Word Manager: A System for the Definition, Access and
Maintenance of Lexical Databases

Marc DOMENIG

Institut fiir Informatik
Universitiat Zirich-Irchel
CH-8057 Ziirich
Switzerland

Abgtract

This paper describes Word Manager, a system which
is currently the object of a research project at the
University of Zirich Computer Science Department.
Word Manager supports the definition, access and
maintenance of lexical databases. It comprises a
formal language for the implemenation of
morphological knowledge. This formal language is
integrated in a graphics-oriented, high-level user
interface and is language independent. The project is
now in the prototyping phase where parts of the
software are pretty far advanced (the user interface)
and .others are still rudimentary (the rule
compiler/runtime system). The design of the system
was strongly influenced by Koskenniemi's two-level
model /Koskenniemi 1983/, its successors /Bear
1986/, /Black 1986/, /Borin 1986/, /Darymple
1987/, the ANSI-SPARC 3-Schema Concept /ANSI-
X3-SPARC 1975/ and visual programming techniques
/Bocker 1986/, /Myers 1986/. We will focus the
discussion on one aspect: the user interfacing for the
construction of the lexical data base.

1. Introduction

As I have argued elsewhere /Domenig 1986, 1987a,
1987b/, a dedicated system yields many advantages
for the implementation, use and maintenance of
lexical databases. The functionality of general
purpose database management systems - e.g.
relational ones - is too limited for lexical databases
because they are not tuned to the task at hand; in
particular, they do not provide for a formalism which
is suited to describe linguistic knowledge. The
reason why we would like to have such a formalism is
that it allows us to take advantage of a computer's
processing abilities, i.e. we may construct a lexical
database which is not only a collection of purely
'static’ information - a set of entries - but has
‘dynamic’ capabilities. For instance, the latter might
be that it can analyse and generate inflected or
composed word forms. "What would be the advantage
of that?" one might ask. "It is no problem to add on
these capabilities to a purely 'static' set of entries
stored within a commercially available database
management system by writing programs in the host
language to this system!"

The answer is: there are a lot of advantages and
I hope to clarify some of them in this paper. A
dedicated system supports the construction, use and
maintenance of lexical databases much more directly
than a general purpose database management system
in conjunction with a conventional programming

154

language interface. Word Manager was designed as
such a system, whereas Word Manager does not
necessarily manage all the information stored in a
lexical database. At this stage of the project, it
manages only morphological knowledge, i.e. it would
be quite feasible to use it as a front-end to a database
managed by a general purpose system.

2. Overview of the user interfacing

Word Manager distinguishes two quite different
interfaces for the construétion and maintenance of
lexical databases: one for the specification of what I
term conceptual knowledge (linguist interface) and
one for the specification of what I call non-
conceptual knowledge (lexicographer interface). The
former is the place where the kind of morphological
knowledge is defined which can be typically found in
grammars, the latter is a dialogue-oriented interface
for the entering of the bulk of the data.

The relationship between the two interfaces is
one of a strong dependency, i.e. the lexicographer
interface depends very much on the specifications in
the linguist interface. Much of the machine-
lexicographer dialogue can be inferred automatically
from these specifications. The formalism employed
in the linguist interface was designed to be powerful
enough to implement morphological knowledge of
several natural languages on the one hand, yet
dedicated enough to be easy to handle for linguists.
Moreover, it provides the opportunity to experiment
with different conceptual approaches within a
certain framework. The following section will outline
it.

3. The specification of morphoiogical knowledge in
the linguist interface

The linguist interface is conceived as a highly
controlled environment which takes advantage of the
latest hard- and software technology. This means that
the user does not communicate with the computer
on the level of its operating system except for when
the application is started. On the level of the
operating system, each morphological knowledge
specification is represented by a so-called document
icon {the two rightmost icons in Fig. 1 are document
icons). By mousing such an icon, the user may start
the application and load the specification stored in
the document. Alternatively, he could start it by
mousing the application icon (the leftmost icon in
Fig. 1 is the application icon). Within the application
environment, each document {morphological
knowledge specification) is represented by a so-

& File Edit View Special

Goliath
WordManager
- - i Goliath
Linguistinterface = i
27.888K in disk 49.056K available
@ i
Linguistinterface German French
0
Ik .

Fig. 1: The level of the operating system

& File Compile
] z a

Goliath
[l surface character set dManager
[[1lexical character set |stlnterface
[[] feature domains PSOK in disk 48.995K available

[[] feature dependencies

[] two-leve! rules %

[] functions French
[]inftection

j [l compaosition

¥Fig. 2: The top level of the nguist interface application

called tocl-window which contains eight labelled
check-boxes (see Fig. 2). Each of these check-boxes
represents a window, the name and purpose of
which is indicated by the label:

~ The window surface character set provides for
the definition of the character set out of which so-
called surface sirings are built. Surface strings are
used for the surface representation of word forms.
The window is graphics-oriented, i.e. most of the
definitions are done with mouse- and menu
commands (see Fig. 3).

