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Abstract: We study the weak generative capacily of a class of
parenthests-free categorial grammars derived from those of
Ades and Steedman by varying the set of reduction rules.
With forward cancellation as the only rule, the grammars are
weakly equivaleni fo conitexi-free grammars. When o back-
ward combination rule ts added, it is no longer possible to ob-
tain all the conlext-free languages. With suitable restriction
of the forward partiel rule, the languages are still context-free
and a push-down automaton can be used for recognition. Us-
ing the unrestricted rule of forward partial combination, a
context-sensitive language 15 oblained.

INTRODUCTION

The system of categorial grammars, developed in modern
times from the work of Ajdukiewicz (1935), has recently been
the attention of renewed interest. Inspired by the use of categori--
al notions in Montague grammar, more recent systems, such as
GPSG, have developed related concepts and notations. This in
turn leads to a resurgence of interest in pure categorial systems.

Classically, a categorial grammar is a quadruple
G(VT,VA,S,F), where VT is a finite set of morphemes,
and VA is a finite set of atomic categories, one of which is the
distinguished category S. The set CA of categories is formed
from VA as follows: (1) VAis a subset of C'4, (2)if X and V
are in CA, then (X 'Y)isin CA. The grammar also conlains o
lexicon F, which is a function from words to finite subscts of
CA. A categorial grammar lacks rules; instead there is a can-
cellation rule implicit in the formalism: if X and Y are
categories, then (X/Y) Y — X,

The language of a categorial grammar is the set of ter-
minal strings with corresponding category symbol strings
reducible by cancellation to the sentence symbol S.

In (1] Ades and Steedman offer a form of categorial grammar
in which some of the notations and concepts of the usual
categorial grammar are modified. The formalism at first appears
to be more powerful, because in addition to the cancellation
rule there are several other metarules.  Iowever, on closer ex—
amination there are other reasons to suspect that the resulting
language class differs sharply from that of the traditional
grammars. Among the new rules, the forward partial rule (FP

rule) is most interesting, since one may immediately conclude that
this rule leads to a very large number of possible parsings of any
sentence (almost equal to the number of different binary trees of
n leaves if the length of the sentence is n). But its effects on the
generative power of categorial grammar are not really obvious and
immediate. Ades and Steedman raised the question in the foot—
note 7 in [1] and left it unanswered. We will first formally define
categorial grammar and the associated concepts. Then we analyze
the genecrative power of the categorial grammars with different
interesting combinations of the reduction rules.

The categorial grammars considered here consist of both a
categorial component and a set of reduction rules. The category
symbols differ from the traditional ones because they are
parenthesis—frec. The categorial component consists as before of
a set VA of atomic categories including a distinguished symbol
S, and a lexical function F mapping words to finite sets of
categories. Iowever, the definition of category differs: (1) VA is
a subset of CA, (2) if X isin CA, and A isin VA, then X/A is

in CA. Notice that the category symbols arc parenthesis-free;
the implicit parenthesization is left-to-right. Thus the symbol
{A/(B/C)) of traditional categorial grammar is excluded,
since A/B/C abbreviates ({4 /B)/C). However, some of the
rules treat A /B/C as though it were, in fact, (A /(3 /C)).

DEFINITIONS

Notation. We use A, B, C' to denote atomic category symbols,
and U, V, X, Y to denote arbitrary (complex) category symbols.
The number of occurrences of atomic category symbols in X is
|X |. Strings of category symbols are denoted by z, y. Mor-
phemes are denoted by a, b; morpheme strings by u, v, w.

A categorial grammar under certain reduction rules is a qua -
druple Gy = (VT, VA, S, F), where: VT is a finite set of mor--
phemes, VA a finite set of atomic categories, S € VA a dis-
tinguished element, ¥ a function from VT to 294 such that for
every a € VT, F(a) is finite, where CA is the category set and is
defined as: 1) if A € VA, then 4 € CA,ii)if X € CAand A €
VA, then X/A € CA, iii) nothing elsc is in CA.

The set of reduction rules R can include any combination of
the following:

(1) (I Rule) If U/A € CA, A € VA, the string U/A A can be

replaced by U. We write: U/A A - U
(2) (FP Rule) If U/A, A/V € CA, where A € VA, the string

U/A A/V can be replaced by U/ V. We write: U/A AV -
UV
(3) (I'Py Rule) If U/A, A/B € CA, where A, B € VA, the

string U/A A/B can be replaced by U/B. We write: U/ A

A/B - U/B;

{4) (I'P s Rule) Same as (2) except that I//A must be headed by

S
(5) (B Rule) If U/A € CA, A € VA, the string A U/A can be

replaced by U. We write: A U/A — U
{6) (B s Rule) Same as (5) except that U/ A must be headed by

S.

