SCSL : a linguistic specification language for MT

paper presented for
COLING-86
Bonn, 25-29 August 1986

by
Rémi ZAJAC
GETA, BP 68

Université de Grenoble
38402 Saint-Martin-d‘Héres, FRANCE

ABSTRACT Nowadays, MT systems grow to such a size that a input/output specification and may partially depend
first specification step {5 necessary if we on the kind of SLLP to be used for implementation.
want to be able to master their developement It should be as formal as possible, at least a
and maintenance, for the software part as well strictly normalized document
for the tinguistic part ("lingwares").

Advocating for a clean separation between 3. Implement the module specified using a particular
Tinguistic tasks and programming tasks, we SLLpP.
first introduce a specification/
implementation/ validation framework for NLP 4. Validate the implementation : the interpreter of
then SCSL, a language for the specification of the specification language should be used to
analysis and generation modules. prepare a set of valid inputs/outputs; the results

of the execution of the module to be validated on
the input set is compared to the output set.
KEY -WORDS Machine Translatton, Natural Language
Processing, Specification tanguage. An integrated software environement offering the
developement tools and insuring the coherence between the
developement steps should be provided to facilitate the
use of the methodology.

As a first step toward this direction, we introduce a
1. INTRODUCTION linguistic specification language for which an
interpreter i{s being implemented. Those tools are used
in the first and fourth steps as defined below and are
In most NP and second generation MT systems, the being 1{ntegrated {in a specialized environement based on
information computed during the process 1s generally the specification language <Yan86>.
represented as abstract trees, very common description
tools used in linguistics. The modules implementing the
various steps are written in Specialized iLanguages for
Linguistic Programming {sLLP) (see for example
<VauquoisBBa>, <Nakamura84>, <Slocumfd>, <Maas84>).
II1. LINGUISTIC SPECIFICATION

In spite of the expressive power of SLLP compared to
traditionnal programming languages such as LISP, the
conception and the maintenance of programs become more

and more difficult as the complexity of "lingwares” i. A _SPECIFICATION FORMALISM
grows.

To take up this challenge, we introduce in the field Before presenting the specification language itself,
of computational Tinguistics the specification/ we shall consider what properties that such a Yanguage
implementation/ validation framework which has been should have.

proved valuable in traditionna) programming. This leads
to the intoduction of new tools and new working methods.

The expected benefits for computational linguists are Most problems in NLP systems are found in the analysis
allowing them to facilitate the conception of the stage (and some 1in the transfer stage in MT systems).
tinguistic parts of NLP systems, to increase the speed of The major gain should be to clarify the analysis stage
realisation, to improve the reljability of the final using the proposed framework. Thus, a linguistic
system and to facilitate the maintenance. ’ specification language should

Writing an analysis program with a SLLP, the ~ define the set of valid input strings;
computational tinguist nmust define the set of strings to
be analysed, the structural descriptor corresponding to - define the correasponding ouputs (structural
an input string, the strategies used for the computation descriptors of strings);
of the descriptor, the heuristics used for ambiguity
choices and the treatment of wrong inputs (errors). He - define the mapping between those two sets.
generally writes a more or less precise and comprehensive
document on those problems and begin programming from Analysis and synthesis are two complementary views of
scratch. This method is highly unfeasible with large a language defined by a formal grammar. We should
1ingwares. We advocate for the use of a more stringent reasonably expect that a 1Yinguistic specification
methodology which consist of : language should be equally used for the specification of

analysis and synthesis modules <Kay84>.
1. Specify formally (i.e. using a formal language) the

valid inputs and the corresponding outputs : the Formal grammars define formal languages, and formal
specification must be comprehensive and neutral grammars does not make any reference to the situation
with respect to the choices of implemantation. At (the gliobal context in which sentences are produced),
this stage, the computational 1inguist is concerned thus formal Jlanguages used to describe natural language
only with linguistic problems, not with sub-sets must allow the expression of ambiguities and
programming. An interpreter for the specification paraphrases. An  element of the mapping should be a
language shoutd be wused to write and debug the couple (string, tree) where many trees are generally
specification. associated to one string and conversely, many strings are

assoctfated to one tree.
2. Specify the implementation choices for data

structures and control (decompostion into modules, Tha advantage of modularity 1is admitted and the
strategies and heuristics) and the treatemant of description of the mapping should be done piece by piece,
errors. This specification depends on the sach piece describing a partial mapping and the total

393



mappting 158 then obtained by the composition of partial
mappings (e.g. unification as in FUGs <Kay84>)

An  important feature of such a language is that a
linguistic specification should be written by linguists
who have no a priori knowledge in computer science : a
Tinguist must be able to concentrate only on liguistic
problems and not on computer science problems. The
formalism should be clean of all computer science
impurities, the mechanism of composition should be clear
and simple.

