A User Friendly ATN Programming Environment (APE)

Hans Haugeneder, Manfred Gehrke
Siemens AG, ZT ZTIINF
W. Germany

APE is a workbench to develop ATN grammars based on an active chart parser.
It represents the networks graphically and supports the grammar writer by win-
dow- and menu-based debugging techniques.

1. ATNs - Attractive, but

Augmented Transition Network Grammars are one of
the frameworks for developing natural language par-
sers that has been used sucessfully in a large number of
natural language systems for many languages since its
introduction in the early seventies by Woods [WOO 70].

Three aspects of ATNs, namely applicability in various
types of natural language systems, suitability for dif-
ferent languages and the availability of efficient proces-
sing methods make ATNs an adequate framework for
practically oriented development of natural language
parsers.

Since the time of its introduction the core of the ATN
formalism has proved to be astonishingly stable and the
exposition and specification of ATNs given in [BAT 78]
turned out to become a quasi-standard.

One of the five claims stated there , namely perspicuity,
deserves some comments, because to us it doesn't seem
justified strongly. On the contrary we feel that con-
cerning perspicuity and descriptiveness ATN grammars
do have some shortcomings. These come into play if you
use the ATN formalism to develop a grammar for a non-
trivial subset of a natural language.

The main reason for this insufficient perspicuity clearly
lies in the possiblities ATNs offer with respect to local
and global register setting and testing. These facilities,
though practically very useful, give an ATN grammar a
somewhat procedural character, the grammar writer has
to cope with. In this sense ATNs can be seen as a
programming language for writing nondeterministic
programs (grammars). Thus for the development of any
larger grammars (programs) some sort of programming
environment for ATNs not only is necessary but also
compensates the lack of perspicuity and it makes the
development of ATN grammars a practicable task.

2. Design Considerations for an ATN Environment

Examining various ATN environments as [KEH 80],
[GNE 82] and [CHR 83] for example we developed our
ATN programming environment (APE) along following
design principles.

1) The various tools the environment offers must be in-
tegrated allowing simultaneous grammar editing and
testing.

2) The grammar editor has to represent the network
structures graphically allowing the user to access the
grammar via the contextfree skeleton of the various
networks.

3) The design of the system should make use of techni-
ques like multi-windowing, menue- and mouse-based
interaction facilities, in order to make the system

usable in an easy manner.

With this desiderata concerning the design of such a
system, certain requirements concerning the hardware
and software for such an implementation are necessary.
We have chosen Interlisp-D (Trademark of XEROX) as
basis of APE, which due to its comprehensive display-
and interaction facilities proved to be an adequate
starting point for the realisa-tion of our ideas.

3. Active Chart Parsing as a Framework for an
ATN Environment

Active Chart parsing ([(KAP 73)) is a highly general fra-
mework to implement parsers. The two main ideas of
this approach are to represent the parser's control strue-
ture explicitly allowing high flexibility in scheduling the
various paths to be followed and to prevent the parser
from doing the same thing twice using a comprehensive
bookkeeping mechanism. The interaction of these
components is shown schematically in figure 1.

Comim][]
E'RSER
v\ GRAMMAR

(om0

Figure 1

The possibilities of a flexible scheduling is achieved by
means of an agenda, which at any state of the parser
contains all the tasks that are induced by the grammar
and not processed so far. The ordering of the agenda
thereby determines the way, the search space is
traversed. With this agenda-based scheduling facility
the parser can apply various control structures like
depth-first, breadth-first or heuristic scheduling, even
changing it during one parse.

Such facilities are of interest for "tuning” the parser's
behaviour in an intended way. Agenda-based task sche-
duling also offers the operational facilities for prunin
parts of the search space which amounts to switching o
certain parts of a grammar during a parse,

The second central concept in active chart parsing, the
chart, is a graph structure, which does not only do the
hookkeeping of the parsed constituents (the inactive
edges). It also records each of the partial intermediate
steps (the active edges), thus logically representing all
the paths in work and all constituents parsed so far
offering the possibility to inspect the uptothen parsing
process.