When it won’t cause confusion, we write Gy to denote a categori-
al grammar with rule set R, and specify a categorial grammar by
just specifying its lexicon F.

The reduce relation => on CA* X CA* is defined as: for all
a, B € CA* and all X,Y,Z € CA, aXVB => aZBif XY —~ 2.
Let —>* denote the reflexive and transitive closure of relation
>,

A morpheme siring w=wqwqy' - w,, where w; € VT,
i=1,2,--n,is accepled by Gp = (VT, VA, S, I') if therc is
X; € P(w;)for:=12, - n,such that X, X,--- X, =>*&.

The language accepied by Gy = (VT, VA, S, F), L(Gp) is
the set of all morpheme strings that are accepted by Gp.

The categorial grammar recognition problem is: given a
categorial grammar Gp = CGp (VT, VA, S, I') and a morpheme
string w € V1%, decide whether w € L(Gg).

The derivable category set DA € CA under a set R of reduc—
tion rules is the set of categories including all the primary
calegories designated by F, and all the reachable categories under
that set of reduction rules. It is formally defined as: i) X is in DA
if there is an a € VT such that X € F(q), ii) Forall X, Y € DA
and Z € CA,if X Y — Z by some rule in R then Z € DA, and iii)
Nothing else is in DA.

GRAMMARS WITH FORWARD CANCELLATION ONLY

We  begin by looking at the most restricted form of the
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reduction rule set B = {I'}. The single cancellation rule is the
forward combination rule. 1t is well-known that traditional
categorial grammars are equivalent to context-free grammars.
We examine the proof to see that it still goes through for
categorial grammars Gp with B = {F}.

Theorem The categorial grammars Gy, R = {F)}, generate
exactly the context-free languages.

Proof (1) Vet Gp be a categorial grammar with R = {F). Gy
becomes a traditional categorial grammar once parentheses are
restored by replacing them from left to right, so that, e.g.,
A/B/C becomes ((A/B)/C). Hence, its language is CI'.

(2) To show that every contexi—ree language can be obtained,
we begin with the observation that every context-free language
has a grammar in Greibach 2-form, that is, with all rules of the
three forms A -> aBC, A -> aB, and A -> @, where A, B, C
are in VN and e is in VT [6]. A corresponding classical
categorial  grammar  can be immediately  constructed:
Fla)24((A/C)/B), (A/B), Al. These are the categories
A/C/B, A/B, and A of a parenthesis—{ree categorial grammar.
The details of the proof can be casily carried out to show that the
two languages generated are the same.

GRAMMARS WITH BACKWARDS CANCELLATION

The theorem shows that with 2 = {F} exactly the context—
free languages are obtained. What happens when the addi-
tional metarules arc added? We examine now parenthesis-free
categorial grammars with B = {F, B} and R = {F, Bg}. Rule
B 5 is the version adopted in [1]; B is an obvious generalization. In
cither case we are adding the equivalenl of context-free rules
to a grammar; the result must therefore still yield a context—
{ree language. So one gucss might be that categorial gram-
mars of these types will still yield exactly the context-free
languages, perhaps with more structures for each sentence. An
alternative conjecture would be that fewer languages are ob-
tained, for we have mnow added some "involuntary"
context-free rules to every grammar.

Example: Consider the standard context-free language L = {
a"b™ | n >0}. The easicst grammar is § -> aSh, S -> ab. The
Greibach 2-form grammar is § -> aSB, B ->b6, 5 ->» aB. The
constructed categorial grammar Gy then has F(a) =1{5/B,
S/B/S} and F(b)={B}. I R ={F}, this yiclds exactly L.
However, with R = {F, B} or B = {F, B g}, here equivalent, Gp
yiclds a language Ly = {ab, ba, aabb, abab, bbaa, baba, baab, ...
}, which contains L; and other strings as well. It is the
language of the context-free grammar with rule set {S ->b6C, S
-> Cb, C-> aS, C -> Sa, C -> a}.

Reversible languages. Let z# be the reverse of string z.
Thatis, if z = ajey - a, (e, €VT), thenz® =0, - aja,
Call a language L reversibleif z €L iff z¥ €L .

Yixamples: The set of all strings on {a, b} with equal numbers of
a’s and b’s is a reversible CT' language. {a" b | n >0} is not a
reversible language.

