
Software Support for Practical Grammar Development

Bran BOGURAEV, John CARROLL Ted BRISCOE, Claire GROVER ~

Computer Laboratory, University of Cambridge
Pembroke Street, Cambridge CB2 3QG, England

Department of Linguistics, University of Lancaster
Bailrigg, Lancaster LA1 4YT, England

Abstract

Even though progress in theoretical linguistics does not necessarily
rely on the construction of working programs, a large proportion of
current research in syntactic theory is facilitated by suitable
computational tools. However, when natural language processing
applications seek to draw on the results from new developments in
theories of grammar, not only the nature of the tools has to change,
but they face the challenge of reconciling the seemingly contradictory
requirements of notational perspicuity and efficiency of performance.
In this paper, we present a comparison and an evaluation of a number
of software systems for grammar development, and argue that they
are inadequate as practical tools for building wide-coverage
grammars. We discuss a number of factors characteristic of this task,
demonstrate how they influence the design of a suitable software
environment, and describe the implementation of a system which has
supported efficient development of a large computational grammar of
English?

1. Tools for Grammar Development

A number of researzh projects within the broad area of natural
language processing (NLP) and theoretical linguistics make use of
special purpose programs, which are beginning to be known under the
general term of "gm.nmar development environments" (GDEs).
Particularly well known examples are reported in Kaplan (1983) (see
also Kiparsky, 1985), Shieber (1984), Evans (1985), Phillips and
Thompson (1985), Jensen et al. (1986) and Karttunen (1986). In all
instances the software packages cited above fall in the class of
computational tools used in theoretical (rather than applied) Projects.
Thus Kaplan's Grammar-writer's Workbench is an implementation of
a particular linguistic theory (Lexical Functional Grammar;, Kaplan
and Bresnan, 1982); similarly, Evans' ProGram incorporated an early
version of Generalized Phrase Structure Grammar (GPSG, Gazdar and
Pullum, 1982), whilst PATR-II is a "virtual linguistic machine",
developed by Shieber as a tool for experimenting with a variety of
syntactic theories.

These systems differ in their goals. Particular implementations of a
theory may be used for observing how theory-internal devices interact
with each other, or to maintain internal consistency as the grammar is
being developed. On the other hand, formalisms for encoding
linguistic information in a uniform way underpin effm~s to compare
and evaluate alternative linguistic theories (Shieber, 1987). Neither
type O f system is adequate to the task of grammar development on a
large scale or for incorporating such a grammar into a practical NLP
system, due to factors such as efficiency of encoding (largely
neglected in such systems) or verbosity and redundancy of the formal
notation. Within the frameworks of their aecomodating projects, these
are in no way inadequacies of the computational tools; still, the
applicability of the tools remains limited outside the strictly theoretical
concem.

developed at Yorktown Heights (Jensen et al., 1986). Both are capable
of impressive coverage and this is, to some extent, due to the more
flexible formalisms employed. A common feattne of these formalisms
is that they all fall prey to what Kaplan 0987) refers to as "the
procedural seduction" of computational linguistics: whatever the basis
for the notation is, it incorporates a handle for explicit intervention
into the interpretation of the grammar at hand.

Sometimes the nature of the task for which the g~ammar is being
developed justifies a form~J notation incolporating 'hooks' for explicit
procedures. Thus a number of matchine translation (MT) projects~
especially ones employing a ~ransfer strategy, make use of format
systems for grammar specification, which, in addition to mapping
surface strings into con~esponding language structures, identify
operations to be associated with nodes and / or subtrees (Vauquois &
Boitet, 1985; Nagao et al., 1985).

In general, the effects of the temptation to allow, for example, the
EVALuation of arbitrary LISP expressions on the ares of the ATN or
the addition of "procedural programming facilities" to the rule-based
skeleton of 1BM's PLNLP have been discussed at length in the recent
literature addressing the issues of declarative formalisms from a
theoretical perspective (see Shieber, 1986a, and references therein).
However, from the point of view of developing a realistic grammar
with substantial coverage, the opening of the procedural 'back door',
while perhaps useful fo: 'patching' the inadequacies in the linguistic
theory during the exercise, can turn the whole process of grammar
development and maintenance into an orgea~isational nightmare, as side
effects accumulate and ripple effects propagate.

