A Simple Reconstruction of GPSG

Stuart M. Shieber

Artificial Intelligence Center
SRI International

Center for the Study of Language and Information
Stanford University

Abstract

Like most linguistic theories, the theory of generalized phrase
structure grammat (GPSG) has described language axiomati-
cally, that is, as a set of universal and language-specific con-
straints on the well-formedness of linguistic elements of some sort.
The coverage and detniled analysis of English grammar in the
ambitious recent volume by Gazdar, Klein, Pullum, and Sag enti-
tled Generalized Phrase Structure Grammar [2] are impressive, in
part because of the complexity of the axiomatic system developed
by the authors. In this paper, we examine the possibility that
simpler descriptions of the same theory can be achieved through
a slightly different, albeit still axiomatic, method. Rather than
characterize the well-formed trees directly, we progress in two
stages by procedurally characterizing the well-formedness axioms
themselves, which in turn characterize the trees.

1 Introduction!

Like most linguistic theories, the theory of generalized phrase
structure grammar (GPSG) has described language axiomati-
cally, that is, as a set of universal and language-specific con-
straints on the well-formedness of linguistic elements of some
sort. In the case of GPSQG, these elements are trees whose nodes
are themselves structured entitics from a domain of categories
(a type of feature structure [6]). The proposed axioms have be-
come quite complex, culminating in the ambitious recent volume
by Gazdar, Klein, Pullum, and Sag entitled Generalized Phrase
Structure Grammar [2]. The coverage and detailed analysis of
Fnglish grammar in this work are impressive, in part because of
the complexity of the axiomatic system developed by the authors.

In this paper, we examine the possibility that simpler descrip-
tions of the same theory can be achieved through a slightly dif-
ferent, albeit still axiomatic, method. Rather than characterize
the well-formed trees driectly, we progress in two stages by pro-
cedurally characterizing the well-formedness axioms themselves,
which in turn charactetize the trees. In particular, we give a pro-
cedure which converts GPSG grammars into grammars written

!T'his research was made possible by a gift from the System Devalopment
Foundation.

1 am indebted to Lauri Karttunen and Ray Perrault for their comments
on earlier drafts, and to Roger Evans, Gerald Gazdar, Ivan Bag, Henry
Thompson, and members of the Foundations of Grammar project at the
Center for the Study of Language and Information for their helpful dis-
cussions during the development of this work.

in a unification-based formalism, the PATR-II formalism devel-
oped at SRI International (henceforth PATR) [5], which has its
own declarative semantics, and which can therefore be viewed as
an axiomatization of string well-formedness constraints.?

The characterization of GPSG thus obtained is simpler and
better defined than the version described by Gazdar et al. The
semantics of the formalism is given directly through the reduction
to PATR. Also, the PATR axtomatization has a clear construc-
tive interpretation, unlike that used in Gazdar ¢t al., thus mak-
ing the system more amenable to computational implementation.
Finally, the characteristics of the compilation—the difliculty or
ease with which the various devices can be encoded in PATR- -
can provide a measure of the expressiveness and indispensability
of these devices in GPSG.

2 The GPSG Axioms

2.1 A Summary of the Principles

GPSG describes natural languages in terms of various types of
constraints on local sets of nodes in trees. Pertinent to the ensu-
ing discussion are the following:

¢ ID (immediate dominance) rules, which state constraints of
immediate dominance among categories;

e metarules, which state generalizations concerning classes of
ID rules;

¢ LP (linear precedence) rules, which constrain the linear or-
der of sibling categorics;

o feature cooccurrence restrictions (FCR), which constrain the
feature structures as to which are permissible categories;

e feature specification defaults (I'SD), which provide values
for features that are otherwise unspecified;

and, most importantly,

?However, & caveat is in order that the detailed analysis from this perspec-
tive of the full range of GPSG devices (especially immediate dominance
(ID) rules, and feature cooccurrence restrictions) is not discussed fully
here, nor do I completely understand them. (See Section 3.4.) And while
in & confessional mood, I should add that the algorithm given here has not
actually been implemented.

211

o universal feature instantiation principles, which constrain
the allowable local sets of nodes in trees; these feature in-
stantiation principles include the head feature convention
(HFC), the foot feature principle (FFP), and the control
agreement principle (CAP).

