow proper sharing
of some of the sons. Fach node includes a label which is a non-
terminal of the grammar G, and for each possible derivation
(several in case of ambiguity, e.g. the top node of figure 4) there
is the number of the grammar rule used for that derivation.

The constructions in this section are purely virtual, and
are not actually necessary in an implementation. The data-
structure representing the grammar of section A.3 may be di-
rectly interpreted and used as a shared-forest.

Parse forest built from that grammay

B Example with an unknown input
subsequence

B.1

The grammar is the same as in appendix A.

Grammar of the analyzed language

B.2 Input sentence

This input corresponds (for example) to the sentence:

“... saw ... mirror”
where the first “...” are known to be one word, and the last
“...” may be any number of words, i.e.:

ANALYSIS OF: (? v * n)

B.3 OQutput grammar produced by the parser

Note that the nodes that derive on (several) symbol(s) * have
been replaced by * for simplification as indicated at the end of
section 4. This expladns the gaps in the numbering of nonter-
minals. ‘
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Figure 6: A parse tree extracted from the forest.

nt0 ::= ntl nt2 nt26 ::= % nt27
ntl ::= § nt27 ::= nt28
nt2 ::= nt3 nt3s nt27 ::= nt32 5
nt3 ::= nt4 2 ng28 ::= nt29 4
nt3 ::= nt33 1 nt28 ::= nt31 3
nt4d ;:= atds at2b nt29 ::= % nt30
nts ::m nt6 2 nt30 ::= n
nt5 ::= ntil7 1 nt3i ::= n
nt6é ::= nth * nt32 ::= % nt2b
ntl7 ::= nt18 nt20 nt33 ::= ntl8 nt34
nti18 ::» nt19 3 nt34 ::= ntds 7
ntl9 ;= 7 at356 ::= nt22 nt36
nt20 ::= nt21 7 nt36 ::= nt28
nt21 :ix nt22 * nt36 ::= nt37 5
nt22 ::= v ntd7 i ::= % nt26
nt25 ::= nt26 6 nt3g = §

B.4 Simplified output grammar

ntd ::= $ nt3 § nt28 :te % n 4

nt3 ::= nth nt2s 2 nt28 ::e n 3

nt3 ::= ntl8 nt22 nt36 7 1 nt25 ::« % nt27 6

nts ::= nth % 2 nti8 ::%= 7 3

nts = nti8 nt22 * 7 1 nt22 1w v

nt27 ::= nt28 nt36 ::= nt28

nt27 ::= % nt28 5 nt36 ::= * nt25 5



A pars: of the input, chosen in the infinite set of possible
parses defined by this grammar, is the following (see figure 6):

$7 3vuT1w2%kuknd6b628

This is not really a complete parse since, due to the first sim-
plification of the grammar, some * symbols stand for a missing
nonterminal, i.e. for any parse of a string derived from this
nonterminal. For example the first * stand for the nonterminal
NP and could be replaced by “* 3" or by “* * 4 * * 3 6 5.

B.5 Parse shared-forest built from that gram-
¥ar

The output grammars given above are not optimal with respect
to sharing, Mainly the nonterminals nt27 and nt36 should be
the same (they do generate the same parse fragments). Also
the terminal n should appear only once. We give in figure 5
a shared-forest corresponding to this grammar, build as in the
previous example of appendix A, were we have improved the
sharing by merging nt27 and nt36 so as to improve readability.
‘We do not give the intermediate graph representing the output
graximar ns we did in appendix A.

Our implementation is currently being improved to directly
achieve better sharing.

In figure 6 we give one parse-tree extracted from the shared-
forest of figure 5. It corresponds to the parse sequence given as
example in gection B.4 above. Note that, like the corresponding
parse sequence, this is not a complete parse tree, since it has
nonterminsls labeling its leaves. A complete parse tree may be
obtained by completing arbitrarily these leaves according to the
original grammar of the language as defined in section A.l.

C The algorithm

The length of this algorithm is due to its generality. Fewer types
of transitions are usually needed with specific implementations,
typically only one for scanning transitions.

Commeants are prefixed with “—",

- Begin purse with snput sequence = of length n
step-A: — Initialization
a 00 [
U == ((2$0)(a$0));
9
7

— initsal item

o (f) — €); — first rule of output grammar
8o n= {(0]}, ¢ — initialize ttem-set S,
P o= {7); — rules of output grammar
i 0 — snput-scanner index 18 sel

— before the first input symbol
step-B: — lteration
loop — while £ < n (¢f. exil in step-B.2)
if @iy F ¥
atep-B.1: — Normal completion of item-sei S;
" — with non-scanning transitions.
for every item U= ((pAi)(qBj)) in & do
for every non-scanning transition 7 in & do
— we distinguish five cases, according to 7:
cqgg;-ﬂ, 1.1
if 7= (pee r+ rez)
then V := ((raf)(aBj));
S; = &U {V} H
P o= PU{V - Uz)};

— stack-free transition

case-B.1.%
if v =(pee +» rCz)
then V := ((rCi)(pAi));

— push transition

Si = S;U{V}

P = PU{(V—2)};
case-B.1.9: — pop transition
if r=(pAe — rez)

then
for every item Y = ((qBj)(sD#%)) in &;
do V := ((rB:)(sbk));
S,' = S.'U{V};
P = PU{(V—-YU2)};

case-B.1.4; — pop-push transition
if T=(pAe > rcz)

Ii

then V := ((rci)(qBj));
S.‘ = S.‘U{V};
P = PU{(V - Uz)};
case-B.1.5:

—- Other non-scanning transitions are ignored

else — [z = *'
— T ie. the next input symbol

-- 13 the unknown subscquence:

step-Bx.1: — Completion of item-set S;
— with non-scanning transitions
— and with dummy scanning transitions.

— This step is simslar o step-B.1,
—- but considering all transitions as non-scanning.
for every item U= ((pAi)(qBj)) in & do
for every tramsition 7 in 6 do
— we distinguish five cases, according to 7:
case-Bx ] 1:
if r=(peerrrez) or 7= (pea — rez)
then V := ((rAd)(qBJ));
8 = SU{V};
P = PU{(V—Uz)};

— and 30 on as in step-B.1

step-B.2: — Ezxit for main loop

if ¢ =n then exit loop; -— go to step-C
h = i+1;

while z =% do h := h+1;

step-B.3: — Initialization of ttem-set S,

Spoi= 0

for every item U= ((pAai)(qBj)) in & do
for every scanning transition 7 in § do

—— Proceed by cases as in step-B.1,

— but with scanning transitions, and

— adding the new items to Sy instead of ;.
-— See for example the following case:
cgse-B.8.2:

if r=(pea — rC2) with x,=a oxr x, =7

then V := ((rch)(pai));
S;, = Sh V] {V},
P o= PU{{(V —2)};
step-B.4: — Incrementation of scanning index i
3 o= Ny
end loop;
step-C: — Termination

for every item U = ((f%n) (&§0)) in S,
such that f€ F do
P = PU(Us— U); — Uy is the initial nonterminal of .

— End of parse
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