A ~parate problem with allowing procedural attachment into the
grammar formalism stems from the inevitable commitment to a
particular version of a particular theory. Even wben a deliberate effort
is made to develop a flexible and general framework capable of
accomodating a range of 'underlying' linguistic operations, such a
framework is bound eventually to become inadequate, especially as
modem theories of grammar (strive to) become more declarative and
tend to make reference to larger bodies of knowledge. A case ha point
is the ARIANE system (Vauquois & Boitet, 1985): even though it was
designed as a completely integrated programmaing environment, with
the aim of enabling implementation of, and experimentation with,
different linguistic theories, in reality the system has been unable to
cope with radically new grammatical frameworks and computational
strategies for text analysis.

The question then arises of the optimal way of developing a
practical grammar. This paper will report on our experience in
building such a grammar, with a particular emphasis on how a number
of constraining factors have influenced the design and implementation
of the software tools for supporting the linguist's work.

2. Design Considerations

On the other hand, a number of syntactic formalisms have been
used to develop wide-coverage grammars for use in practical NLP
systems. The best known of these is the Augmented Transition
Network formalism due to Woods (1970). More recent examples are
the DIAGRAM grammar (Robinson, 1982) of SRI's TEAM natural
language interface (Grosz et al., 1987) and the PEG grammar

Currently with the IBM (UK) Science Centre.
The work described here was supported by research grant
GR/D/87321 from the UK Science and Engineering Research
Council.

For the last two yearn we have been engaged in a project aimed at
substantial grammar development, as part of a larger effort to produce
an integrated system for wide-coverage morphological and syntactic
analysis of English. The overall objectives of tile combined effort arc
described in a number of papers (see Russell et at., 1986; Phillips arid
Thompson, 1987, and Briscoe et al., 1987). We aimed to achieve
comprehensive coverage of English in two years, using only one
linguist and one programmer full-time; the complete natural language
toolkit was to be made available to the research community outside
the immediate enviromnent whetx~ the grammar was being developed.
Consequently, the software support for the linguist had to exhibit a
number of characteristics to encourage high productivity, Particularly

54

critical among these are e.flicieney of implementation, perspicuity of
rewesentatlon, ease of use and robt, stness of pofo~mance.

Current theories of syntax have much to otter to practical systems;
such theories, however, are under coustant development. For veu¢
pragmatic reasons, a project like outs ought to exploit a developed
theory, For equally pragmatic reasons, it ought to be able to take
advantage both of developments within the particular theory and of the
evolving treatment of wuious linguislie phenomena. The question of
tim relationship between the thcoretic~d Rn'malism and the formalism
adopted m implement a practical grammar based on that theory then
becomes of ceutral iml;~)rtance. For i~stance, it would bc inappropriate
to adopt a direct imp!ementation of, say GPSG, since tire rate of
change of the theory itself is likely to make such an implementation
obsolete (or at least incapable of irmorporating subsequent linguistic
analyses) quite rapidly - . file bdcf lifcspan of Ewms' ProGram is a
case in point. ()nly when theou and grammar are beiug developed in
very close collaboration, or even wifltin the same group -- - as in, for
example, the })ewlctt.-Packard NLP project, whose cornerstotm is the
linguistic framewolk of Head-Driven t'hrase Structm'e Grannnar
(Proudian and Pollard, 1985; PollaN aud Sag, 1987) - - could such ~ul
approach work.

l}owever, itr mJ effint like om"a, it is of critical impmtauce to strike
the right balance between i)eit~g failhfu[to the spirit nf a tbeo~y mid
being uncommii:ted with respect to a particular vcrsien of it, as well as
remaiuing tlexiNe within tile overall iianlcwoN of 'close' or related
theories. Attempts to be too flexible, however, arc iikely to lead tit
situations of wqich the PATII..II system is an example: the ability to
model a wide t' rage of theoretical devices and mr(lyrical ti'amcworks is
penalised by its unsuitability "for any major attempt at building
natural-language grannnars" (Shicber, 1984:364).