The window lexical character set provides for
the definition of the character set out of which so-
called lexical strings are built. Lexical strings are
used to define linguistically motivated abstractions of
surface strings. The set is usually defined to include
characters denoting morpheme boundaries and/or
morphophonemes. The window is very similar to the
surface character set window.

The window feaiure domains provides for the
domain sgpecifications of the attribute-value pairs

which are used in the rule- and constituent
specifications (see below). The window is a text-
g»{lented editor. An example specification is shown in
¥ig. 4.

Cat. NVAPQ
Case (NOM GEN DAT ACC)
Gender MIFN
Nura (SG PL)

Fig. 4: Example definition in window feature domains

The window feature dependencies provides
for the definition of dependencies between features.
An example specification is shown in Fig. 5.

(Cat. N) demands Gender

Fig. 5: Example definition in window feature
dependencies

155

German:surface character setEs

[l
L]

01l 284 5 6 789 AB CDETF speciel characters
0 P| [p]d THREEONENE
1 A |0 |a |q <] [
2 B R |b|r chareacter sort order
3 CIS|cis AAaaBbCcDdEe
4 D |1 [d [t «l B
5 E|Ule |ui0 ligature sort order
X F {0 f|vU AE A ae @ 3
7 6 |WW{g |w B OE D oed
8 H Y |h([x® ss[}
9 1Yy UE U ue G 3
A J|zl]jlzlalo Ka] [
B K k comrment
¢ L ! The German surfece .., Q_
D M m
E N n T
F 0 0 ii Ka| [
(T T T T T T Tsl] T
lafwlelr|t]zfuifofp|u] |
[a]s[afrfgln]jfx[r]o]a]
Iul‘ﬂcivlblnlml ll-lI II

Fig. 3: The window surface character set

The window two-level rules provides for the
definition of morphophonemic rules which realize
the mapping function between the surface- and

lexical strings. The rules specified here are similar to ReCap

those in DKIMMO/TWOL /Darymple 1987/. The " "
window is a text-oriented editor. An example (.X)A(*) /\a\2" valve
specification is shown in Fig. 6 (the two rules handle "(.¥)B(.*) /\1Ib\2" value

noun genitive [e]s: the first one replaces "+" by "e" as
in Strausses, Reflexes, Reizes, the second one

duplicates "s" as in Verhéiltnisses, Verhingnisses, "X Z(.%) /\1Z\2" value
Erschwernisses).
The window functions provides for the "ra (%) /ANL" value

definition " of rules for the kind of string-
manipulations which should not be realized with two-
level rules (because their power would be excessive
or they would imply the introduction of linguistically

" (%) /B\1" value

oee

unmotivated morphophonemes). The window is a "y (%) /Z\1" value
text-oriented editor. An example specification is
shown in Fig. 7 (ReCap recapitalizes prefixed nouns). Fig. 7: Example definition in window functions
".x[sxz]}" (ICat N-ROOT) m (ICat N-ENDING) "ts/es" (Case GEN)
"ok {(ICat N~ROOT) "nis/niss" (ICat N-ENDING) "+s/es" (Case GEN)

Fig. 6: Example definition in window two-level rules

B R German:infiection EEERNTINDEN
{}

(iRule +[E]S/+F)

(1Rule +[E]S/+0)

(1Rule UMLAUT)

!

{IRule +[E]S/+ER)

(1Rule +0/+E

(catN) |
Y (1Rule No—UMLnui) E
H (1Cat N-STEM)
H(1cat N-SUFFIH) 1
fcatn)
fcatn)
(Cat P)
l(cﬁt 0)

Fig, 8: The window inflection

The window inflection provides for the
definition of word classes with their inflectional rules
and paradigms. This window is a graphical tree
editor which allows the interactive construction of
an n-ary tree. This tree is used to structure the rules
and constituents which define the word classes. The
structuring criteria are features (attribute value
pairs) and the structure has the following semantics:
the rules specified in a subtree operate on the
constituents specified within the same subtree. Fig. 8
shows & subtree which contains rules and

constituents for German noun inflection (only the top
branch (IRule UMLAUT) is expanded down to the
terminal nodes). The terminal nodes of the tree
contain either rules or constituents. By mousing
them, the user may open text-oriented editor
windows. An example of a rule is shown in Fig. 9: it
consists of matching constraints (realized by feature
sets) on the constituents and specifies a set of lemma
forms and a set of word forms. In the example, the
set of lemma forms - specified below the keyword
lemma' - is a single word form (nominative singular;

lemma
(KCat UMLAUT_R-ROOT)(Num SG)
paradig:n

(ICat UM AUT.N-ROOT){Num SG)
{tCat UMLAUT H-ROOT}{Num PL)

axampley
Ast, Schiauch

German:infiection:(Cat N)(IRule UMLAUT.+[E]S/+f) Eee—===————un=
' o

(ICar UMLAUT N-END ING){Hun 5G}

(ICat UMLAUT.H-ERD ING)[Nun SG)
(ICat UMLAUT.R-ERDING){Hum PL)