In GPSG all of these constraints are applied simultaneously.
A local set of nodes in a tree is admissible under the constraints
if and only if there is some base or derived ID rule (which we
will call the licenssng rule) for which the parent node’s category
is an extension of the left-hand-side category in the rule, and the
children are respective extensions of right-hand-side categories in
the rule, and, in addition, the set of nodes simultaneously satis-
fies all of the separate feature instantiation principles, ordering
constraints, etc. By eztension, we mean that the constituent has
all the feature values of the corresponding category in the licens-
ing rule, and possibly some additional feature values. The former
type of values are called tnherited, the latter snstantiated.

The feature instantiation principles are typically of the follow-
ing form: if a certain feature configuration holds of a local set
of nodes, then some other configuration must also be present.
For instance, the antecedent of the control agreement principle
is stated in terms of the existence of a controller and controllee
which notions are themselves defined in terms of feature configu-
rations. The consequent concerns identity of agreement features.

2.2 Interaction of Principles

Much care is taken in the definitions of the feature instantia-
tion principles (and their ancillary notions such as controller,
controllee, free features, privileged features, ete.) to control the
complex interaction of the various constraints. For instance, the
FFP admits local sets of nodes with slash feature values on parent
and child where no such values occur in the licensing ID rule, i.e.,
it allows instantiation of slash features. But the CAP’s above-
mentioned definition of control is sensitive to the value of the
slash feature associated with the various constituents. A simple
definition of the CAP would ignore the source of the slash value,
whether inherited, instantiated by the FFP, or instantiated in
some other manner. However, the appropriate definition of con-
trol needed for the CAP must ignore snstantiated slash features,
but not inherited ones. Say Gazdar et al.:

We must modify the definition of control in such a way
that it ignores perturbations of semantic type occa-
sioned by the presence of instantiated FOOT features.
[2, p. 87]

Thus, the CAP is in some sense blind to the work of the FFP.
As Gazdar ct al. note, this requirement makes stating the CAP
a much more complex task.

The increased complexity of the principles resulting from this
need for tracking the otigins of feature values is evident not only
in the CAP, but in the other principles as well, The head feature
convention requires identity of the head features of parent and
vad child. The features agr and slash-—features that ean be
inherited from an ID rule or instantiated by the CAP or FFP,
respectively—are head features and therefore potentially subject
to this identity condition. However, great care is taken to remove
such instantiated head features from obligatory manipulation by
the HFC. This is accomplished by limiting the scope of the HFC
to the so-called free head features.

212

Intuitively, the free feature specifications on a category
[the ones the HFC is to apply to] is the set of feature
specifications which can legitimately appear on exten-
sions of that category: feature specifications which con-
flict with what is already part of the category, either
directly, or in virtue of the FCRs, FFP, or CAP, are
not free on that category. (2, p. 95]

That is, the FFP and CAP take precedence (intuitively viewed)
over the HFC.

Finally, all three principles are seen to take precedence over
feature specification defaults in the following quotation.

In general, a feature is exempt from assuming its default
specification if it has been assigned a different value
in virtue of some ID rule or some principle of feature
instantiation. {2, p. 100}

Gazdar et al. accomplish this by defining a class of privileged
features and excluding such features from the requirement that
they take on their default value. Of course, instantiated head fea-
tures, slash features, and so forth are all considered privileged.
However, a modification of these exemptions is necessary in the
case of lexical defaults, i.c., default values instantiated on lexical
constituents. We will not discuss here the rather idiosyncratic
motivation for this distinction, but merely note that lexical con-
stituent defaults are to be insensitive to changes engendered by
the HFC, as revealed im this excerpt:

However, this simpler formulation is inadequate since
it entails that lexical heads will always be exempt from
defaults that relate to their HEEAD features.... Accord-
ingly, the final clause needs to distinguish lexical cate-
gories, which become exempt from a default only if they
covary with a sister, and nonlexical categories, which
become exempt from a default if they covary (in rele-
vant respects) with any other category in the tree. [2,
p. 103]

Thus the interaction of these principles is controlled through
complex definitions of the various classes of features they are
applicable to. These definitions conspire to engender the fol-
lowing implicit precedence ordering on the principles, principles
earlier in the ordering being blind to the instantiations from later
principles, which are themsclves sensitive to (and exempt from
applying to) features instantiated by the earlier principles.?