But more important. e.g. for perspicuity, the chart (i.e.
its graphical representation) also can be seen as a des-
criptive representation of the parser's state from a naive

399

grammar writers' point of view. It is a conceptually
simple representation, whose atomic constructs, the
graph's nodes, the active and inactive edges, have clear
counterparts to the conceptual entities a grammar wri-
ter has a naive understanding of, namely the positionsin
the sentence to parse (i.e. the nodes), the partial parses
spawning between two nodes (i.e. the active edges) and
already analysed constituents (i.e. the inactive edges
spawning the sequence of words between two nodes).
Thus a graphical representation of the chart growing as
the parser proceeds makes the parsing process easily
perspicuable for the user.

4. Description of the Environment
4.1. The Grammar-Editor

The user interface to the ATN grammar is built on top of
an active graph-like representation of the single net-
works, which is initiated by the user in a menu-based
manner. This bird's eye view gives the user an overall
first impression of the global structure of the whole
grammar with the type of the are (PUSH, POP, CAT,
JUMP) and the specification of "categorial” information
with CAT- and PUSH-arcs.

Thus the user is not beaten with an unnatural, artificial-
ly linearized (for example lispish) way to represent the
basic graph-like concepts of ATNs. The benefits of such
network-based grammar specification facilities have
been pointed out by Grimes [GRI 75].

The networks, displayed in the way described above,
additionally offers the user a number of operational
facilities, such as getting‘more specific information on a
certain arc as for example its actions or additional tests.
The user can activate the displayed network's arc and
nodes respectively by clicking the mouse.

Activating an arc hereby pops a menu with the follo-
wing possibilities:

- info: Gives a detailed printout of the arc, including
its status (broken vs. unbroken).

- delete: Deletes the arc from the network, causing a
new graphical layout of the network.

- edit: Edits the complete are in a mouse- and meénu-
oriented editor with all necessary facilities to
modify various parts of the are, such as tests,
actions and forms as well as its weight. Lea-
ving the editor several checks are performed,
putting the user back into the edit mode, if the
modified arc structure is incorrect (e.g. if it
contains too many items or items of an incor-
rect type at the wrong place).

- break: Puts a break on the arc taking the user into the
break mode with interactive facilities (as des-
cribed below) after the broken are's actions are
performed.

- unbreak: Removes a break from the arc.

Activating a node in the network offers the following
facilities:

- info: Gives a detailed printout of all the ares star-
ting at that node.

- insert: Allows the user to insert an arc starting at the
node activated, the arc's ending node (except
POP-arcs) being determined via the mouse. To
introduce additional new nodes the user is
prompted by the system for subsequent arcs
until he specifies a POP-arc or an already
existing node as ending node of the last
prompted arc.

400

- merge: A new node N1 is inserted after node N with
the leaving arcs of N now beginning at N1 and
anew arc between N and N1.

4.2. Grammar-Debugger

The user can specify in advance certain constructions he
wants to be parsed, thus having the possiblitiy to test
certain NP-constructions for example without the over-
head of parsing a whole sentence,

These debugging facilities can be involved in three ways:
grimarily while the parser is working in a stepper-mode

y means of a user interaction, secondly during the
parser's run by means of a break put on an grammar arc
and thirdly system-initiated at the end of the parse
giving the user the possibility to restart.

In the stepper-mode the user can cause a break while
watching the chart growing as the parser processes one
task after another in the following way. During the
single steps of creating of the chart graphically the
system is interruptable to give the user the opportunity
to put APE's stepper into the break-mode %y mouse-
clicking the relevant menu's item).

In the break-mode the user is offered a number of
operational facilities which can be accessed activating
the chart nodes and edges with the mouse. When selec-
ting an edge the user can get more detailled informa-
tion as for example its weiggt, its register environment
and its history, consisting of the path through the gram-
mar each arc being augmented with additional informa-
tion as its current inputword, its register environment
and the number of the task being responsible for
processing that are, which direetly re%lects the way the
scheduling is performed. But more importantly the
ammar tester can also modify the edges in various
imensions, including the following options:

The user can change registers by emplo-
ying the same language he is used to as
a grammar writer, l.e. in terms of
actions defined in the ATN formalism as
for example SETRs, ADDRs or form to
be evaluated such as BUILDQs .

Allows to change of the weight of an
edge, affecting the order of further
processing.

