Software Support for Practical Grammar Development

Bran BOGURAEYV, John CARROLL

Computer Laboratory, University of Cambridge
Pembroke Street, Cambridge CB2 3QG, England

Abstract

Even though progress in theoretical linguistics does not necessarily
rely on the construction of working programs, a large proportion of
current research in syntactic theory is facilitated by suitable
computational tools. However, when natural language processing
applications seek to draw on the results from new developments in
theories of grammar, not only the nature of the tools has to change,
but they face the challenge of reconciling the seemingly contradictory
requirements of notational perspicuity and efficiency of performance.
In this paper, we present a comparison and an evaluation of a number
of software systems for grammar development, and argue that they
are inadequate as practical tools for building wide-coverage
grammars. We discuss a number of factors characteristic of this task,
demonstrate how they influence the design of a suitable software
environment, and describe the implementation of a system which has
supported efficient development of a large computational grammar of
English.?

1. Tools for Grammar Development

A number of research projects within the broad area of natural
language processing (NLP) and theoretical linguistics make use of
special purpose programs, which are beginning to be known under the
general term of "granmar devclopment environments" (GDEs).
Particularly well known examples are reported in Kaplan (1983) (sce
also Kiparsky, 1985), Shicber (1984), Evans (1985), Phillips and
Thompson (1985), Jensen et al. (1986) and Karttunen (1986). In all
instances the softwarc packages cited above fall in the class of
computational tools used in theoretical (rather than applied) projects.
Thus Kaplan’s Grammar-writer's Workbench is an implementation of
a particular linguistic theory (Lexical Functional Grammar; Kaplan
and Bresnan, 1982); similarly, Evans’ ProGram incorporated an early
version of Generalized Phrase Structure Grammar (GPSG, Gazdar and
Pullum, 1982), whilst PATR-II is a "virtual linguistic machine",
developed by Shieber as a tool for experimenting with a variety of
syntactic theories.

These systems differ in their goals. Particular implementations of a
theory may be used for observing how theory-internal devices interact
with each other, or to maintain internal consistency as the grammar is
being developed. On the other hand, formalisms for encoding
linguistic information in a uniform way underpin efforts to compare
and evaluate alternative linguistic theories (Shieber, 1987). Neither
type of system is adequate to the task of grammar development on a
large scale or for incorporating such a grammar into a practical NLP
system, due to factors such as efficiency of encoding (largely
neglected in such systems) or verbosity and redundancy of the formal
notation. Within the frameworks of their accomodating projects, these
are in no way inadequacies of the computational tools; still, the
applicability of the tools remains limited outside the strictly theoretical
concerm.

On the other hand, a number of syntactic formalisms have been
used to develop wide-coverage grammars for use in practical NLP
systems. The best known of these is the Augmented Transition
Network formalism due to Woods (1970). More recent examples are
the DIAGRAM grammar (Robinson, 1982) of SRI's TEAM natural
language interface (Grosz et al, 1987) and the PEG grammar

1 Currently with the IBM (UK) Science Centre.

* The work described here was supported by research grant
GR/D/87321 from the UK Science and Engineering Research
Council.

54

Ted BRISCOE, Claire GROVER*

Department of Linguistics, University of Lancaster
Bailrigg, Lancaster LAI 4YT, England

developed at Yorktown Heights (Jensen er al., 1986). Both are capable
of impressive coverage and this is, to some extent, due to the more
flexible formalisms employed. A common feature of these formalisms
is that they all fall prey to what Kaplan (1987) refers to as "t
procedural seduction" of computational linguistics: whaiever the basis
for the notation is, it incorporates a handle for explicit intervention
into the interpretation of the grammar at hand.

Somectimes the nature of the task for which the grammar is being
developed justifies a formal notation incorporating ‘hooks’ for explicit
procedures. Thus a number of matchine translation (MT) projects.
especially ones cmploying a transfer strategy, makc use of formal
systems for grammar specification, which, in addition to mapping
surface sirings into comesponding language structures, identify
operations to be associated with nodes and / or subtrees (Vauquois &
Boitet, 1985; Nagao et al., 1985).