Within this framework, a graphic formalism for the
specification of procedural analysis or generation
grammars, the "Static Grammars" (SG) formalism has been
developped at GETA under the direction of Pr.B.Vauquois
<Vauquois8hb>. This formalism is now used in the French
MT National Project to specify the grammars of an
industrial English-French system. Up to now, SGs were
hand-written and cannot be edited on computer because of
the use of graphs. This formalism has been modified in
order to realize a software environement based on SG
(structural editor, interpreter, graphic outputs, ...).
It 1is called "Structural Correspondance Specification
Language" (SCSL). A grammar written in SCSL is called
"Structural Cortrespondance Specification Grammar" (SCSG).

SCSL (sect.IIl) allows one to write the grammar of any
interesting formal language such as programming languages
or sub-sets of natural languages. This formalism is quite
general and does not depend on a particular linguistic
theory. GETA, under the direction of Pr.B.Vauquois, has
elaborated 1ts own linguistic framework and methodology
from which this work directly descends, but it is
nevertheless perfectly possible to write grammars within
different linguistic frameworks. We emphasize this point
because the distinction between the formalism properties
and the linguistic theory properties is not always clear.
Moreover, it may be tempting to wire the properties of
some linguistic theory within a particular formalism, and
this is sometimes done, teading to confusion.

2. IMPLEMENTATION AND VALIDATION OF LINGUISTIC MODULES

As mentioned earlier, a SCSG 1is wused for the
specification of analysis or generation modules written
in one of the SLLP of the ARIANE system. Defining a
mapping, a SC3G is neutral with respect to tmplementation
choices which are essentially algorithmic 1in nature
{(organisation 1in modules, control, etc) and with respect
to iIntrinsic ambiguity choices which are essentially
heuristic in nature.

The same SCSG may be used to specify the inputs/ouputs

of different procedural grammars, each of which
implementing different strategies and heuristics for
comparative purposes the result must nevertheless

correspond to the same specification.

The interpreter (nhot yet fully implemented) is used
for debugging =2 SCSG (tests, traces, ...) and for the
empirical validation of procedural grammars for analtysis
or generation: the function computed by a procedural
grammpar must be included in the mapping defined by the
SCSG specifiying the procedural grammar.

The interpreter may compute the trees corresponding to
an 1input string (analysis) or the strings corresponding
to an input tree (generation). A chart identifier may
define an entry point for the interpreter.

Before an execution, one can type in different trace
commands . At the end of an execution, the trace and the
derivation may be printed.

One can trace for different charts (step-by-step or
otherwise) a tentative application of a chart, a sucess,
a failure or a combination of these parameters. In the
step-by-step mode, the interpreter stops on each traced
trial/sucess/failure and 1{t is possibie to type in new
commands (trace, untrace, stop) and chose the hext chart
to be applied.

An output trace element have the following general
pattern (several levels of details are avaible) :

<chart_id>, <tree_occurence>, <strinhg_occurence>.

394

ITI. THE LANGUAGE

To give a flavour of the specification language, we
introduce a simplified version. Unnecessary (but
essential for practical use) constructs of the tanguage
are removed. A more abstract view has been studied in
<Zaharin86>.

A 5CSG describe simultanesously
.

- the set of strings of the language;
- the set of structural descriptors of the language;
- the mapping between those two sets.

A SCSG 1is composed of "charts". The mapping between
the string lTanguage and the tree language is decribed in
parts : a chart decribes a partial mapping (set of valid
sub-strings <-> set of valid sub-trees), the total
mapp I ng is obtained by the composition of partial
mappings (sect.IV).

SCSL is a language using key-words : every important
syntactic unit begins with a key-word (e.g. CHART).
Identifiers begin with at least one lotter, designators
begins with at least one digit. Designators are preceded
by a prefix indicating their type.

A SCSG begins with the declaration of labels and
decorations, and then folltowed by the charts. Charts
consist of a tree part and a forest part describing
respectively a tree pattern and a forest pattern. We
then have the contexts part and lastly the constraints
part (sect.III.2).

SCSL  do not have the concept of assignement : a chart
defines correspondance between a tree and a forest
constrained by a boolean expression on the patterns of
the chart.