- ending edge: With this option an edge can be modified
with respect to the part of the input
being spanned by it.

- registers:

- weight:

This last option together with the possibilities of regi-
ster modifying renders for example the simple simu-
lation of the parser's behaviour under the assumption of
a (effectively missing or due to not matching tests
blocked) grammar arc by enlarging the span of an edge.

Another more powerful possibility in testing a grammar
is the introduction of additional (in)active edges, con-
necting two arbitrary nodes, which can be achieved via
an activation of the starting arc. This allows the speci-
fication of partial parses or parsed constituents, which -
though missing due to some defect in the grammar - the
user wants the to make use of in further parsing process.

Parallel to all the options presented so far the user can
edit the grammar on the fly, thus being able to modify
the grammar just when he recognises certain bugs.

Additionally APE gives the user the possibilitiy to mani-
pulate the agenda offering him various actions to be

performed on the single tasks like freezing and killing a
task, or changing its weight. This facility provides an
advanced grammar writer with very effective means to
focus the parser on things that are interesting for him in
a certain situation, abondoning with irrelevent paths or
postponing them.

Finally, when the user has done all the things that
seemed useful to him at this break point he can continue
the parsing process leaving the stepper options as they
are or changing them appropriately.

At the end of the parsing process the user again getsin a
break mode giving him the opportunuity of inserting
new edges with the facility to restart the parsing process
with this new information. Thus adding a new inactive
edge and restarting for example amounts to asking the
parser "what would yours results have been with an
additional constituent c¢; from word wj to word wy?".
With the facilities described above the user also can
easily analyse a configuration when the parser did not
succeed in parsing a certain construction.

This deseription, though sketchy, should give an impres-
sion of the facilitities of APE and the ideas behind it. An
illustration of APE's environment is shown in the appen-
dix.

5. Qutlook

The described ATN programming environment gives
substantial support to the user in building up a working
grammar, but some of APE's aspects aren't completely
satisfying. So a lot of polishing the user interface as well
as improving the functionality is still to be done.

Appendix
Snapshot of the system in the breakmode.

'
«3 JUMN LUVES BaRY

T

HOX

AUX { PRES)
CTRL Pleass sater STOF to end
this subrouting

PRVAL (SEYR IV T

Vo
. LOVE
TENP
. /PRES

N

HERAY>, g
L e U0 Ml

=

- R g - -

Primarily we are currently working on an user-friendly
lexicon handling. Another augmentation will be the
easier global specification of very fine-grained breaks.

We'd like to thank U. Hochgesand, C. Maienborn and L.
Simon for implementing parts of the environment and
the colleagues of our lab for many fruitful discussions.

7. Literature

[BAT 78]

Bates, M., "The Theory and Practice of Augmented
Transition Network Grammars”, in: Bole, L. (ed), "Natu-
ral Language Communication with Computers”, Berlin
1978

[CHR 83]

Christaller, T., "An ATN Prgramming Environment”,
in: Bole, L. (ed), "The Design of Interpreters, Compilers,
and Editors for Augmented Transition Networks”,
Berlin 1983

[GNE 82]

Gnefkow, W., "Studien zu einer Programmierumgebung
fir Augmented Transition Networks”, Memo ANS-3,
Universitat Hamburg, 1982

[GRI 75]

Grimes, J. (ed) "Network Grammars”, Summer
Institute of Linguistics, University of Oklahoma, 1975
[KAP 73]

Kaplan, R. M., "A General Syntactic Processor”, in:
Rustin, R. (ed), "Natural Language Processing”, New
York 1973

[KEH 80]

Kehler, T.P., Woods, R.C., "ATN Grammar Modelling in
Applied Linguistics”, Proc. 19th ACL Meeting, 1980
[WOO 70]

Woods, W.A., "Transition Network Grammars for Natu-
ral Language Analysis”, Comm.of the ACM 13(10), 1970

6
GAY DET (T T

VESETR bE
(IO BpDEL

N
\

401

A LANGUAGE FOR TRANSCRIPTIONS

paper submitted for
COLING 86

Bonn

Yves LEPAGE

GETA, BP 68
Université Scientifique et Médicale de Grenoble
38402 Saint-Martin-d’Héres, FRANCE

(final draft,

ABSTRACT

To deal with specific alphabets is a necessity in
natural language processing. In Grenoble, this problem
is solved with help of transcriptions. Here we present
a Jlanguage (LT) designed to the rapid writing of
passage from one transcription to another (transducers)
and give some examples of 1fs use.