In general, the effects of the tempiation to allow, for exawple, the
EVALuation of arbitrary LISP expressions on the arcs of the ATN or
the addition of "procedural programming facilities” to the rale-based
skeleton of IBM’s PLNLP have been discussed at length in the recent
literature addressing the issues of declarative formalisms from a
theoretical perspective (see Shieber, 1986a, and references therein).
However, from the point of view of developing a realistic grammar
with substantial coverage, the opening of the procedural ‘back door’,
while perhaps useful for ‘patching’ the inadequacies in the linguistic
theory during the exercise, can tuin the whole process of grammar
development and maintenance into an organisational nightmare, as side
effects accurulate and ripple cffects propagate.

A scparate problem with allowing procedural attachraent into the
grammar formalism siems from the inevilable commitment to a
particular version of a particular theory. Even when a deliberate cffort
is made to develop a flexible and general framework capable of
accomodating a range of ‘undeilying’ linguistic operations, such a
framework is bound eventually to become inadequate, especially as
modern theories of grammar (strive to) become more declarative and
tend to make reference to larger bodies of knowledge. A casc in point
is the ARIANE system (Vauquois & Boitet, 1985): even though it was
designed as a completely integrated progranimaing environment, with
the aim of cnabling implementation of, and experimentation with,
different linguistic theories, in reality the system has been unable to
cope with radically new grammatical frameworks and computational
strategies for text analysis,

The question then arises of the optimal way of developing a
practical grammar., This paper will report on our experience in
building such a grammar, with a particular emphasis on how a number
of constraining factors have influenced the design and implementation
of the software tools for supporting the linguist’s work.

2. Design Considerations

For the last two years we have been engaged in a project aimed at
substantial grammar development, as part of a larger cffort to produce
an integrated system for wide-coverage morphological and syntactic
analysis of English. The overall objectives of the combined cffort arc
described in a number of papers (see Russell et al., 1986; Phillips atid
Thompson, 1987, and Briscoe et al, 1987). We aimed to achieve
comprehensive coverage of English in two years, using only one
linguist and one programmer full-time; the complete nawral language
toolkit was to be made available to the research community outside
the immediate environment where the grammar was being developed.
Consequently, the softwarc support for the linguist had to exhibit a
number of characteristics to encourage high productivity, Particularly

critical amony these ave efficiency of implementation, perspicuily of
representation, ease of use wild robusiness of perforiance.

Currenti theories of syntax have much i offer 1o praciical systems;
such theories, however, are undor coustant developrent. Yor very
pragmatic reasons, a project like ours ought to exploit a developed
theory, For cqually pragmatic reasons, it ought to be able o take
advantage both of developments within the particular theory and of the
evolving treatoieni of various finguistic phenomena, The question of
the velationship beiween the theoretical formalism and the formalism
adopied w implement a praciical grammar based on that theory then
becomes of certral importance. For instance, it would be inappropriate
to adopt a ditect implementation of, say GPSG, since the rate of
change of the theory itself is likely to make such an implementation
obsolete (or si least incapable of incorporating subsequent linguistic
analyses) quite rapidly - the beiel lifespan of Evans' ProGram is a
case in point. Only when theory and grammar are being developed in
very close colliboration, or ¢vein within the same group - as in, for
cxample, the Hewleti-Packard NLE project, whose cornerstone is thic
linguistic framework of Hoad-Driven Plrase Structure Grammar
(Proudian and Pollard, 1985; Poltard and Sag, 1987) — could such an
approach work.

However, i an effont like ows, it s of crilical importance 10 stike
ihic right balance between being faithiul to the spirit of a theory and
being uncoinmiited with respect o a pavticular version of it, as well as
remaiuing flexible within the overall framework of ‘close’ or related
theories. Atterapts v be to flexible, however, are likely o lead to
situations of waich the PATR-II sysiem is an cxample: the ability 10
model a wide vge of theoretical devices aud analyiicul framcworks is
penalised by iis unsuitability "for auy mngjor aitetpt ai building
natural-language grammars” (Shicber, 1984:364).

