Construction of a modular and portable translation system

Fujio NISHIDA, Yoneharu FUJTYA and Shinobu TAKAMATSU
Department of FElecktrical Engineering,
Faculty of Engincering,
University of Osaka Prefecture,
Sakai, Osaka, Japan 591

1. Introduction

In recent years the study of machine
translation has made great advances and the

translation system has been larger and complicated
with augmenting facilities. Furthermore, most
recently, many powerful workstations have Dbeen
developed and various MI' systems for special
purposes are ready to be mounted on these
workstations,

In such a state of affairs it will be needed
that many MI' systems arc reorganized or re-
constructed on a program module basis for easy
modification maintainance and transplantation.

This paper has two purposes, One of th§T35s to
show a method of constructing an MT system on
a library module basis by the aids ‘5 a programming
construction system called L-MAPS, The MT' system
can be written in any programming language
designated by a user if an appropriate data base and
the appropriate processing functions are implemented
in advance. PFor example, it can be written in a
compiler language like C language, which is
preferable for a workstation with a relative slow
running machine speed. 4)

The other purpose is to give a brief
introduction of a program generating system called
Library-Module Aided Program Synthesizing system
(abbreviated to L-MAPS) running on a library module

basis. L-MAPS permits us to write program
specifications in a restricted natural language
like Japanese and converts them to {formal

specifications. It refines the formal specifications
using the library modules and generates a readable
comment of the refined specification written in the
above natural language every refinement in option.
The conversion between formal expressions and
natural language expressions is performed
efficiently on a case grammar basis,

2, Overview of the MT system organizationz)j)

Our machine translation system is constructed
on the intermediate expressions based on universal
subframes of predicates and predicative nouns. It
aims at a multilingual transfer system, Up to now,
however, no universal precise semantic category
system over various languages has been constructed
yet, and our MI system is compelled to work rather
on a bilingual Dbasis in the selection of
equivalents,

The first versiOQ)of the pariﬁg was written in
an extended version™’ of LINGOL It has an
advice part and a semantic part in each rewriting
rule. Both parts of them permit users to describe
any Lisp program for designating details of the
reduction procedures, These techniques used in
LINGOL and AIN seem apparently convenient. However,
they often make the data part inseparahble from the
program part and bring an MT system to much
complexity, and accordingly, prevents applicability
of the programs of the MT system Cto another
translation between other languages.

Recently, a revised version of our MT system
has been constructed, The main program or

procedural. part consists of unification and
substitution, while the data part consists of frame
knowledge rewriting rules and word dictionaries.

Rewriting rules with arguments describe the
details of the gsyntactic and semantic structurce of
the language explicitly. For example, the predicate
part of the Hornby's verb pattern VP13A of FEnglish
is written as follows:

PREDP(PRED-c MOD:m, k 2:t2)
]~c1:t])

l«c]:L],kZ—c

MOD:m) NP(k

0'to
— IRTID— » 4
> VP(PRED-cgit,

P e s TO—~1
PP(k2 cZ.TO LZ)

where PREDP, VP, NP and PP denote a PRIDicate
Phrase, a Verb Phrase, a Noun Phrase and a
Prepositional Phrasc respecively., k-c:t denotes a
triple of a case label, a semantic category and a
term and m denotes various modal values such as

tense and aspect, These rewriting rules are
tabulated in several tables for an efficient

processing.

The parsing system first applies the syntactic
part of a rewriting rule to that of a handle in a
reduction sequence of a given source sentence. If
the system finds a unifiable rewriting rule, it
checks whether the semantic part is unifiable. The
category check of a term in a handle for the
case-frame condition is processed by a special kind
of unification under an interpretation that the term
category in a rule is a restricted variable.

The intermediate expression of the handle part
is constructed by substituting the unified terms
for the arguments idin the left-hand side of the
rewriting rule.

3. The L-MAPS system and language conversion

The L-MAPS system is costructed on a
fundamental library module basis. When a user gives
a specification by referring to the libraly module,
L-MAPS searches applicable library modules and
refines the specification by linking several modules
or replacing it by the detailed procedure called the
Operation Part of an applicable library module.

The formal specifications of programs as well
as the library modules are generally difficult for
users Lo read and write correctly though they are
efficient and rigorous for machine operation, Hence,
it is desirable to rewrite the formal specification
in a natural language. L-MAPS performs a conversion
between a restricted natural language expression
and a formal language expression through the
intermediate (or the internal) expression of the
natural language expression with the aids of case
labels.

The conversion between a restricted natural
language expression and the intermediate expression
can be done in a similar manner to the conversion
carried out in machine translation.