(ICak H-SUFFIX)(Num SG){ICat SGHE]S)(Case NOM)

(ICat N-SUFEIX)(Num SG)(ICat SGHE]S)
{ICat N-SUFFIX){Num PL)(ICat PL+E)

el

il

Fig. 9: Example inflectional rule window

157

the pattern of feature sets identifies exactly one form
which {s put together by the concatenation of three
constituents). The set of word forms - specified
below the keyword 'paradigm’' - consists of eight
clements (the case paradigm; the two patterns of
feature sets identify exactly eight forms, each of
which is put together by the concatenation of three

constituents). The constituent windows specify SOUrce o
either so-called hard-coded constituents or q {CCat PREFIX)
constituent types. The former are feature sets which (1Rute ?x) (Gat N-ROOT) (Nar SG)
E i ith ' - ' i ings 2 Cat N- um
o ‘i%??ctiateq with .halrld COdgdt lexmﬁlfysitrg‘gi. (se‘i 3 (ICat N-ENDING) (Nur SG)
ig. ; they are typically used to specify inflectiona 3 (ICat N-ROOT) (Num PL)
5 (ICat N-ENDING) (Mum PL)
E[IZ Germoncinflection:(Cat N)(iCat N-SUFF14.SG+[E]S)(Num SG) EET% target
st (tRule 7x)]
(ReCap (= 1 23) (ICat N-ROOT) (Mum SG)
e (Case NOM) 3 (ICat N-ENDING) (Num SG)
“+]e]s” (Case GEN) (ReCap (+ 1 4) {iCat N-ROOT) (Num PL)
“se]” (Case DAT) 5 {ICat N-ENDING) (Num PL)
“at (Case ACC) exampies
Litiputformat, Minisender, Riesenschlauch -]
1]
2] A& JRIR

constituents are structured by features which qualify
them. The rules in the terminal nodes (see Fig. 12)
define new potential word entries by specifying how
constituents of existing entries are combined with

29 German:composition:(CRule YO-N.N-TO-N.PREFIR) K

Fig. 10: Example window with hard-coded
constituents

affixes. The latter are feature sets where the
associated strings are represented by place holders,
i.e. the strings are not specified yet but will be
entered later, either via the lexicographer interface
or by the firing of compositional rules (see Fig. 11).

E[JE German:inflection:(Cat N)(1Cat N-STEM.UMLRAUTY) ENE

i1 (ICat N-ROOT) {(Num SG)

2 (ICat N-ENDING) (Num 5G)

3 (ICat N-ROOT) (Num PL)

4 (1Cat N-ENDING) (Num PL)

i entered

2 entered

3 (Umlaut 1)

4 (Copy 2)

examples

Ast, Schiauch

5

K] (2%

Fig. 11: Example window with constituent types

They are typically used to specify word roots. From
what has been said so far, we may infer how an entry
into the database is made and what it will generate:
the specification of an entry requires the
identification of an inflectional rule and the
specification of the lexical strings which are
represented as place holders in the constituents
matched by the rule. Usually, this means that one or
two strings have to be entered. From this, the system
may generate the entire inflectional paradigm of the
word. Notice that the user of the lnguist interface
defines with his specification what a word 1is (viz. a
set of lemma forms and a set of word forms).
Moreover, Word Manager imposes the convention
that only entire words - and no isolated word forms -
may be entered into the database.

The window composition provides for the
definition of compositional rules and constituents
(affixes). This window is a graphical tree editor
similar to the window inflection where the rules and

158

Fig. 12; Exemple compositivnal sule window

each other and with constituents defined in the
window composition (derivational affixes). These
rules are usually not applied generatively but
analytically, because a generative application is likely
to overgenerate (theoretically, the user may specify
an arbitrary number of features which restrict
excessive generation, but I believe that this is
unpractical in most cases, because it implies that the
lexicographer has to specify a host of features for
each entry}. The purpose of the rules is that all
derived and compound words may be entered into
the database via the triggering of such rules. This has
the advantage that the system (automatically) keeps
track of the derivational history and therefore the
morphological siructuring of each entry.