CAP >4 FFP » 'SDy,, > HFC > FSD,ontce

Of course, all ID rules, both base and derived arc subject to
all these principles; yet metarule application is not contingent on
instantiations of the base ID rules. Conversely, LP constraints
are sensitive to the full range of instantiated features. The prece-
dence ordering can thus be extended as follows:

3Current efforts by at lcast certain GPSG practitioners are placing the
GPSG type of analysis directly in a PATR-like formalism. This formal-
ism, Pollard’s head-driven phrase structure grammar (HPSG) variant of
GPSG, uses a run-time algorithm similar to the one described in this pa-
per [4]. Highly suggestive iz the fact that the HPSG run-time algorithm
also happens to order the principles in substantially the same way.

*We use the symbol > to denote one principle “taking precedence over”
another.

META > CAP » FFP > [SDy,
= HI'C > FSDyonter > LP

The existence of such an ordering on the priority of axioms is,
of course, not a necessary condition for the coherence of such an
axiomatic theory. Undoubtedly, this inherent ordering was not
apparent to the developers of the theory, and may even be the
source of some surprise to them. Yet, the fact that this ordering
exists and is strict leads us to a substantial simplification of the
system. Instead of applying all the constraints simultaneously,
we might do so sequentially, so that the precedence ordering—
the blindness of earlier principles in the ordering to the effects of
later ones—emerges simply because the later principles have not
yet applied.

This solution harkens back to carlier versions of GPSG in
which the semantics of the formalism was given in terms of
compilation of the various principles and constraints into pure
context-free rules. This compilation process can be combinato-
rially explosive, yielding vast numnbers of context-free rules. In-
deed, the whole point of the G’SG decomposition is to succinctly
express generalizations about the possible phrasal combinations
of natural languages. However, by carefully choosing a system
for stating constraints on local sets of nodes——a formalism more
compact in its representation than context-free grammars—we
can compile out the various principles and constraints without
risking this explosion in practice.

The GPSG principles are stated in terms of identities of fea-
tures. What we need to avoid the combinatorial problems of pure
CT rules is a formalism in which such equalities can be stated
directly, without generating all the ground instances that satisfy
the cqualities. What is needed, in fact, is a unification-based
grammar formalism {6]. We will use a variant of PATR [5] as
the formalism into which GPSG grammars are compiled. In par-
ticular, we assume a version of PATR that has been extended
by the familiar decomposition into an immediate-dominance and
linear-precedence component. This will allow us to ignore the
LP portion of GPSG for the nonce.

PATR is ideal for two reasons. First, it is the simplest of the
unification-based grammar formalisms, possessing only the appa-
ratus that is necded for this exercise. Second, a semantics for the
formalism has been provided, so that, by displaying this compi-
lation, we implicitly provide a semanties for GPSG grammars as
well. In the remainder of the paper, we will assume the reader’s
familiarity with the rudiments of the PATR formalism.

3 The Compilation Algorithm

We postpone for the time being discussion of the metarules, LP
constraints, and feature cooccurrence restrictions, concentrat-
ing instead on the central principles of GPSG, those relating to
feature instantiation. The following nondeterministic algorithm
generates well-formed PATR rules from GPSG 1D rules. A GPSG
grammar is compiled into the sct of PATR rules generated by this
algorithm,

3.1 Preliminaries

We first observe that a GPSG ID rule is only notationally dis-
tinct from an unordered PATR rule. Thus, the first step in the
algorithm is trivial. For example, the 1D rule

S — X%, H|—subj) (Ry)

is written in unorderecd PATR as

Xo — X1, Xo
{(Xon) =~
(Xo 0) =+
(Xp bar) =2 (I2)
(Xo subp) = +
{(Xy bary =2
(X2 subg) =~

Note that abbreviations (like S for [—n, +v,bar2, -+-subj]) have
been made cxplicit.