3. Our Approach

Yor a variety of reasons, iniclleciual aud pragmatic, we chose to
carry out the grainmar developmenii wiihin ike {ramework of GPSG
(sec Boguracy, 1988, i1 wore details). Briscoe er al. (1987) discuss
further some of the wajor issucs conceming the dynamic interaction
between the virious rale types and coustraints i1 GPSG and their
impact on the anplenientability of itic theory presented in Gazdar et
al. (1985). Fromn the practical perspective ol computational grammar
development, ibere are wo Tmporiait couclusions, In order to achieve
implemeniability, the inwerpretation of the GPSU foimalism requires a
aumber of restrictions. In order w provide flexibility and expressive
power, the formalism itself needs a4 number of extensions, In this light,
the design of software support for grammar development becoes
similar to the task of designing a special purpose, high level computer
language, followed by an implementation of an interactive
programuging crnviromment for ii.

3.1 The Formalism

The grammay specification fonmalism, presented in detail in Canoll
et al. (1988), it in fact a meta-grammnaiical {ormalism which avoids
the direci implemcntation of one particular syntactic theory. While
remaining close to the notaiion of GPSG, this formalisni is nonctheless
capable of specifying a vange of syuatactic theorics and grammars. The
specific choices during he design of such langaage have been heavily
influenced by the desir to be moderately commiticd to a theorctical
framework without being wmecessarily constrained within that
framework, Finding the right balance places our system half way
between the exttrerae positions exemplified by ProGram and the
Grammar-wiiter’s Workbencl, on the one hand, and PATR-II, on the
other.

The meta-grammatical formalisin is designed (o suppori & particular
model of grawmar developinens, suggested by, for example, Kay
(1985). We maintain clear scparation between a rieta-grammar, which
is "the scat of linguisiic universals" (Kay, 1985:276), and an
equivalent (in the sense that it describes exacily the same language)
object grammae, coupled dircctly o ihe parser. The process of
compiling the former into ihe latier constivutes ihe core of ouwr GDE.
A mumber of MT projects, also secking substantial coverage, make a

scemingly similar distinction between a source and object
grammar--sce, for instance, ARIANE’s static and dynamic (or
procedural) grammars (Vauquois & Boitet, 1985). However, there are
differences, firsly in interpretation—the dynamic grammar largely
incotporates whatever exccution strategy is employed for transfer—and
sccondly in emphasis—a dynamic grammar is (necessarily) derived
manually from a static one. Such efforts, then, do not have the notion
of meta-grammar compilation, and consequently require less
functionality from their support environments. We amplify this point
below.

The scparation between source and object grammars is the key to
two of the considerations discussed in the previous scction. By
stopping short of cmbodying a particular theory, the formalism of the
meta-grammar provides the linguist with an expressively flexible and
powerful device for grammar writing. By assuming a parscr, whose
underlying operation is based on a restrictive version of unification,
the object grammar allows an efficient implementation. Morc
specifically, the object grammar is made up of phrase structure rules
with feature complexes as categories; parsing with it is based on fixed-
arity, term unification.

The meta-grammatical formalism is flexible and powerful, For
cxample, it incorporates rule types for explicitly specifying feature
propagation paiterns, rather than ‘hard-wiring’ feature propagation into
the interpretion of the rules (as in GPSG), and provides a variety of
altemative rule formats, for example, PS or ID/LP rules, (non)-lincar,
(non)-lexical metarules, and so forth, The meta-grammar can be
designed to be perspicuous, flexible and expressively powerful with
littlke regard for issues of computational complexity becausc this
complexity ‘disappears’ during compilation into the object grammar,
leaving a well-defined, invariant and computationally tractable object
grammar 1o be deployed at parse time. The process of compilation is
based on ordered application of the various types of meta-grammatical
rule to a set of ‘base’ PS or ID rulcs.

3.2 The Environment

The questions of optimal software envitonment for supporting
grammar development, particularly in a rule-based formalism like ours,
are very similar to the questions of interactive support for program
development. A number of special-purpose tools have to be brought
together in a tightly intcgrated ‘shell’ and organised around the core
linguistic ‘cngine’, which performs the reduction (compilation) of
meta- into object grammar. These tools must suport

(1) rapid, incremental grammar development,
(2) interactive grammear debugging, and

(3) version maintenance and control.