3o Our App~'ot4ch

For a varict~/ of rea:;ons0 iuiollectual ~aid pragmatic, we chose to
carry out the ~:rammar devclopnmni within ihe li'amewofl~ of GPSG
(see Bogm'aev, 1988, iir mine detail~;). Ihiscoe et al. (1987) discuss
further stone o:~' the major issues concerning tile dynamic intcractiou
between the vltl'ions rtfle ty0es lind constrait~ls i~ (;PSG a~d their
impact on the mplememability of the fl~co~y presented iu Gazdar et
al. (1985). Frnm flm practical pempcetiw o1' computational grammar
development, lberc are we impmtant COHCll.ISiOIIS. In order to achieve
implementability, tire interpretation of the GPSG lonnaiism ~equires a
number of ms|dcfions. In order to provide flexibility and expressive
power, the lbn~alism itself needs a nmnber of extensions. In this light,
the design of software support for gr~:urunar development becmnes
similar to the task of designing a special tin,pose, high level computer
hnlgtlage, lollowed by an h~qfl~mentatkm of an interactive
programming oMiomnent for it.

3,1 7he Formalism

The gmmma," specification formalism, presented in detail in Can'o]l
et al. (1988), i~; in flint a metaogrummaticN formalism which avoids
tire direct implementatimr of one particular synlactie lheory. While
remaining close to the nf:~talion of GPSG, this formalism is nonethc!es:~
capable of specifying a range of syntactic thcoxie.,', and grammars. The
specific choices during he design of such language have been heavily
influenced by tile desire to be moderately committed to a theoretical
framework without being unrteeessafily constrained wit(fin that
framework. Fielding the fight balance places out' system half way
between the extreme positions exemplified by ProGram and the
Grammar..wliter~s Workbench, on the one hal(!, and PATR-II, on tire
other.

The recta-grammatical lbrmalism is designed to sttpl×ut a pariictdar
model of grammar development, suggested by, for example, Kay
(1985). We maintain clear separation between a recta-grammar, which
is "the seat of linguistic universals" (Kay, 1985:276), and an
equivalent (in the sense that it describes exactly the same language)
object grammar, coupled directly to the l)alscr. The process of
compiling the fonner into the latter constitutes the core of otlr GI)E.
A nnmber of iV(l' projects, also seeking substantial coverage, make a

seemingly similar distinction between a source and object
grammar-see, for instance, ARIANE's static and dynamic (or
procednraI) grammars (Vanquois & Boitet, 1985). However, there are
differences, tirsly in interpretation--the dynamic grammar largely
incorporates whatever execution strategy is employed lbr transfer--.and
secondly ill emphasis--a dynamic grammar is (necessarily) derived
manually Ii'mn astatk: one. Such efforts, then, do not have the notion
of recta-grammar compilation, and consequently require less
functionality from their suPtx, rt environments. We amplify this point
below.

Tim scparatiou between source and object grammars is the key to
two of the eousiderations discussed in the previous section. By
stopping short of embodying a particular theory, the fonnalism of the
recta-grammar provides the linguist with an expressively flexible and
powerful device Ibr grammar writing. By assuming a parser, whose
underlying operation is based on a restrictive version of unification,
the ohject gram,nat allows an efficient implementation. Morn
specifically, the object grammar is made up of phrase structure rules
with feature complexes as categories; parsing with it is based on flxed-
arity, term unification.

The recta-grammatical formalism is flexible and powerful. For
example, it incolporates rule types for explicitly specifying feature
propagation patterns, rather than 'hard-wiring' feature propagation into
tile interpretion of Ihe rules (as in GPSG), arid provides a variety of
alternative rule formats, for example, PS er ID/LP rules, (non)-linear,
(non)-lexieed metarules, and so forth. The meta-grammar can be
designed to be perspicuous, flexible aud expressively powerful with
little regard lor issues of computational cmnplexity because this
complexity 'disappears' during compilation into the object grammar,
1caving a well-defined, invariant and computationally tractable object
grammar to be deployed at parse time. The process of compilation is
based on ordered application of the various types of meta-grammatical
ntle to a set of 'base' PS or ID rules.

3.2 The Environment

The questions of optimal software envirmm~ent fro' supporting
grammar development, particularly in a rule-based folanalism like ours,
are very similar to the questions of interactive support for program
developmant. A ~annber of special-pulpose tools have to be brought
together in a lightly inzegrated 'sbeli' and organiscd around the core
linguistic 'engine', which performs the reduction (compilation) of
lneta- into object grammar. These tools must suport

(1) rapid, incremental grammar development,

(2) interactive granmar debugging, and

(3) version maintenance and control.