In fact, we will make one change in the structure of categories
(to simplify our restatement of the HFC) by placing all head
features under the single feature head in the corresponding PATR
rule. We do not, however, add an analogous feature foot.> Thus
the preceding rule becomes

Xo — Xy, X
{Xo head n) = ~
(Xp head v) = +
(Xo head bar) == 2 (Rs)
{Xo head subg) = +
(X1 head bar) = 2
(X2 head suby) = —

We use an operation add, (read “add conscrvatively”) which
adds an equation to a PATR rule conscrvatively, in the sense
that the equation is added only if the equations are not therehy
rendered unsolvable. If addition would yield unsolvability, then a
weaker set of unifications are added (conservatively) instead, one
for each {eature in the domain of the value being equated. or in-
stance, suppose that the operation add.({ X head) = (X head))
is called for, where the domain of the head feature values (i.e.,
the various head features) are a, b, and c. If the equations in
the rule already specify that (Xo head ¢} # (X1 head a) then
this operation would add only the two equations (X, head b) =
(X1 head b) and {Xp head ¢) = (X head c}, since the addition
of the given equation itsclf would cause rule failure. Thus the
earlier constraint of values for the a feature is given precedence
over the constraint to be added.

In the description of the algorithm, a nonempty path p is said
to be defined for a feature structure X if and only if p is a unit
path () and f € dom(X) or p = {fp') and p' is defined for
X(f). Our notion of a feature’s being defined for a constituent
corresponds to the GPSG concepts of being instantiated or of
covarying with some other feature.

As in the previous definition, we will be quite lax with respect
to our notation for paths, using {{¢ &) ¢) and {(a (bc))} as
synonymous with {a b ¢) . Also, we will consistently blur the
distinction between a set of cquations and the feature structure
it determines. (See Shicber [7] for details of the mapping that
makes this possible.)

3.2 The Algorithm ltgelf

"Now our algorithm for compiling a GPSG grammar into a PATR

grammar follows:

5But recall that slash is a head feature and thus would fall under the path
({head slash) .

213

For each 1D rule of GPSG (basic or derived by metarule) Xq —
Xl, ey Xﬂi

CAP If X; controls X; (determined by Type(X;) and Type(X;)),
then add({(X; con) = (X; con)) where

(head slash) if (head slash) is defined for X

con = .
{head agr) otherwise

FFP For each foot feature path p (e.g., (head slash}), if p is not

defined for Xy , then add.({X; p) = (X, p}) for zero or more

i such that 0 < ¢ < n and such that p is not defined for X;.

FSD,,, For all paths p with a default value, say, d, and for all ¢
such that 0 < § < n, if {X; bar) = 0 and p is not defined for
X;, then add,({X; /i = d).

HFC Tor X; the head of Xy, edd,({X; head) = (Xo head)).

FSDyontez For all paths p with a default value, say, d, and for
all £ such that 0 < § < n, if {X; bar) # 0 and p is not defined
for X;, then add,({X; f) = d).

3.3 An Example

Let us apply this algotithm to the preceding rule Ry.7 We start
with the PATR equivalent 2s. By checking the existing control
relationships in this rule as currently instantiated, we conclude
that the subject X controls the head X, We consetvatively add
the unification (X; head agr) = {X;}. This can be safely added,
and therefore is.

Next, the FFP step in the algorithm can instantiate the rule
further. Suppose we choose to instantiate a slash feature on X,
Then we add the equation {Xo head slash) = (X head slash).
Lexical default values require no new equations, since no con-
stituents in the rule are given as 0 bar at this point.

The HFC conservatively adds the equation {(Xo head) =
(X2 head), as Xy is the head of Xo. But this equation, as it
stands, would lead to the entire set of equations being unsolv-
able, since we already have conflicting values for the head feature
subj. Thus the following set of unifications is added instead:®

{Xo head n) = (Xa head n)
{Xo head v} = (X, head v)
{Xo head bar) = (X, head bar)
{Xo head agr) = (X, head agr)
{Xo head inv) = (Xz head inv)

SSeveral comments are pertinent to this portion of the algorithm. First,
it is the FFP portion that is responsible for its nondeterminism. Second,
the operation edd, is actually superfluous here. The equation can simply
be added directly, since we have already guaranteed that the pertinent
features are not yet instantiated. By a similar argument, we can conclude
that only the add, operations in the CAP and HFC are actually necessary.
We will use add,, however, for uniformity. Finally, we assume that an FSD
will place the value ~ on any remaining constituents unmarked for foot
features.

"We do not include here the effect of the rule on every feature postulated
by Gazdar et al. but only a representative sample.

8 A more efficient representation of such sets could be achieved by the intro-
duction of nonmonotonic operations such as overwriting or priority union.
But such considerations need not concern us here.