Transcriptions, transducers, multi-alphabet text
processing, logical and physical processing of texts.

In the general framework of natural language
processing, the possibitities of interfaces provided by
the current devices are rather poor, when considering,
for example, the number of alphabets to be used. The
problem of uppercase/lowercase letters, that of
non—-latin alphabets, not mentioning ideograms, is
usually solved by the use of transcriptions 1n computer

“science circle dealing with natural tanguages
<BOITET83>.

Our 1idea 1iJs to provide a rather simple device
aliowing rapid writing of programs performing the
passage from one transcription to another (transducers,
<KAIN72>)}, with help of a language (LT or Language for
Transcriptions) based on an abstract automaton. The
definition and the 1mplementation of this language were
initiated during an engineering school project
<MENGA84> . The work on this Specialised Language for
Linguistic Programming (SLLP) has ‘lted to a first
version <LT85> in the context of a GETA/USMG project.
It has then been extended 1in the frame of EUROTRA
contract ETS-5 <ETS5>.

This paper presents:

- the semantics of LT in automata theory;
~ the syntax of LT briefly described;

~ indications on the implementation;

- some applications.

1. SEMANTICS OF LT IN AUTOMATA THEORY

1. "BASIC" TRANSDUCER

Transduction may be regarded as a simultaneous
operation of reading and writing, writing beling a
funct ton of reading <AHO,UL72>, <CHAUCHE74>. A
transducer 1s a machine with an input tape and an
output tape.

402

April 1986)

input tape
READING HEAD

state

writing head
output tape

Given a state and a character read, the transducer
goes 1into another state and determines which character
to write onto the output tape (transition).

The most simple transducer is deterministic and
regqular

- 1t has only one input tape and only one output
tape;

- there 1is only one way for reading and writing
(rightwards});

-~ 1t reads only one symbol at a time; 1t writes
only one symbol for one symbol read;

- there are no other objects such as stacks or
balloons.

2. THE ABSTRACT AUTOMATON QOF LT

The "basic" automaton is extended in LT into three
directions

1. availability of the right context by means of two
reading heads. The transition is function of the
head ("forward" or "current") used in the reading
of the input tape. A special transition performs
the return of the "forward" head onto the
position of the "current" one. This permits to
simulates the reading of the empty string and
places the abstract automaton of LT in the class
of the “"sequential transducers" as defined 1n
<KAINT2>;

2. use of the notions of attributes in the states.
A state i{is an etiquette with attributes. The
values of some attributes are tested before a
transition (condition) and the values of some
attributes are changed after (actions). This
theoretically increases the non-determinism of
the automaton;

3. work on strings and not only on characters, which
sets definitively the automaton in the class of
"sequential transducers".

§str x> <str y> ?str X’ > ?str y’'>

- | ‘ !

tA1=ai! [A1=ai"!
e | e !..._.._
v v
<str z> <str z’'>

The power of the LT automaton 14 restrained to a

transducer with the following characteristics:
- one input tape and one output tape;
~ determinism;
- states defined by etiguettes and attributes;

-~ two reading heads.

3. CLASS OF LANGUAGES ANALYSED BY t

The abstract LT transducer may be under-used as a
deterministic finite-state machine. So the class of
languages which can be analysed by LT comprises the
class of regular lanhguages.

On the contrary to what we wrote in <ETS5>, LT can
be used to define an acceptor of the famous
context-dependent Tanguage anbnch ., It is the
semi-regularity which permits to simuiate stacks. This
means that the class of Jlanguages analysed by the
abstract LT transducer comprises some of the
context-dependent languages.

Using the Chomsky hierarchy we say that LT can
analyse

= all the languages of class |.3;

- some of the languages of class LZ; to know 1f all
Tanguages 1n L2 can be analysed by LT is an open
problem;

- some of the languages of class I.1;

II. SYNTAX OF LT

SUMMAR

After a presentation of the syntax of the strings,
we introduce the definition of conditions and actions
based on the attributes.