Formal specifications generally have different
forms from those of the intermediate expressions,

649

The intermediate expression of a sentence takes the
following form :

(PRED:tp, Kl:tl, .o..., Kn:tn) (1)

where PRED K1 and Kn are case labels and tp tl
and tn are terms corresponding to their cases. On
the other hand, a procedure expression appearing in
formal specifications as well as in a heading of
each library module has the following form:

proc—-label (K1 ':tl', K2':t2',...., Kn':tn') (2)

where the procedure name plays a role of the
key word and it is constructed from the predicate
term the object term and others of the intermediate
expression, It is used for retrieving library
modules applicable to a given specification.

L-MAPS performs the conversion between the
intermediate expression(l) and the proccdural
expression(2) by a method similar to the case
structure conversion between different languages.

The conversion is applied not only Lo the
construction of a formal specification from an

informal specification writlten in restricted
Japanese or English but also to the generation of
Japanese or linglish comments on the refined

specifications generated by L-MAPS itself,

4, Modularization of programs

The revised MI' system is reconstructed based on
library modules by the aids of L-MAPS, BEach library
module has a structure as shown in Table 1,

Table 1 A part of library modules

PROC: HANDLE_ REDUCE(SO:reduced_sequence, OBJ:handle,
INSTR:reduction_rule,
GOAL:new_reduced_sequence)

IN: GIVEN(OBJ:reduced_sequence,handle,

reduction_rule)

OUT: REDUCED FORM(OBJ:new_reduced_sequence)

ENTITYTYPE st eenssonceosononnnanssascnnass
OP: RULE_APPLY(OBJ:reduction_rule, PARTIC:handle,
GOAL:reduced_symbol)
BRANCH1 (COND:EQUAL(reduced_symbol,NULL),
OP:RETURN(FAIL))
FOR(COUNT :n,FROM:1,TO:~(stack_pointer,
symbol_number_of' handle),
OP:COPY(OBJ:reduced_sequence(n),
GOAL:new_reduced_sequence(n)))
COPY(OBJ:reduced_symbol,
GOAL:new_reduced _sequence(+(n,1)}))
RETURN(TRUE)

The heading of each module has both the
procedural expression and the input-output predicate
expression (abbreviated to the IO expression),
Program specifications given by a user can call a
module by using one of these headings.

The I0 expression consists of a pair of an
input and an output predicate and asserts that the
output predicate holds under the given input
predicate.

The 10 expressions are used to automatically
link some modules for a specification and to check
linking of modules specified by their procedural
expressions.

The type part describes the types of regions
structures and roles of input output or local
variables.

650

The OP part describes the procedures for the
function assured in the heading part. The procedures
are described in a little more detail by using the
headings of more fundamental modules.

Control statements are represented by using a
prefixed-form of Pascal called the General Control
lixpression (abbreviated to GCE) here. The control
statements are expanded into a programming language
such as Lisp and C designated by users. Some
conversion rules are shown in Table 2.

Table 2 Conversion rules to objective languages

TF_THEN(COND: p, OP: Secuvevsncossscosssss(GCE)
(COND (p 8)) .oeoo cedoase veevaneanssa(Lisp)
TF(P) S 3 sevsvroanecas casesssssseaaal(C)

I THEN_FLSE(COND: p, OPl: sl, OP2: s2.,..(GCE)
(COND (p s1) (L 82)) +ivencevssarasoa(Lisp)
TF(p) sl BLSE 82 5 ivevvonosesssooaslC)

FFOR(COUNT: 4, FROM: m, TO: n, OP: s).e....(GCE)
(SETQ i m)

(1OOP ()(COND ((EQUAL 4 n) (EXIT-LOOP))
(T s (SETQ i (ADD1 i)))
))eecancescoasoossrancas ceoso(Lisp)
FOR(i = m; 4 <= nj i+t) s N (9

0500890398002 05090000408008a6060200308960

Corresponding to the general control language,
general data structures are also dintroduced. TIf
refined specifications are designated to be expanded
to a programming language which do not have the
corresponding data structures inherently, the
equivalent data structures and the access function
must be implemented in advance by combining the
fundamental data structures in the language. For
example, if Lisp is designated as the programming
language, a struct which appears in a general data
structure of a specification is expanded to the
correspondig associative list structure and the
lists can be accessed by associative functions.

5. Refinement and Expansion by the L-MAPS system

Figure 1 shows an outline of the processing by
L-MAPS.,

specifications,

¢~ Mibrary modules

(1) [procedural Pﬁiinput—output

expressions) \expressions

~_ |specification by
Ninput-output
-~ Aexpressions

N

2) detection of Kk~

insufficiency[< 77~ ~subproblens

~glrequests of
e additional modules

[V
(3) 1inkageE~ —————— —Jadditional modules]

~~glintermediate
Aprograms

P

©” object language,
(4) kefinement,expansioh}t‘““'expansion mode

& T object programs

Fig.,1 The processing by L-MAPS

In refinement, L-MAPS tries to unify the
heading of an expression in a given specification
and the corresponding heading of a library module.
If 1.-MAPS succeeds in the unification, it constructs
a more detailed description of the specification by
using the unified Operation Part of the module .