The grammar development environment incorporates a number of
modules, organised round the compilation process. In particular, the
core [unctionality is provided by a morphological analyser, a parser
for ihe object grammar, and a generator. The user interface consists of
a command line interpreter, a number of special purpose vicwing
modules for meta-graramatical constructs, and a component for
displaying parsc trces on non-graphics tcrminals. The system is
designed to be completely portable and machine-independent, which
influenced the deliberate choice not to use any advanced graphics
facilities. (These can incorporated if desired -— indeed the system has
been poried to both the Apple Macintosh and Xerox 1186
workstation).

3.2.1 Detecting OQvergen:ration

The need for a parser for grammar development is uncontroversial;
it assists the linguist in (inding gaps in grammatical coverage,
checking the correctness of the syntactic description and weeding out
spurious analyses. Our parser provides facilities for viewing syntactic
descriptions in a variety of ways and batch parsing a growing corpus
of examples to check the consistency of the developing grammar. Less
obvious is the utility cf a generator. Karttunen & Kay (1985:295f)
discuss the use of such a component to generally explore the
predictions made by a grammar concerning particular constructions.

55

However, their approach would not highlight the rules involved in
overgeneration, particularly as the grammar grows in size. Our
generator allows the linguist to guide generation either implicitly, by
specifying rule-scts of intcrest, or explicitly, by directly manipulating
(partial) syntax trees. For example, if the focus of interest is relative
clauses, then she can request the GDE to ignore inappropriatc rules
(for example, those relating to coordination) and ask for automatic
generation of examples with a specified maximum length whose root
node is that appropriatc to dominate a relative clause. Alternatively,
she can build a syntax tree interactively by selecting the rule to apply
from a menu of rule names gencrated automatically on specification of
the next node to expand. Combining the two approachcs allows
automatic generation, fcr example, of specific types of relative clause;
generation after building the partial syntax tree:

Rel

NP {+wh] S{SLASH NP)

would produce object relative clauses such as:

who every cat liked
who kim likes e

Automatic generation is a more natural technique for aiding discovery
of overgeneration than parsing, because with the latter it is necessary
for the linguist t0 guess where overgencration may occut.

3.2.2 Efficient Grammar Compilation

The major potential bottlencck in grammar development is
compilation, since changes to the grammar can only be fully evaluated
by parsing or generaling relevant examples. Complete grammar
compilation is increasingly time consuming as the grammar grows;
however, it does not have to be performed that often, given the ability
to perform incremental grammar compilation. The term "incremental”
here is taken to mean both as little as possible and as rarcly as
possible. By analogy with high-level languages for apid prototyping,
where disruptions of the program development cycle are avoided at all
costs (consider, for instence, asynchronous garbage collection in Lisp),
the intrusion of the grammar compiler into the linguist’s work is kept
to a minimum. Firstly, grammar compilation takes place ‘on demand’,
so that the user need never worry about having to explicitly invoke it.
Secondly, even though rules in large grammars tend to interact quite
closely, it is rarely necessary to recompile the whole source every time
an individual rule is changed. The GDE software caches compiled data
to minimise the effort required during recompilation, and, by
maintaining a model of the dynamic dependencics between a cluster of
interconnected rules, it s able to ensure that the minimum amount of
cached data is discarded when the grammar is changed. A
consequence of this design is that individual components and rules at
source level can be declared, and redefined, in any order. For example,
the rule

S --> NP, VP.

may be defined before it is even decided which features make up Ss,
NPs and VPs. The user may postponc this decision until she actually
wants to use the rule for parsing a sentence. This experimental style of
development parallels even further that promoted by highly intcractive
systems, since it allows casy experimentation with small fragments of
the grammar, without requiring, for instance, compilation of the
complete source or loading of all declarations.

Incremental compilation is made possible by designing the grammar
compiler as a modular unit, comprising separate components for the
interpretation of ecach of the statement types (for example alias
declarations, feature propagation rules, or feature default statements) in
the source (meta-grammatical) language. This has made i1 possible to
combine these components into an integral package for cfficicnt
grammar compilation, as well as to incorporatc them into individual
commands, directly available to the linguist.