214

Finally, nonlexical defaults are introduced for features not in
the domains of constituents.” Since the path (head inv) is de-
fined for the constituents Xp and X53,'0 the default value {i.e.,
¢~ according to FSD 1 of Gazdar et al.) is not instantiated on
either constituent. Similarly, the case default value (ace, FSD
10) is not instantiated on the subject NP. But the conj feature
default!! (‘~’) will be instantiated on all three constituents with
the equations

{Xo cony)
{Xy cony)
(X2 cong)
The (partial) generated rule is the following:

(Xo head n) = —

(Xo head v) = +

{Xo head bar) = 2

(Xo head subs) = +

(X1 head bar) = 2

(X2 head subp) = -

(

(

~

i

~

I

~

Xo head agry = (X))

Xo head slash) = (X2 head slash)

(Xo head n) = (Xp head n) (Rs)
{Xo head v) = (Xp head v)

(Xo head bar) = (X3 head bar)

(Xo head agr) = (X2 head agr)

(Xo head inv) = (X3 head inv)

(Xo cony)

(X1 comg) =~
(Xz cong) =~

3.4 Problems and Extensions

Several problems have been glossed over in the previous discus-
sion. First, we have not mentioned the role of LP rules. Two
possibilities are available for their interpretation: a “run-time”
and a “compile-time” interpretation. We can augment the PATR
formalism with LP rules in the same way as Gazdar et al., pro-
viding for local sets of nodes to satisfy an unordered PATR rule
if and only if the nodes are extensions of clements in the 1D rule
such that the LP rules arc all satisfied. Alternatively, we can
generate at compile time all possible orderings of the unordered
rules compatible with the L statements, but this leads us into
the problem of interpreting LP statements rclative to partially
instantiated categories, an issue beyond the scope of this paper.

Second, feature cooccurrence restrictions were ignored in the
previous discussion. Again, we will limit ourselves to a brief dis-
cussion of the possibilitics. One alternative is to modify the lat-

®We have made the simplifying assumption that feature specification de-

faults are stated in terms of simple default values for features, rather than
the more complex boolean conditions used in the Gazdar et al. text.
The modifications to allow the more complex FSDs may or may not be
straightforward.

'%The value of the feature head on the constituent Xo has the feature inv in
its domain because the unification {Xo head inv) = (X; head inv) gives
as value to {Xo head int) a variable, the same variable as the value for
(X2 head inv) . Thus the path (head inv) is defined for Xy and, similarly,
for Xz,

"'We assume here, contra Gazdar et al., that ‘~’ is a full-fledged value in
its own right, at least as interpreted in this compilation. Since this value
fails to unify with any other value, e.g., '+’ or ‘', it has exactly the
behavior desired, namely, that the feature is prohibited from taking any
of its standard values.

tice of categories relative to which unification is defined!? in such
a way that all categories violating the FCRs are simply removed.
Then unification over this revised lattice will be used instead
of the simpler version and FCRs will automatically always be
obeyed. Unfortunately, the possibility exists that unification over
the revised lattice may not bear the same order-independence
properties that characterize unification over the freely-generated
lattice. Of course, if this turns out to be the case, it casts doubt
on the well-foundedness of the original Gazdar et al. interpre-
tation of FCRs as well, and thus is an interesting question to
pursue.

Another alternative involves checking the I'CRs at every point
in the algorithm, throwing out any rules which violate them at
any point. In addition, FCRs would be required to be checked
during run-time as well. This alternative, though more direct,
violates the spirit of the enterprise of giving & compilation from
the complex Gazdar et al. formulation to & simpler system.

A final problem concerns the ordering of the HI'C and the
CAP. The definitions of controller and controllee necessary for
stating the CAP depend on the assignment of semantic types to
constituents, which in turn depend on the configuration of fea-
tures in the categorics, We have already noted that the features
pertinent to the definition of semantic type (and hence control})
do not include instantiated foot features. Indeed, Gazdar ¢t al.
claim that “it is just HEAID feature specifications (other than
those which are also F'OOT feature specifications) and inherited
FOO'I' feature specifications that determine the semantic types
relevant to the definition of control.” (2, p. 87] Unfortunately,
the ordering we have given precludes instantiated head features
from participating in the definition of semantic type and hence
the CAP.® 1t scems that the HI'C must apply before the CADP
for the definition of semantic type, but after the CAP so that the
CAY instantiations of head features take precedence. Thus, our
carlier claim of strict ordering may be falsified by this case.