The refined part with a more detailed
description can be substituted directly for the
original part in the specification or can be called
in a form of a subprogram as a procedure or a closed
subroutine from the specification part. One of them
is selected by the uscr.

The principal part of the above refinement is
unification of a specification and the heading of a
library module. When the arguments of a module are
confined to the individual variables and the number
of arguments of a function is confined to a constant
the wunification can be carried out by an ordinary
unification of the first order logic, Otherwise, the
unification procedure for the second order logic is
needed.

L-MAPS has a unification procedure for the
second order logic. However, the unification
procedure is confined to a unilateral unification
from a module to a specification in which each
symbol is dinterpreted as a constant under the
condition that any substitution for the symbol in
the specifications is forbidden. Accordingly, the
unification procedure can be much simplified for
practical purpose.

Fig,2 shows parts of a given specification
written din the restricted English for a parsing
program of [nglish sentences and Fig.3 shows a part
of the generated formal specification,

for 1 from 1 to m

Jsi=j

search handles from reduced_sequences(i)
by using reduction rules, and

store it in handle(l..k) and rule(l..k)

if k is greater than O

for n from 1 to k
reduce handle(n) in reduced_sequences(i)
by using rule(n), and
store the result in
nevw_reduced_sequences(j)

ses s s s s o esrsacesesaanr b e

Fig.2 The informal specification for a parsing
program

R I)

FOR(COUNT: I ,FROM:1,TO:M,
oP: =(JS,J)
HANDLE_SEARCH(SO:REDUCED_SEQUENCES(T),
INSTR:REDUCTION RULES,
GOAL: (HANDLE(1. .K),RULE(1..K)))
BRANCH1 (COND:>(K,0)
OP:FOR(COUNT:N,FROM: 1,TO:K,
OP:HANDLE_REDUCE
(SO:REDUCED_SEQUENCES(I),
OBJ:HANDLE(N),
INSTR:RULE(N),
GOAL :NEW_REDUCED
_SEQUENCES(J))
)

)

B]

Fig.3 A part of formal specifications

L~MAPS refines the formal specification by referring
to library modules such as shown in Table 1 and
gencrates a refined specification and the comment
shown in Fig.4,

RULY, APPIY(OBJ:REDUCTTON_RULE,, PARTTC: HANDLE,
GOAL:REDUCED_SYMBOL)
BRANCH1 (COND: EQUAL(REDUCED SYMBOL, NULL) ,
OP:RETURN(FATL))
FOR(COUNT:N,FROM: 1,10 ~(STACK_POINTLR,
SYMBOT, NUMBER_OF_HANDLL),
OP:COPY(OBJ : REDUCED_SFQUENCE(N),
30AL:NEW_REDUCED_SHQUENCL(N))

Iig.4(a) A part of the refined specification

apply the rulc to the handle, and
store the result in a reduced_symbol.
if the reduced_symbol is null return(fail).
for n from ! to stack_ pointer-symbol number
_of_handle
copy reduced_sequence(n)
into new_reduced_sequence(n).

P A A S R R R Y

I'ig.4(h) The comments of the refined specification
in Fig.,4(a)

In the refinement process global optimizations
are tried to be done at the user's option. Some of
them are rearrangement of conditional control
statements and fusion of several iteration loops
into one loop.

6. Conclusion

The translation system is constructed on a
modular basis consisting of 24 application modules
and 30 basic modules by refining and expanding
specifications by the aids of the L-MAPS system
consisting of about 1000 lines of Lisp statements.
The generated translation-system programs is about
1000 1lines in both C language and Franz Lisp.
Besides various advantages due to the modulari-
zation, the translation speed is almost the same as
that of the old version in LISP. Furthermore, the
translation speed in C language is about three times
faster than that of l'ranz Lisp at a compiler mode in
English-Japanese translation.

References

1)Pratt,V,R.: LINGOL-A Progress Report, IJCAI4,
422-428 (1975).

2)Nishida,F., Takamatsu,S. and Kuroki,H.:
English-Japanese Translation through
Case~Structure Conversion, COLING-80, pp.447
~454 (1980).

3)Nishida,F. and Takamatsu,S.: Japanese-English
Translation through Internal Expressions,
COLING-82, pp.271-276 (1982).

4)Nishida,F. and Fujita,Y.: Semi-Automatic Program
Refinement from Specification Using Library
Modules, Trans. of IPS of Japan, Vol.25,
No.5, pp.785-793,(1984), (Written in
Japanese).

5)Tanaka,H., Sato,T and Motoyoshi,F.: Predictive
Control Parser: Extended LINGOL, 6th TJCAT,
Vol.2, pp.868-870, (1979).

651