56

3.2.3 Effective Grammar Debugging

There are two further important consequences of our grammar
compilation design. The first is the ability to monitor the effects of
grammar cxpansion, by selectively filtering subscts of source grammar
rules through specific compilation procedures. So, for example, the
effects of a particular metarule can be assessed by applying it to a
specified subset of ‘base’ rules. The second is the crucial capacity of
source level debugging. In a development model which distinguishes
between meta- and object grammars, efficient work is only possiblc if
faulty grammar rules can be traced back to their original source in the
meta-grammar. In our system, the output of a single command is
usually sufficient to pinpoint an error in the source. Nodes in parse
trees arc labelled with the name of the grammar rule licensing the
local tree rooted at that node. Unlike some other systems, such as
ProGram, the name of an object grammar rulc always uniquely
encodes the complete derivation path of the rule. Thus, for cxample,
the rule name VP/TAKES_NP (PASSIVE/+) uniqucly identifies the
rule derived from the application of the PASSIVE metarulc to the
rule introducing VPs taking a single NP complement which requires a
PP ‘agent’ phrase (distinguished from the version without the PP by
/+). Thus faults in object grammar rules can easily be traced back to
their meta-grammatical source,

The use of unique rule names enhances the ability to view all or
parts of the meta~grammar, as well as the results of partial
compilation, along a number of dimensions, by means of patterns,
with wild cards ranging over rule types and the names of rules. To
facilitate this type of grammar browsing, arbitrary view rcquests can
be construcicd by using patterns compositionally; thus in a particular
grammar of ours, the pattern

VP/PHRASAL* (*) & =NULL

refers to the collection of VP rules introducing phrasal verbs which
have had metarules applicd to them resulting in the introduction of the
feature NULL. View requests may bc further modified by indicating
the level of detail required, i.e. whether the rules should be shown in
their original source forra, or partially or fully compiled.

Viewing parse trees particularly facilitates source level debugging.
Displaying a tree from the perspective of rule names associated with
the nodes, for example that resulting {from parsing the phrase ‘men and
women’:

N/COORD1

CONJ/NA CONJ/NB

men and women

can reveal whether right or wrong rules get activated. Fully displaying
the category structures on tree nodes (Figure 1) gives an indication
whether feature propagation regimes have been specified correctly.
Viewing the gross structure of the tree, in this case

({men) (and women}))

suggests whether the parse is correct or not; furthermore, in the case
of multiple parses, nodes with common analyses can be factored out,
thus helping localise the source of the error.

Errors arc only dealt with at source level, cditing facilities
incorporate knowledge about the syntax of all constructs in the meta-
grammatical formalism. The process of editing is integrated with
extensive bookkeeping, which frees the grammar writer from the task
of explicitly maintaining version backups and checks for consistency
of the objcct grammar with respect to a particular meta-grammar.

The command interpreter is sensitive to work context and is
capable, at any stage, to prompt for input appropriate to the current
state in the grammar development process. For example, if the linguist
has parsed a sentence which resulted in three analyses, she can display
the category associated with any node of any of the analyses by typing

N/COORD1
N[-POSS, +PLU, -PRO,
SUBCAT NULL, PN -]

CONJ/NA
N[-POSS, +PLU, ~PART, -PRO, +COUNT, CONJ NULL, -
SUBCAT NULL, NFORM NORM, PER 3, PN -]

nmen
N[~POSSH, +PLU, =-PART, ~PRO, +COUNT, SUBCAT
NULL, NIFORM NORM, PER 3, PN -]

CONJ/NB
N[~POSS, +PLU, -PART, -PRO, +COUNT, CONJ AND,
SUBCAT NULL, NFORM NORM, PER 3, PN -]

and women
[SUBCAT AND,
CONJN +]

N[~POSS, +PLU, ~PART, -PRO, +COUNT, SUBCAT
NULL, NFORM NORM, PFR 3, PN -]

Figure 1. Fully Detailed Parse Tree for ‘men and women’.

a single command requiring two arguments. Altermnatively, by just
lyping carriage retum after the command name, she can request the
GDE command interpreter to prompt for values for these parameters
by displaying menus of values only applicable to the current work
context, for cxample

> view

Rules/Full/CAtegory ...? categoxy

Parse tree number (1 to 3)? 1

Appropriate tree nodes are:
1. N/COORD1 2. CONJ/NA 3. men
4. CONJ/NB 5. and 6. women

Which one (give its number)? 1

[N 4, V -, BAR 0, SUBCAT NULL, PRD @544,
NFFOKM @545, PER @546, PLU +, COUNT @547,
CASE @548, PN -, PRO ~, PART @549, POSS -}

I this fashion, potentially highly-ambiguous commands, such as view
are localised to the cument context. One of the unexpected
consequences of this design is that it makes the sysiem relatively
accessible to inexpericnced users and has made feasible the use of the
system for educational purposes.