The basic construct of the language is a Tabeled and
decorated tree pattern each node of the described
trees 1{s a couple (label, decoration). The label have
the string basic type, the decoration have a hierarchical
definition which use the SCALAR and SET constructors. A
constraint s a boolean expression on the labels and
decorations of the nodes of the patterns.

1. LABEL, DECORATION AND TREE PATTERNS

Most of SLLP use trees as basic data structure. Some
associate to a tree or to a node attributes, essentially
a set of variable/value pairs which may be manipulated
with a few operators. To offer a more powerful
description tool, a SCSL hode tree {s a couple (label,
decoration) where the decoration 1is a hierarchical
attribute structure. This is intended to facilitate the
manipulation of complex sets of attributes through a
unified view.

1.1. Label

The label 1is +traditionally a non-terminal of a
grammar, but {1t may be viewed as a particular attribute
of a tree. The type definition of labels is expressed
with a regular expression. The operation on this type is
equality.

Exemple
CABEL 1bl = ( "b".("a")* )+ 4 NGM 4 AN 4 wRW

1.2. Decoration

The decoration is tnterpreted as an oriented
non-ordered tree where attribute identifiers (SCALAR or
SET type) are the labels of the nodes and the values of
the attributes are the forests that they dominate (in the



actual version of SCSL, atiributes may have the STRING or
INTEGER types with the associated operators)

For the SCALAR type, the operation is equality. For
the SET type, the operations are union, intersection and
set difference. Relational operators are equality,
menbership and tnclusion.

The operations are defined on a hierarchical set
structure one must indicate on which tevel an operation
is defined by suffixing the operator with an integer. The
default value 1is the first level; "*" is used for the
deepest level

Examples
a(b,c(e,f,a{g1,92))) = a(c(h,f,g),b) is true

a a
! b
! !
c b
!

! tor ot
o] h f g

g1 92

a(b,c(e,f,glg1,92))) =2 a(d,c(e,g)) is false

a(b,cle,f,o(g91,92))) =* alc(e,g(gl1,02),f),b) is true

a a
o —
1 1 t I
b el [+] b

R P =% PR

[ oot

e f g e g f

[ !
! t ! !
gl g2 gi g2

Toy example of decoration for noun phrases

DECORATION deco SET (
semantic_relation SCALAR (
instrument, quantifier, guatlifier)

syntactic_function SCALAR
coordination, governor, subject),

SCALAR (
noun : SCALAR (

semantic SET (animate, measure))
adjective SCALAR (

ordinal, cardinal, noun_phrase_quantifier}
determiner SCALAR (quantifier)
subordinator SCALAR (preposition) )

category

1.3. _Tree pattern

The basic notion of the Jlanguage is a labeled and
decorated tree. The types of a node, a tree, a forest are
def ined by the declaration of the labels and the
decorations.

A chart should be
Tinguistic fact

a comprehensive description of a
which may have different realisations
the decoration allow the manipulation of sets of
attributes at different levels of detail, the structure
should describe a whole family of trees.

The structure of a +tree pattern is described with
designators which are implicitly declared. The scope of a
designator s taduced to a chart. A desighator begins
with one digit.

- a _node designator is prefixed with ".". The content
of a node {s accessed by means of decoration and

label tdentifiers : the Jlabel of a node .1 is
accessed by 1bl1(.1) (if the label is declared as
"1b1"), its decoration by deco(.1).

- a__tree designator is prefixed with "a". The tree

may be reduced to a singte node.

- a forest _designator 1is prefixed with “$". The

forest may bhe empty.

A  tree pattern describe a set of trees, each tree
being completely describe in width and depth.

Example : the pattern .0( $2, .3(.4, $5), $6 )
[}
—

!
! !
3 $6
!

$2

may be instantiated by

: a
b(c,d) , e , f(g)
h

1
k(Y ,m)
@

oy
ES
wonotowon

Here, labels are for a couple {label, decoration).

2. CHARTS

A chart has the following pattern

CHART <chart_1id>

<TREE> -~ tree pattern,

<FOREST> -~ sequence of tree patterns,

<LEFT CONTEXT> -- set of cuts of the derivation tree
<RIGHT CONTEXT> -~ containing the tree pattern.
<CONSTRAINTS> -- boolean expression on labels and

-- decorations.