The grammar development environment incorporates a number of
moduh's, oLganised round the compilation process. In particular, tire
core functionality is provided by a morphological analyser, a parser
lor ihe object grammar, and a generator. Tire user interface consists of
a comntalld line inteqgreter, a number of special puqmse viewing
modules for recta-grammatical constructs, and a component for
displaying parse trees on non-graphics terminals. The system is
designed to be completely portable and machine-independent, which
influenced tire deliberate choice not to use any advanced graphics
facilities. (These can incmporated if desired --- indeed the system has
been ported to both the Apple Macintosh and Xerox 1186
workstation).

3.2.1 Detecting Overgeneration

The need lor a pa~er fro' grammar development is uncontroversial;
it assists thc linguist in finding gaps in grammatical coverage,
checking the correctness of the syntactic description and weeding out
spurious analyses. Our parser provides facilities for viewing syntactic
descriptions in a variety of ways and batch parsing a growing corpus
of examples to check the consistency of the developing grammar. Less
obvious is the utility cf a generator. Karttunen & Kay (1985:2950
discuss the use of such a component to generally explore the
predictions made by a grammar concerning particular constructions.

55

However, their approach would not highlight the roles involved in
overgcneration, particularly as the granlmar grows in size. Our
generator allows the linguist to guide generation either implicitly, by
specifying rule-sets of interest, or explicitly, by directly manipulating
(partial) syntax trees. For example, if the focus of interest is relative
clauses, then she can request the GDE to ignore inappropriate rules
(for example, those relating to coordination) and ask for automatic
generation of examples with a specified maximum length whose root
node is that appropriate to dominate a relative clause. Alternatively,
she can build a syntax tree interacfively by selecting the rule to apply
from a menu of rule names generated automatically on specification of
the next node to expand. Combining the two approaches allows
automatic generation, fcr example, of specific types of relative clause;
generation after building the partial syntax tree:

r,e i

NP[+wh] S[SLASH NP]

would produce oNectrelative clansessuch as:

who every cat liked
who kim likes e "

Automatic generation is a more natural technique for aiding discovery
of ovcrgencration than parsing, because with the latter it is necessary
for the linguist to guess where overgeneration may occur.

3.2.2 Efficient Grammar Compilation

The major potential bottleneck in grammar development is
compilation, since changes to the grammar can only be fully evaluated
by parsing or generating relevant examples. Complete grammar
compilation is increasingly time consuming as the grammar grews;
however, it does not have to he performed that often, given the ability
to perlbrm incremental grammar compilation. Tile term "incremental"
here is taken to mean both as little as possible and as rarely as
possible. By analogy with high-level languages for rapid prototyping,
where disruptions of the program development cycle ale avoided at all
costs (consider, for instance, asynchronous garbage collection in Lisp),
the intrusion of the grammar compiler into the linguist's work is kept
to a minimum. Firstly, gran~mar compilation takes place 'on demand',
so that the user need never worry about having to explicitly invoke it.
Secondly, even though rules in large grammars tend to interact quite
closely, it is rarely necessary to recompile the whole source every time
an individual rule is changed. The GDE software caches compiled data
to minimise the effort required during recompilation, and, by
maintaining a model of the dynamic dependencies between a cluster of
interconnected rules, it '.s able to ensure that the minimum amount of
cached data is discarded when the grammar is changed. A
consequence of this design is that individual components and rules at
source level can be declared, and redefined, in any order. For example,
the role

S - - > NP, VP.

nmy be defined before it is even decided which features make up Ss,
NPs and Vps. The user may postpone this decision until she actually
~vants to use the ride for parsing a sentence. This experimental style of
dcvclopmcnt parallels even turther that promoted by highly interactive
systems, since it allows easy experimentation with small fragments of
the grammar, without requiring, for instance, compilation of the
complete source or loading of all declarations.

Incremental compilation is made possible by designing the grammar
compiler as a modular unit, comprising separate components for the
interpretation of each of the statement types (for example alias
declarations, feature propagation rules, or feature default statements) in
the source (meta-grammatical) language. This has made it possible to
combine these components into an integral package for efficient
grammar compilation, as well as m incorporate them into individual
commands, directly available to the linguist.