4, Conclusion

The design of a software system for grammar devclopment clearly
depends on the linguistic choices for, and pragmatic requircments of,
the NLP task. It is not surprising that a number of MT cfforts,
motivaied by the need for substantial coverage, have implemented
their own GODEs. Perhaps the most comprehensive of these is the
METAL-SHOP rescarch environment of the METAL MT system
(White, 1987), which includes facilitics for sclective viewing of parse
trees, tracing of the grammar rules as they are invoked by the parser,
and editing the grammar at source. The sysiem makes, and conforms
to, a clear-cat distinction between descriptive grammar rules and
scparatc mechanisms for their interpretation. However, since the
formal model used is that of augmented phrase structure grammar
which does not undergo any compilation into object grammar, the
functionality of the METAL-SHOP GDE, while adequate in the
practical coniext it is used in, remains below that of the system we
describe.

Even though we have worked within a particular theoretical
framework, there are generalisations to be made concerning practical
grammar development within the framework of any of the current
syntactic theories. In particular, it is iinportant to realise that software
support for such a fask does not imply, and should not be reduced to,
the provision of a set of computational tools for e.g. grammar editing,
inspecting the output from a parser, or comfortably interacting with
the system. Axn effort of this scale crucially requires critical evaluation
of the waderlylng linguistic theory, so that the right combination of
praginatically motivated and linguistically correct modifications and
revigions is found and implemented. We ave not alone in our findings;
our approach to making computational sense of GPSG is similar to the
(unimplemented) proposals of Shieber (1986b) and Ristad (1987).

The systent described above is fully implemented and running on a
number of hardware configurations. A wide-coverage grammar
iuvolving two woman/years of elfort has been developed. A set of

programs in Common Lisp, together with a user manual (Carroll e al.,
1988) and description of our grammar (Grover et al., 1988) arc
available through the Artificial Intelligence Applications Institute in
Edinburgh.

References

Boguracv, B. (1988) ‘A natural language toolkit: reconciling theory
with practice’ in Rohrer C. & U. Reyle (ed.), Natural Language
Parsing and Linguistic Theories, Reidel, Dordrecht, pp. 95-130,

Briscoe, E., C. Grover, B. Boguracv & J. Carrolt (1987) ‘A formalism
aund cnvironmeni for the development of a large grammar of
English’, Proceedings of 10th International Conference on Artificial
Intelligence, Milan, ltaly, pp. 703-7/08.

Carroll, J., B. Boguracv, C. Grover & E. Briscoe (1988) The Grammar
Development Environment: User Manual, Technical Report no. 127,
Computer Laboraiory, University of Cambridge.

Evans, R. (1985) ‘ProGram -— a development tool for GPSG
grammars’, Linguistics, vol. 23(2), pp. 213-243.

Garzdar, G., E. Klein, G. Pullum & 1. Sag (1985) Generalized Phrase
Structure Grammar, Oxford: Blackwell and Cambridge: Harvard
University Press.

Grover, C., E. Briscoe, B. Boguraev & J. Carroll (1988) The Alvey
Natural Language Tools Project Grammar: A Wide-Coverage
Computational Grammar of English, Lancaster Working Papers in
Linguistics, no. 47.

Grosz, B., D. Appelt, M. Douglas & F. Percira (1987) “T'EAM:; An
experiment in the design of transportable natural language
interfaces’, Artificial Intelligence, vol. 32(2), pp. 173-244.

Jensen, K., G. Heidom, S. Richardson & N. Haas (1986) PLNLP,
PEG and CRITIQUE: Three contributions to computing in the
humanities, Research Report RC 11841, Computer Scicnce
Department, IBM TJ Watson Research Center, Yorktown Heights,
NY.