2.1. Tree and forest parts

The tree part describes a set of

following syntax

trees with the

TREE <tree_pattern>

The forest part
the following syhtax

describes a set of sub-strings with

FOREST <forest_pattern>

The element of the forest pattern may be
- a string element described directly;

described
structure

- a sub-string
corresponding
chart,

indirectly wusing the
(tree), defined by some

395



396

The forest pattern s a sequence of tree patterns
described by a regular-like notation a tree pattern
suffixed by "+" may be iterated, by "?" optional and by
okt optional or {terated. Contrary to regutar
expressions, one cah use these notations for sinhgle tree
patterns only.

To have simpler notations, an i{terated tree pattern,
e.g. ( .1(.2,.3) )+, will be written .1*(.2,.3) and the

same convention will hold for *?" and "+". Such a
pattern must be used as a whole and is interpreted as a
list a boolean expression on nodes of such a pattern

is interpreted as an expression on the nodes of each tree
of the list.

Example : 17, .3%($4) , .5+(%$6)

- the node designated by .1 may be absent;

- the tree designated by .3($4) may be absent or
iterated;
- the tree designated by .5($6) must be present and

may be i{terated;

2.2. Corresponhdance and_constraints

a) Implicit correspondance between tree and forest

To avoid the duplication of the same constraints in
the tree part and 1in the forest part, we allow the
following notation facility.

The same node designators in the tree pattern and the
forest pattern represent distinct objects related to each
other in the following manner

if C(T.x) 1s the set of constraints on a node T.x of
the tree part and C(F.x), the set of constraints on the
node F.x of the forest part, then node T.x verify C{T.x)
and the constraints of C(F.x)} which are not contradictory
with those of C(T.x) (and conversely for node F.x)}.

This relation may also be explicitly stated for nodes
having different designators using the predefined CORRES
function.

Some formal constraints l1inking the tree pattern and
the forest pattern are verified at compile time to ensure
decidability.

b)_Constraints

The constraints part is a boolean expression on labels
and decorations of chart pattern nodes. All classical
boolean operators are available (and, or, exclusive or,
not, imply, equivalent).

Designators are prefixed by A for the tree part and F
for the forest part. An expression using non-prefixed
designators 1is interpreted as an expression on the
designators of the tree part and of the forest part. The
designators of context patterns must be different from
the tree part and forest part designators.

Example

CONSTRAINTS CORRES(T.1, F.4)

& degre(T.0)=degre(F.4)

& ( (degre(T.B)'=degEeo & degre(F.1)=degre(F.3))
V (degre(T.3)=degre0 & degre(.1)=degre(.4)) )

2.3. Contexts

A partiatl mapp ing described by a chart in a
context-free manner may be subordinated to contextual
constraints on the left or right context of the described
set of sub-strings. This is a powerful tool to describe
contextual constraints, co-references, wh-movements, etc.
A context element 1s a sub-string which is described with
a corresponding tree pattern.

A tree pattern of the context pattern is a member of a
cut of the derivation tree of the context-free skeleton
a context pattern describes a set of cuts i{in the
derivation tree (sect.IV.2)

A context pattern is a forest pattern where each tree

pattern may be prefixed by the “not" boolean operator
("""), 1indicating the mandatory absence of the tree
pattern. Context designators must not be used in other

parts of the chart.

Examples : we give some examples of right contexts and
thetr interpretations. The constraint C(.5) is written

for a
.5.

boolean expression on the label and decoration of

-~ there exists a cut such that the first element of
this cut verify C :
RCTX c{.5)

.5($86) CONSTRAINTS

- the first element of each cut verifies C(.5)

RCTX ".5($6) CONSTRAINTS “C.5%)

- there exists a cut and there exists an element of
this cut such that C(.5)

RCTX adx , .5($6) CONSTRAINTS Cc(.5)

CHART bx39

TYPE simple NOUN PHRASES.
CASES absorption of left and right adverbs.
EXAMPLES “some of the books",
"at Teast two tables".
TREE .0 (.17, $5, .2, $6, .37 )
FOREST .12 , .0( $5, .2, $6) , .3?
RCTX LA($7)
CONSTRAINTS

etiq(T.0)="nps" & k(T.0)=np
& sf(T.17)=des
& sf(T7.37)=des

-- constraints on forest nodes !

etig(F.0)="np" & k(F.0)=np
etiq(F.1?) " ="ago"

(cat(F.1)=2 a(npmd)} V cat{F.1)=2 a(npqtf))
sf(F.2)=gov

cat(F.3?)=2 a(npmd)

( EXIST(F.1?) V EXIST(F.37?) }

-- EXIST is a predefined boolean functian
~-=- testing the existence of an instance :
-~ there must be an instance of .1 or .3