3.2.3 Effective Grammar Debugging

There are two further important consequences of our grammar
compilation design. The first is the ability to monitor the effects of
grammar expansion, by selectively filtering subsets of source grammar
rules through specific compilation procedures. So, for example, the
effects of a particular metarule can be assessed by applying it to a
specified subset of 'base' rules. The second is the crucial capacity of
source level debugging. In a development model which distinguishes
between meta- and object grammars, efficient work is only possible if
l%ulty grammar rules can be traced back to their original source in the
recta-grammar. In our system, the output of a single command is
usually sufficiant to pinpoint an error in the source. Nodes in parse
trees are labelled with the name of the gramnmr rule licensing the
local tree rooted at that node. Unlike some other systems, such as
ProGram, the name of an object grammar talc always uniquely
encodes the complete derivation path of the rule. Thus, for example,
the rule name VP/TAKES NP (PASSIVE/+) uniquely identifies the
rule derived from the application of the PASSIVE metarule to the
rule introducing vps taking a single NP complement which requires a
PP 'agent' phrase (distinguished from the version without the PP by
/+). "Ihus faults in object grmnmar rules can easily be traced back to
their meta-grammatical source.

The use of unique rule names enhances the ability to view all or
parts of the recta-grammar, as well as the results of partial
compilation, along a number of dimensions, by means of patterns,
with wild cards ranging over rule types and the names of rules. To
facilitate this type of grammar browsing, arbitrary view requests can
be constructed by using patterns eompositionally; thus in a particular
grammar of ours, the patteru

VP/PHRASAL* (*) & =NULL

refers to the collection of VP rules introducing phrasal verbs which
have had metarales applied to them resulting in the imroduction of the
feature NULL. View requests may be further modified by indicating
the level of detail required, i.e. whether the rules should be shown in
their original source form, or partially or fully compiled.

Viewing parse trees particularly facilitates source level debugging.
Displaying a tree from the perspective of role names associated with
the nodes, for example that resulting from parsing the phrase 'men and
women':

N/COORDI

CONJ/NA CONJ/NB

men and women

can reveal whether right or wrong rules get activated. Fully displaying
the category structures on tree nodes (Figure 1) gives an indication
whether feature propagation regimes have been specified correctly.
Viewing the gross structure of the tree, in this case

((men) (and women))

suggests whether the parse is correct or not; furthermore, in the case
of multiple parses, nodes with common analyses can be factored out,
thus helping localise the source of the error.

Errors are only dealt with at source level; editing facilities
incorporate knowledge about file syntax of all constructs in the metao
grammatical formalism The process of editing is integrated with
extensive bookkeeping, which frees the grammar writer from the task
of explicitly maintaining version backups and checks for consistency
of the object grammar with respect to a particular meta-grmnmar.

The command interpreter is sensitive to work context and is
capable, at any stage, to prompt for input appropriate to the current
state in tile grammar development process. For example, if the linguist
has parsed a sentence which resulted in three analyses, she can display
the category associated with any node of any of the analyses by typing

56

N/COORDI
N[-POSS, +PLU, -PRO,

SUBCAT NULL, PN -]

CON,}/N~
N[-POS~, +PLU, -PART, -PRO, +COUNT, CONJ NULL,.

SUBCAT NULL, NFORM NORM, PER 3, PN-]
N[-POSS, +PLU, -PART, -PRO, +COUNT, CONJ AND,

SUBCAT NULL, NFORM NORM, PER 3, PN -]

men
N[..-POSS, +PLU, -PART, -PRO, +COUNT, SUBCAT

NULL, NFORM NORM, PER 3, PN -]

~d
[SUBCAT AND,

CONJN +]

women
N[-POSS, +PLU, -.PART, -PRO, +COUNT, SUBCAT

NULL~ NFORM NORM, PER 3, PN -]

Figure 1. Fully Detailed Parse Tree for 'men and women'.

a single command lequiring two arguments. Alternatively, by just
typing carria[~e return after the command name, she can request the
GDE command interpieter to prompt for values tbr these parameters
by displaying menus of values only applicable to the current work
context, for e>mmple

> view
Rules/Full/CAtegory . ..? Catego~
Paxse tree number (I to 3)? I
Appropriate tree nodes are:

i. N/COORD'I 2. CONJ/NA 3. men
4. CONJ/NB 5. and 6. women

Which (ine (give its number)? 1
IN +, w -., BAR 0, SUBCAT NULL, PRD @544,

NFOt~M @545, PER @546, PLU +, COUNT @547,
CASt', @548, PN -, PRO -, PART @549, POSS -]

In this fashion, potentially highly-ambiguous commands, such as view
are localised to the current context. One of the unexpected
consequences of this design is that it makes the system relatively
accessible to inexperienced users and has made tcasible the use of the
system tbr educational purposes.