Kaplan, R. & J. Bresnan (1982) ‘Lexical-functional grammar: a formal
system for grammatical representation’ in J. Bresnan (ed.), The
Mental Representation of Grammatical Relations, MIT Press,
Cambridge, MA, pp. 173-281.

Kaplan, R. (1987) ‘Three seductions of computational
psycholinguistics’ in P, Whitclock et al. (ed.), Linguistic Theory
and Computer Applications, Academic Press, New York,
pp. 149-188.

Karttunen, L. (1986) ‘D-PATR: A deveclopment envitonment for
unification-based grammars’, Proceedings of 11th International
Congress on Computational Linguistics, Bonn, Germany, pp. 74-80.

Karttunen, L. & M. Kay (1985) ‘Parsing in a free word order
language’ in Dowty, D., L. Karttunen & A. Zwicky (ed.), Natural
Language Parsing, Cambridge University Press, Cambridge,
pp. 279-306.

Kay, M. (1985) ‘Parsing in functional unification grammar’ in Dowty,
D, L. Karttunen & A. Zwicky (ed.), Natural Language Parsing,
Cambridge University Press, Cambridge, pp. 251-278.

Kiparsky, C. (1985) LFG manual, Manuscript, XEROX Palo Alto
Research Center, Palo Alio, CA.

Nagao, M., Tsujii, J. & Nakamura, J. (1985) ‘The Japanese
Government Project for Machine Translation’, Computational
Linguistics, vol. 11(2), pp. 91-110.

Phillips, J. & H. Thompson (1985) ‘GPSGP -— A parser for
generalised phrase structure grammars’, Linguistics, vol. 23(2),
pp. 245-261.

Phillips, J. & H. Thompson (1987) ‘A parser and an appropriate
computational representation for GPSG’ in Klein, E. & N.
Haddock (ed.), Cognitive Science Working Papers, Centre for
Cognitive Science, University of Edinburgh.

Pollard, C. & 1. Sag (1987) Head-driven Phrase Structure Grammar,
CSLI Lecture Notes INumber 12, CSLI, Stanford, CA.

Proudian, D, & C. Pollard (1985) ‘Parsing head-driven phrase structure
grammar’, Proceedings of 23rd Annual Meeting of the Association
Jor Computational Linguistics, Chicago, IL, pp. 167-171.

Ristad, E. (1987) ‘Revised generalized phrase struclurec grammar’,
Proceedings of 25th Annual Meeting of the Association for
Computational Linguistics, Stanford, CA, pp. 243-250.

Robinson, J. (1982) ‘'DIAGRAM: A grammar for dialogucs’,
Communications of the ACM, vol. 25(1), pp. 27-47.

Russell, G., S. Pulman, 5. Ritchie & A. Black (1986) ‘A dictionary
and morphological analyser for English’, Proceedings of 11th
International Congress on Computational Linguistics, Bonn,
Germany, pp. 277-279.

Shieber, S. (1984) *“The design of a computer language for linguistic
information’, Proceedings of 10th International Congress on
Computational Lingu:stics, Stanford, California, pp. 362-366.

Shieber, S. (1986a) An Introduction to Unification-based Approaches
to Grammar, CSLI Lecture Notes Number 4, CSLI, Stanford, CA,
and University of Chicago Press.

Shicber, 8. (1986b) ‘A simple reconstruction of GP3G’, Proceedings
of 11th Internationel Conference on Computational Linguistics,
Bonn, Germany, pp. 211-215,

Shieber, S. (1987) ‘Separating linguistic analyses from linguistic
theories” in P. Whitelock et al. (ed.), Linguistic Theory and
Computer Applications, Academic Press, New York, pp. 1-36.

Vauquois, B. & Boitet, C. (1985) ‘Automated Translation at Grenoble
University', Computational Linguistics, vol. 11(1), pp. 28-36.

White, J. (1987) ‘The research environment in the METAL project’ in
Nirenburg, S. (ed.), Machine translation: Theoretical and
methodological issues, Cambridge University Press, Cambridge,
UK, pp. 225-246.

Woods, W. (1970) ‘Transition network grammars for natural language
analysis’, Communications of the ACM, vol. 13(8), pp. 591-606.

58