4. The lexicographer interface

Givenn a compiled specification of the conceptual
morphological knowledge defined within the linguist
interface, Word Manager may generate a dialogue
which guides the lexicographer towards the
identification of the inflectional/compositional rules
that must be triggered in order to add an entry to
the database. In the case of non-composed words, for
example, Word Manager may simply navigate in the
tree which structures the inflectional rules (specified
in the window inflection), posing questions
according to the structuring criteria.

In the case of composed words, Word Manager
may apply the compositional rules in analytical mode,
provided that the 'initial' information consists of a
word string. Such an analytical application of the
rules is usually not very overgenerating - in contrast
to a generative application-, i.e. the system will be
able to present a reasonably limited number of
selection choices.

B. Conciusion

The advantages of a dedicated system like Word
Manager for the management of lexical databases are
manifold. In this paper, we have restricted the
discussion to the advantages yielded during the
construction of the database. These are by no means
the only ones: the dedication also implies that the
overhead of non-dedicated systems (e.g. general
purpose DBMS in conjunction with conventional
programming languages), i.¢. the features which are

superflucus for lexical databases, is avoided. On the
other hand, Word Manager provides features which a
general purpose system will never have, viz. the
special formalisma to lmplement morphological
knowledge. This is not only beneflcial from the point

of view of the Interfacing to the database but also
from the point of view of the software design: in the
dedicated systern, the morphological knowledge is a
part of the conceptual database schemq (in the
terminology of database theory) and thus belongs to
the kernel of the system, as it were. When a general
purpose database management system in conjunction
with a conventional programming language is used to
tmplement the same kind of knowledge, it has to be
implemented within the external schemata to the
database and thus repeatedly for each of them. The
so-called code fuctoring is therefore much better in
a dedicaled system: the knowledge is more
centralized and implemented with a minimum of
reduncancy.

References

JANSI-X3-SPARC 1975/ ANSI/X3/SPARC Study
Group on Data Base Management Systems:
"Intectin. Report 75-02-08." FDT (Bull. of
the ACM SIGMOD) 7, 1975.

/Bear 1985/ Bear J.: "A Morphological
Recognizer with Syntaciic and Phonological
Rules." in: Proceedings of the 1ith
nternational Cornference on Computational
Linguisiics, Bonn, August 25-29, 1986.

/Black 1986/ Black AW., el al.: "A Dictionary and
Morphological Analyser for English." in:
Proceedings of the 1lth International
Conferenice on Computational Linguisiles,
Bonn, August 25-29, 1986,

/Bocker 1986/ Bocker ¥.i13., et al.: "The
Enhancement of Understanding Through
Visual Representations.” in: ITuman Facitors
m Computing Systemrs, CHI'86 Conference
Proceedings (Special Issue of the SIGCHI
Bulletin), Boston, April 13-17, 1986.

/Borin 1986/ Borin L.: "What is a Lexical
Representation?” in: Papers for the Fifth
Scandinavian Conference of Computational
Linguistics, Helsinki, December 11-12,
1985, University of Helsinki, Departiment of
General Linguistics, Publications No. 15,
1986.

/Darymple 1987/ Dalvymple M., et al.:
DKIMMO/TWOL: A Development
Environment for Morphological Analysis, in
Kaplan R., Karttunen L.: "Computational
Morphology." Course Script L1283, 1987
Linguistic Institute, Stanford University,
June 29-August 7, 1987,

/Domenty; 1986/ Domenig M., Shann P.:
“fowards a Dedlcated Database Management
System for Dictionaries.” in: Proceedings of
the 1ith Internaiional Conference on
Compuiational Linguistics, Bonn, August
25-29, 1986.

/Domenig 1987a/ Doraenig M.: Entwurf eines
dedizierten Datenbanksystems fiir Lexika.
Problemanalyse und Software-Entwurf
anhand eines Projektes fiir maschinelle
Sprachitbersetzung. Niemeyer Verlag,
Tibingen, Reithe “Sprache und Information”
Bd. 17, 1987.

/Domenig 1987b/ Domenig M.: "On the
Formalisation of Dictionaries." in: Sprache
und Datenverarbeltung, 1/1987.

/Koskenniemi 1983/ Koskenniemi K.: Two-Level
Morphology: A General Computational
Model for Word-Form Recognition and
Production. Dissertation at the University of
Helsinki, Department of General
Linguistics, Publications No. 11, 1983.

/Myers 1986/ Myers B.A.: "Visual Programming,
Programming by Example, and Program
Visualization, a Taxonomy." in: Human
Factors In Computing Systems, CHI'86
Conference Proceedings (Special Issue of
the SIGCHI Bulletin), Boston, April 13-17,
1986.

159