4. Collc|usiol~

The desig, of a software system for grammar development clearly
depeuds on 01e linguistic choices for, aud pragmatic requirements of,
the NLP task. It is not surprising timt a number of MT efforts,
motivated by the need tbr st~bstantial coverage, have implemented
their own GOEs. Pethaps file most comprehensive of these is the
METAL-SHOP research environment of the METAL MT system
(White, 1987), wltich includes facilities for selective viewing of parse
trees, tracing of the grammar rules as they are invoked by the parser,
and editing the grammar at source. The system makes, and conforms
to, a clear-cat distinction between descriptive grammar rules and
separate mechanisms for their interpretation, tlowever, since the
formal model used is titat of augmented phrase structure grammar
which does not undergo auy compilation into object grammar, the
fimetionality of the METAL-SHOP GDE, while adequate in the
practical context it is used in, remahts below that of the system we
describe.

Even though we have worked within a particular theoretical
fi'~wuework, thole are genoralisations to be made concerning practical
grammar development within the framework of any of the current
syntactic thee, ties. In particular, it is important to realise that software
support tbr :inch a task does not imply, arm should not be reduced to,
tile provision of' a set of computational tools for e.g. gtanlmar editing,
inspocting th4; output from a parser, or comfortably interacting with
the system..Ln effozt of this scale crucially requi~es critical evaluation
of the u,deriylng lingntstle theory, so that the right combination o[
pragmatically motivated and linguistically correct modifications and
revisions is ~bund and implementexl, We are not alone in our findings;
our approach to making computational sense of GPSG is similar to the
(unimplemenled) plvposals of Shieber (1986b) and Ristad (1987).

The system described above is fully implemented and running on a
number of hardware configurations. A wide-coverage grarmnar
involving two woman/yeal~ of effort has been developed. A set of

programs in Common Lisp, together with a user manual (Carroll et al.,
1988) and description of our grammar (Grover et al., 1988) are
available through the Artificial Intelligence Applications Institute in
Edinburgh.

Refereltees

Boguraev, B. (1988) 'A natural language toolkit: reconciling theory
with practice' in Rohrer C. & U. Reyle (ed.), Natural Language
Parsing and Linguistic Theories, Reidel, Dordl~echt, pp. 95-130.

Briscoe, E., C. Grover, B. Boguraev & J. Can'oll (1987) ~A formalism
and environment for the development of a lalge grammar of
English', Proceedings of lOth International Cot~ference on Artilicial
Intelligence, Milan, Italy, pp. '103-'/08.

Carroll, J., B. Boguraev, C. Grover & E. Briscoe (1988) The Grammar
Development Envb'onment: User Manual, Technical Report no. 127,
Computer Imboratory, University of Cambridge.

Evans, R. (1985) 'ProGram --- a development tool for GPSG
grammars', Linguistics, vol. 23(2), pp. 213-243.

Gazdar, G., E. Klein, G. Pullum & I. Sag (1985) Generalized Phrase
Structure Gratmnar, Oxlbrd: Blackwell and Cambridge: Harvard
University Press.

Grover, C., E. Briscoe, B. Boguraev & J. Carn311 (1988) The Alvey
Natural Language Too& Project Grammar: A Wide-Coverage
Computational Gratrmlar of English, Lancaster Working Papers in
Linguistics, no. 47.

Grosz, B., D. Appelt, M. Douglas & F. Pelcira (1987) "II~,AM: An
experiment in the design of transportable natural language
interfaces', Artificial Intelligence, vol. 32(2), pp. 173-244.