With these three objects (strings, conditions and
actions) we define the rules which serve to write the
bundles.

Finally, we sketch 1he general structure of a LT
program. Incidentally, the concrete syntax of LT has
taken its inspiration from that of Ariane~78 <DSE1>.

1. _THE STRINGS

A string 1s a concatenation of simple strings. A
simple string may be a string of characters or
hexadecimal codes or special symbols for the end of the
1ine and the end of the file.

Any string of a certain length may be read with help
of a special designator.

There exist three other conventions for the output

tape to designate the same string as read in input, or
with Jetters only in upper-case or in lower-case.

2. _THE CONDITIONS AND ACTIONS

A condition is a first order predicate on the
attributes, expressed 1in the usual syntax (logical
connectors: no, and, or; parentheses allowed). The
attributes belong to one of the three classes: scalar,

set or arithmetic (inferior to an upper bound).

An action can be an assignment of a value to a

variable, a 1ist of actions carried out conditionally,
or, a block containing a 1ist of actions.

This notion is extended to three predefined actions.
The first has no impact at all on the semantics of ihe
transduction (displaying a message on an auxiltary
file); the two others, on the contrary, are significant
for the transduction (displaying a return code on the
error file and stopping the transduction; moving the
“forward" head back to the position of the "current"
head (semi-regularity)).

A rule describes a class of transitions of the
shape:

input string / condition == output string / actions

the symbol 7 at the head of the rule signifies that the
inpyt string is to be read under the "forward" head.

The philosophy of LT 1s to put together the possible
passages from one etiquette to another into a bundle of
the shape:

de <etiquettel> a <etiquette2> via
rulel rule?2 ... ruleN

4. GENERAL STRUCTURE_OF _A_LT_PROGRAM

A LT program ts divided into secttons.

~ One must give the initial state of the automaton.

u
- Others give the definition of attributes and
their initialisation.

~ Other optionat sections define gconditions,
actions and rules which can be referred to by

their names in the bundles.

~ The other sections give the bundles explicitely.

EMENTATIO

In order to facilitate programming in LT, an
environment for this language was written in
Prolog-Criss <PROLOG85>:

- The manager allows the maniputlation of LT
programs. The usual functions of an interactive
environment (PROLOG, APL) are defined: loading,
saving, editing, listing,

- The compiler was implemented with use of a
generator of analysers inspired from METAL
<METAL82>, but less powerful.

- The interpreter 1s a mock-up in Prolog which
works on the abstract trees resulting from
compilation.

The user must specify the Tiles which will be
the input and output tapes, and the LT program to
be interpreted. Interactive traces are possibie.

The design of a Pascal version of the
interpreter in order to increase the rate of
execution is currentiy in work.

1. EXAMPLE OF PROGRAM

To 1llustrate the syntax of LT, we give a piece of
the program for the analysis of AnBnCh on the next
page.

403

e +

etat initial <read_AB>

!
!
!
lvariables

! lastchar : (A, B, C, EOL) . -- last character read
{

t

f

!

¥+ Reading AnBn, reading alternatively A and B under
the current and the forward heads respectively.

de <read_AB> a <read_AB> via

{ A’ / lastchar = B == / lastchar

t? ‘B’ / lastchar = A == / lastchar

'de <read_AB> a <read_BC> via

1?2 ‘C’ / lastchar = A == / lastchar

tde «<read_AB> a <faili> via

! / lastchar = == ’'¥¥% Rejected string.’ eol
~=~ 1f not A

? / tastchar = A == ’'*#%% Rejected string.’ eol .
~= 1f neither B nor C

A
B

[9

Bon

¥+ Reading of BnCn : same principle as for AnBn.

I*x Final section for the analysis.

fde <read_C> a <success> via

1'C’ / lastchar = EOQL == ’*%* yalid string.’ eol
tde <read_C> a <fail> via

== ’‘*%%* Character C missing.’ eol

2. TRANSCRIPTIONS FOR DIACRITICS LETTERS

There exists 1in French a 1ot of diacritics and
accents. In the frame of Eurotra, a transcription for
the diacritics was proposed. Here 1s a text in the
Eurotra Short Transcription and 1ts responding form in
the actual French orthograph. The passage between the
two forms was performed by a LT program.