PEREPPPP

-- constraints on right context and forest nodes
& ( EXIST(.G?) =>
(etiq(.4) ="np" v etiq(F.3)="ago"))

1
!
1
i
1
1
1
1
!
i
1
|
1
i
1
1
!
1
!
t -- constraints on tree nodes
1
i
t
1
1
1
!
!
1
1
i
!
f
1
!
i
1
f
1



Instance of tree _and forest patterns for “"some of the
booksg" :

L0 < "npe'.d .37 <- @

.17 <~ "some".2 $5 <- "of".3 "the".4

.2 <- "pooks".§5 $6 <- @
R e e L LT +
! !
! bx39 !
! ]
! TREE "nps" .1 !
! ! I
! ! !
! ! 1 ! 1

1 ! 1 1 1

! "some".2 ‘'of".3 ‘“the".4 ‘“books".5H

i 1
! "npc'. deco( k(np), cat(n) ) 1
t "sone" . 2 deco( cat(a(npqtf)), sf(des) )

! vof'. 3 ¢ deco( cat(s(prep))), sf{reg) )

! “the".4 deco( cat(d), sf(des) )

! "books" .5 deco( cat(n{nc)), sf(gov) )

! {
! |
1 1
1 FOREST npt. i !
1 ] 1
! t 1
1 1 1 ! 1
! ! ! !
! "some" .2 s "of".3 “the'".4 '"books".§ !
! !
! npt.1 daco( k(np), cat(n) ) !
! "some" .2 deco( cat{a(npgtf)) ) !
! “of". 3 deco( cat(s(prep))), sf(reg) ) 1
! "the".4 deco( cat(d), sf(des) 1
1 “books".5 deco( cat(n(nc)), sf(gov) ) !
! 1
+

Chart instance on "some of the books"

1V, THE DERIVATION MECHANISM

1. ELEMENT OF THE MAPPING

An  element of the mapping defined by a SCSG is a
coupte (string, tree) where the correspondance 1s defined
faor each sub-tree,

- The string {is displayed as a linear graph labeled
with string elements (terminals of the grammar)

- The tree is a correspondance tree to each node is
assoctated a list of paths of the string graph (the
carrespondance is generally not projective, e.g.
representing the "respectiviy" construct)

Example of the couple for the string "some of the

books™"

R e i T I PV +
! !
! bx39 !
] !
! TREE t
! !
! 1 !
! t 1
! * I !
! ] 1 [ ] !
1 ! ! ! 1 1
! “some".2 “of".3 "the".4 “books".H

1 !
1 “npct. 1 : deco( k(np}, cat(n) ) 7 (0,4). !
! "some".2 : deco{ cat(a(npqtf)), sf(des) ) ; (0,1). !
{ "ot".3 deco( cat(s(prep))), sf(reg) ) : (1,2). !
! "the".4 deca( cat(d), sf(des) ) i (2,3).

! "books".5 : deco( cat{n(nc)), sf{gov) ) ; (3,4). !
! !
! !
1 STRING !
!

t 0- "some".2 -1- "of".3 -2- "the".4 -3- "books".5 -4 !
i !
! "some".?2 deco( cat{a{npqtf)) ) : (0,1). !
! "of".3 deco( cat(s(prep))) ) ; (1,2).

! "the".4 deco{ cat{(d) ) 5 (2,3).

! "books".5 : deco( cat{n(nc)) ) (3,4).

! 1
o e o e e o +
Figure 3 Aplication of bx39 on "some of the books"

2. DERIVATION IN THE CONTEXY-FREE FRAMEWORK

In the context-free framework, a chart may be seen as
a rule {n the PROLOG II flavour

CHART ( tree, string ) ->
TERMINAL(nodel, sstringil)
<*chart, tree2, sstring2>

EVAL(constraints)
ARC(tree, string, context) ;

-  CHART 1s the chart identifier,
- (tree, string) is the computed couple,
- IERMINAL {5 a string element definition,

- *chaprt a variable that will be instantiated witth a
chart identifier,

- EVAL 1is a predicate that evaluate the constraints
part,
- ARC make the reduction and memorize the contexts

for future evaluation.

The algorithm of the context-free skeleton 1is a

bottom-up version of Earley’s algorithm defined and used
by Quinton <Quinton80> in the KEAL speech recognition
system.

For the sake of clarity, the 1{nput tape and the
factorized stack may be represented as a C-graph.
Executing an analysis, the interpreter receives a 1inear
labeled C-graph and works by adding on arcs for each
reduced constituent. Ay arc is Tabeled by a
correspondance tree, the contexts to be evaluated and

pointers to the reduced constituents.