Of cousse, the set of features necessary for type determination
and the set instantiated by the CAP may be disjoint. In this
case, we can merely split the application of the HFC in two, in-
stantiating the former elass before the CAP and the latter class
after the FFP as originally described. Alternatively, it might be
possible o notate head features on the head constituent rather
than the parent as is ¢onventially done. In this case, the infor-
mation needed by the CAD is inherited, not instantiated, head
feature vatues, and thus not subject to the ordering problem.

On the other band, if the sets are nondisjoint, this presents a
problem not only for our algorithmic analysts, but for the defi-
nition of GPSG given by Garzdar et al. Suppose that the HFC
determines types in such a way that the CAP is required to ap-
ply and instantiates liead features theveby overriding the original
values (since the CADP takes precedence) and changing the type
determination so that the CAP does not apply. We would thus
require the CAP to apply if and only if it does not apply. This
paradox appears as an ordering cycle in our algorithm; in the
declarative definition of Gazdar et al., it would be manifested
in the inadmissability of all local sets of nodes [1], an equally
unattractive effect. We leave the resolution of this problem open
for the time being, mercly noting that it is a diffieulty for GPSG
in general, and not only for our characterization.

12por the technical background of such & move, sse the discussion of PATR
semantics [3].

91 am indebted to Roger Evans and William Keller for pointing this problem
out to me and for helpful discussion of solution alternatives.

4 Conclusion

The axiomatic formulation of generalized phrase structure gram-
mar by Gazdar ¢t al. is a quite subtle and complex system. Yet,
as we have shown, GPSG grammars can be substantially con-
verted to grammars in a simpler, and constructive, axiomatic
system through a straightforward (albeit procedural) mapping.
Intrinsic in this conversion is the use of a unification-based gram-
mar formalism, so that axioms can be stated schematically, with-
out enumecrating all of their possible instantiations. In fact, we
would contend that defining the semantics of a GI’SG grammar
in this way yields a much simpler formulation. The need for such
a reconstruciion is evident to anyone who has studied the Gazdar
ct al. texi.

Of course, even if certain parts of the GPSG formalism not
discussed fully here, i.e., FCRs and 1P constraints, are found not
to be reducible to PATR, this in itself would be an interesting
fact. It would show that exactly those portions of the formalism
were truly essential for stating certain analyses, Le., that analyses
using those formal devices do so necessarily.

We find a hopeful sign in the recent work in GPSG that is pro-
ceeding in the direction of using unification direetly in the rules,
in addition to its implicit use in feature instantiation principles.
We hope that this paper has provided evidence that such a sys-
tem may be able to more simply state the kinds of generalizations
thai linguists claim, and has pointed out both the possibilities
and difficultics inherent in these techniques.

References

[1] Gerald Gazndar. Personal communication, 1986.

(2] Gerald Gazdar, Lwan Klein, Geoffrey K. Pullum, and Ivan
A. Sag. Genesalized Phrase Structure Grammar. Blackwell
Publishing, Oxford, Iingland, and Harvard Universily Press,
Cambridge, Massachusetts, 1985.

Fernando C. N. Percira and Stuart M. Shieber. The seman-
tics of grammar formalisms seen as computer languages. In
Procecdings of the Tenth International Conference on Com-
putational Linguistics, Stanford University, Stauford, Califor-
nia, 2-7 July 1984.

=

[4

Jarl Pollard, Lecture notes on head-driven phrase-structure
grammar, February 1985, Center for the Study of Language
and Information, unpublished.

ot

Stuart M. Shieber. The design of a computer language for lin-
guistic information, In Proceedings of the Tenth International
Conference on Computational Lingusstics, Stanford Univer-
sity, Stanford, California, 2-7 July 1984.

[

Stuart M. Shieber. An Introduction to Unification-Based Ap-
proaches to Grammar. CSLI Lecture Note Series, Center for
the Study of Language and Information, Stanford, California,
Forthcoming.

[7

Stuart M. Shicber. Using restriction to extend parsing algo-
rithms for complex-feature-based formalisms. In Proceedings
of the 22nd Annual Meceting of the Association for Compu-
tational Linguistics, University of Chicago, Chicago, Illinois,
July 1985.