+
! Un certain Mortflory (1533), puis 1‘imprimeur
! Etienne Dolet (qut publia en 1540 De la Punctuation !
! de la Langue Franc!B5oyse, plus des accents d‘ycelle !
) 1’employel2rent notamment pour marguer 1a chute 1
' 'd’un e & 1’intellrieur d’un mot vraii3ment, !
! pait3ra, etc. {
! (Grellvisse, Le Bon Usage) !
+

| Un certain Montflory (1533), puis 1/1imprimeur

! Etienne Dolet (quil publia en 1540 De la Punctuation
! de la Langue Frangoyse, plus des accents d’‘ycelle)
! 1’employérent notamment pour marguer la chute d’un
I e & 1'intérieur d’un mot : vraiment, paira, etc.

| (Grévisse, Le Bon Usage)

The wuse of the LT language is not limited to the
transcriptions; one of 1ts interesting features, and
not the 1least one, 1s that ophysical and 1logical
processing of texts could be carried out with its help.

l.sp 2 !
l.us on !
|Avant-dernier exemple: f

In the previous text, the first two 1ines correspond
to formatting commands of SCRIBERE (a text formatting
software developped at GETA and based on SCRIPT, an IBM
text formatting software, <SCRIBERE85>) Transducers
have been written which reflect tables of informations
about punctuation, formatting commands and structural
segparators. Here 1is the result of the appiication of
the sequence of those transducers written in LT on the
following text.

404

1.sp 2 : type=format, format=paragraph,level=1,start=no!
1.us on : type=format, format=beg_underli,ievel=7,
] start=yes,ovi=end_underl1i

!

1
TAvant 1
- : level=g,start=no,content=hyphen !
tdernier !
texemple !
1 tevel1=3,start=no,content=colon !
et T T +
CONCLUSION

The language LT defined and implemented as above was
tested on various examples:

- passages from transcriptions to others (Russian,
Thai, Greek, ...);

- logical and physical processing of texts;

- analysis of the context dependent language
AnBnCn.

Though we intentionally limited the syntax of LT and
forced non—-determinism in the interpretation to fit our
purpose, the power of this language seems to be rather
sufficient for the applications 1t is specialised in.

<AHO,UL72> AHO Alfred V., ULLMAN Jeffrey D.
The Theory of Parsing, Translation _and Ceompiling
Prentice Hall series in Automatic Computation,
1972.

<BOITET83> BOITET Christian
Conventions de_transcription pour la saisie et pour
la révision de textes sous Ariane-78
Documentation du systéme russe-francais version
RUB-FRB

Rapport DRET n° 41, GETA, Grenoble, décembre 1983.

<CHAUCHE74> CHAUCHE Jacques
Transducteurs & Arborescences
Etudes et realisation de systémes_appligués_aux
grammaires transformationnelles
Thése d’Etat, Grenoble, décembre 1974.

<DSE1> BOITET Christian, editor
Le point sur Ariane-78 début 1982
(Volume 1, Partie 1 le logiciel) avril 1982
Convention ADI n° 81/423
Cap Sogeti Logiciel - GETA-Champollion

<ETS5> LEPAGE Yves, VAUQUOIS Philippe
Logiical and_physical processing of texts
Eurotra contract ETS5, Part B
Intermediate report number 2, September 1985

<KAIN72> KAIN Richard Y.
Automata _Theory : Machines and Languages
Mac Graw-Hi11 Computer science-series 1972

<L.TB5> LEPAGE Yves
LT, un_langage de transduction, manuel utilisateur

Internal document, GETA, September 1985

<METAL82> MELESE Bertrand
METAL, un langage de spécification pour le _systéme
MENTOR
T.5.1I. vol.1, n°4, 1982, pp 275-285

<MENGAB4> MENGA Daniel
Le langadge de transduction LT
Rapport de troisiéme année ENSIMAG, Juin 1984

<PROLOG85> CRISS-Universitée II

PRQLOG CRISS, une extension dy tangage Prolog
(Version 4.0)

CRISS-Untversité II Grenoble, julllet 1985

<SCRIBERESS> BACHUT Daniel, VERASTEGUI Nelson
SCRIBERE
Internal document, GETA, April 1985