397



Example of a derivation tree for the string "some of REFERENGES
the books". The couple calculated 1s written beside the
chart identifiers.

<Boitet8G5> BOITET C., GUILLAUME P., QUEZEL-AMBRUNAZ
B2 il diei bbbl + M. A case_study in software evolution : from ARIANE
78.4 1o ARIANE__B5 Proceedings of the Conference on
Theoretical and Methodological issues 1in Machinhe
Translation of Natural Languages, Colgate University,
Hamilton, N.-Y., U.S.A, August 14~16, 1985,

DERIVATION TREE
bx39 < nps(some,of, the,books) ,(0,4) >
1

!

! !
"some" bx38 < nps(of,the,books) ,(1.4) >
!

<Kayg84> KAY M. Functionnal Unification_Grammar : a
formalism for Machine Translation Proceedings of
COLING-84

1

1

!

! !

!

! i

!

i 1

1 1

! 1 ! <MaasB84> MAAS H.~D. The MT system SUSY presented at
1 1 1 ! the 1ISSCO Tutorial on Machine Translation, Lugano,
1 "of" bx37 < nps(the,books) ,(2,4) > ! Switzerland, April 2-6, 1984.
! !
! !
! !
! 1
1 I
1 1
t !
1 !
! !
! !
! !

1 <NakamuraB84> : NAKAMURA J., TSUJI J., NAGAO M. Grammar
Writing System _(GRADE) of Mu-Machine Translation
Project and its caracteristics Proceedings of

COLING-84.

! 1
"the" bx5 < npe(books) ,(3,4) >
1

"books"

<Quintong80o> : QUINTON P. Contribution a 1a
reconnalssance de la parole., Utilisation de méthodes
heuristiques pour la reconnaissance de phrases Thése
de Docteur és Sciences en Mathématiques, Université
de Rennes, 1980.

STRING

0- "some" ~1- "of" -2- "tha" -3- *books" -4

<Slocum84> : sLocum  J. METAL . the LRC Machine
Figure 4 : Derivation for "some of the books" Translation System presented at the ISSCO Tutorial on
Machine Translation, Luganho, Switzerland, April 2-6,

1984,

<Vauquois85a> : VAUQUOTS 8., BOITET C. Automated
3. CONTEXT EVALUATION Yranslation at___Grenoble University Computational
Linguistics, 11/1, pp 28-36, January-March 1985,

A context is evaluated during a traversal of the cuts <Vauquois85b> : VAUQUOIS B., CHAPPUY 5. Static
of the derivation tree which go through the node Grammars . a formalism for _the description _of
containing the couple (string, tree). linguistic_ models Proceedings of the Conference on

Theoretical and Methodological issues in Machine

A context pattern memorized on an arc {x, y) describes Translation of Natural Languages, Colgate University,
cuts In the derivation tree. For a C-graph with input Hamilton, N.-Y., U.S5.A, August 14-16, 1985.
node 1 and output node 0, these cuts are represented by
paths from y to 0 (for a right context). A right context <Yang86> : YAN Y.-F. Structural Correspondance
evaluation is thus reduced to the search of a sub-C-graph Specification Environement Proceedings of COLING-86
from y to O.

<Zaharingé> ZAHARIN Y. Strategies and Heuristics in
the Analysis of a Natural Language in_Machine
Iranslation Ph.D. Thesis, Universiti Sains Malaysia,
Penang, March 1986. Research work under the
GETA-USMG Cooperation (GETA document).

V. CONCLUSION

In the study and developement of future industrial MT -D~0"0-0-0-0~0-0"

systems, the definition and imptementation of linguistic
parts raise mahy problems partly due to the size of the
systems, and we hardly need rigorous methods of
developement . The chaltlenge is to theorize the line of
activities which go from the formal specification of an
informal problem to the proof of correctness of the
corresponding program, and this {in the field of
linguistic programming.

As a first step 1in this direction, within the
spectfication/implementation/valtdation framework, a
software environemant 1s being developed based on a
1inguistic specification language.

This language allows linguists to specify analysis and
generation modules for natural language sub-sets and the
interpreter allows empirical validation of
implementations. The language 1s actually used to specify
the grammars of the French MT National Project, and for
all new developements carried out in GETA.

For further work, extensions are studied, specially
the specification of transfer modules. Work is also being
engaged to davelop rigorous linguistic programming
methods using SLLP provided with $CSG specifications.

398