Jensen, K., G. Heidom, S. Richardson & N. Haas (1986) PLNLP,
PEG a~ul CRITIQUE: ?7tree contributions to computing in the
ht#nanities, Research Report RC 11841, Computer Science
Department, IBM TJ Watson Research Center, Yorktown Heights,
NY.

Kaplan, R. & J. Bresnan (1982) 'Lexical-functional grammar: a formal
system for graramatical representation' in J. Bresnan (ed.), The
Mental Representation of Grammatical Relations, MIT Press,
Cambridge, MA, pp. 173-281.

Kaplan, R. (1987) 'Three seductions of computational
psycholinguistics' in P. Whiteloek et al. (ed.), Linguistic Theory
and Computer Applications, Academic Press, New York,
pp. 149-188.

Karttunen, L. (1986) 'D-PATR: A development envil~nment for
unification-based grammars', Proceedings of l l t h International
Congress on Computational Linguistics, Bonn, Germany, pp. 74-80.

57

Karttunen, L. & M. Kay (1985) 'Parsing in a free word order
language' in Dowty, D., L. Karttunen & A. Zwicky (ed.), Natural
Language Parsing, Cambridge University Press, Cambridge,
pp. 279-306.

Kay, M. (1985) 'Parsing in functional unification grammar' in Dowty,
D., L. Karttunen & A. Zwicky (ed.), Natural Language Parsing,
Cambridge University Press, Cambridge, pp. 251-278.

Kiparsky, C. (1985) LFG manual, Manuscript, XEROX Palo Alto
Research Center, Palo Alto, CA.

Nagao, M., Tsujii, J. & Nakamura, J. (1985) 'The Japanese
Government Project for Machine Translation', Computational
Linguistics, vol. 11(2), pp. 91-110,

Phillips, J. & H. Thompson (1985) 'GPSGP - - A parser for
generalised phrase structure grammars', Linguistics, vol. 23(2),
pp. 245-261.

Phillips, J. & H. Thompson (1987) 'A parser and an appropriate
computational representation for GPSG' in Klein, E. & N.
Haddock (ed.), Cognitive Science Working Papers, Centre for
Cognitive Science, University of Edinburgh.

Pollard, C. & I. Sag (1987) Head-driven Phrase Structure Grammar,
CSLI Lecture Notes Number 12, CSLI, Stanford, CA.

Proudian, D. & C. Pollard (1985) 'Parsing head-driven phrase structure
grammar', Proceedings of 23rd Annual Meeting of the Association
for Computational Linguistics, Chicago, IL, pp. 167-171.

Ristad, E. (1987) 'Revised generalized phrase structure grammar',
Proceedings of 25th Annual Meeting of the Association for
Computational Linguistics, Stanford, CA, pp. 243-250.

Robinson, J. (1982) 'DIAGRAM: A grammar for dialogues',
Communications of the ACM, vol. 25(1), pp. 27-47.

Russell, G., S. Pulman, G. Ritchie & A. Black (1986) 'A dictionary
and morphological analyser for English', Proceedings of 11th
International Congress on Computational Linguistics, Bonn,
Germany, pp. 277-279.

Shieber, S. (1984) 'Th~ design of a computer language for linguistic
information', Proceedings of lOth International Congress on
Computational Lingu:stics, Stanford, California, pp. 362-366.

Shieber, S. (1986a) An Introduction to Unification-based Approaches
to Grammar, CSLI Lecture Notes Number 4, CSLI, Stanford, CA,
and University of Chicago Press.

Shieber, S. (1986b) 'A simple reconstruction of GP3G', Proceedings
of l l th International Conference on Computational Linguistics,
Bonn, Germany, pp. 211-215.

Shieber, S. (1987) 'Separating linguistic analyses from linguistic
theories' in P. Whitelock et al. (ed.), Linguistic Theory and
Computer Applications, Academic Press, New York, pp. 1-36.

Vauquois, B. & Boitet, C. (1985) 'Automated Translation at Grenoble
University', Computational Linguistics, vol. 11(1), pp. 28-36.

White, J. (1987) 'The research environment ill the METAL project' in
Nirenburg, S. (ed.), Machine translation: Theoretical and
methodological issues, Cambridge University Press, Cambridge,
UK, pp. 225-246.

Woods, W. (1970) 'Transition network grammars for natural language
analysis', Communications of the ACM, vol. 13(8), pp. 591-606.

58