Theorem The languages of categorial grammars Gy with R =
{F, B} are reversible.

Proof If z=>%S then zf =>*$ by a reduction whose tree is
the mirror image of the one for z in which rules I’ and B have
been interchanged.

Theorem Let Gy be a categorial grammar with R contains {F,
B} or {F, Bg}. R may or may not also contain some form of
FP rules. If L (Gp ) contains any sentence of length greater than
one, then it contains at least one sentence w = wv such that vy is

alsoin L (Gg ).
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Proof Let w be a sentence of L (Gp) of length greater than one.
Suppose the final step of the reduction to S uses rule F. Then w
= uvwhere w =>*5/Aand v =>* A. Butthenvu =>%* A
S/A => Sby rule B or Bg. No form of FP can be used as
the final step of the reduction to S, so its presence does not affect
the result.

Corpllary There are context-free languages that cannot be
obtained by any categorial grammar Gy, where R contains {T',
B} or {F, B s )

CATEGORIAL GRAMMAR IS CONTEXT-FREE IF THE FP
RULE IS RESTRICTED

The method that had been used to construct a context—free
grammar G cquivalent to a classical categorial grammar can be
formally described as following:

Elg Tor cach a € VT,if X € F(a), then put X -> ain G;

2) For each derivable category X/Y,put X - X/Y Y in G.
This method remains valid when B g rule is added. We just need
to put an additional rule X -> Y X/Y in G whenever X is hcad-
ed by S. But this doesn’t work when the FP rule is allowed. We
might put in the CF rule U/V -> U/A A/V for each derivable
category U/V and for each atomic category A, but in case there
is a category like A/B/A, then any category symbol headed by A
followed by B’s and ended by A4 is a derivable category. There are
infinilely many of them, so by using this construction method, we
might have to put in an infinite number of CT rules. Therefore,
this method does not always find a finilc context free grammar
equivalent to a category grammar with the FI* rule. As we shall
see, there may be no such context -free grammar.

Let’s now enforce some restrictions on the FP rule so that it
won’t cause an infinite number of derivable categories. Actually,
using the I'P rule sometimes violates the parenthesis convention,
e.g. applying FP on 4 "B R.'2/1) implies that B/C/D is inter-
preted as (B/(C/D)). However, by the parenthesis convention,
B/C/D is the abbreviation of ((B/C)/D). Notice, however,
when the second category symbol has exactly two atomic sym-
bols, i.e., is in form A/B, the FP rule does not violate the con-
vention. Coincidentally, if the FP rule is accordingly restricted as
to F'P 4, the derivable category set becomes finite.

Lemma For a categorial grammar Gp(VA, VT,S, F), let
By={F,FP,), Ry={F,FP 3B}, and Ry={F,FP, B},
then DARI = DARL, = DAR:).

Proof From the definition ii) of DA, we can see that any new
category Z added to DA by a form of the B rule can be added by
the ¥ rule. The lemma follows.

O

Lemma The derivable category set DA of a categorial grammar
Gp with R = {I", FP 4} is finite and constructible.

Sketch of Proof We begin with the observation that, none of the
reduction rules in 2 increases the length of category symbols, and
the initial lexical category symbols are all of finite length. This
implies that the length of all the derivable category symbols are
bounded. So there are only finitely many of them.

We now give an algorithm for computing DA, to show that it
is constructible.

Algorithm: Compute DA of a Gp with R = {F , FP ).

Input: A categorial grammar Gp (VT , VA,S, F)  with
R ={F,FP,.

Output: DA of Gp.

Method:
Let DA = U r (a);
aEVvVT
Repeat

For all non-atomic categories U/A € DA
(1) If A € DA Then DA = DA U {U §
(2) For all non-atomic categories A/B € DA



DA =DAVI{U/BY;
Until DA was not updated during the last iteration.
Return DA.
0

Theorem For every categorial grammar Gy (VT , VA, S, F),
with R ={F,FP, Bg}, there is a context-free grammar
G(VT,VN,S, P)suchthat L (Gg)=L (G).

Sketch of Proof Since DA is finite, the method for converting

CG to CFG described in last section works.
]

Remark The theorem remains true for R being {IF, F1? 5} and
{F,FP, B}, and can be similarly proved. We choose
R ={F,FP, Bg} to state the theorem because it is closest to
Ades and Steedman’s model [1].

THE FP RULE 1S USEFUL ONLY ON S-HEADED

CATEGORIES

Now the next question is what if the I'I* rule is not restricted
to U/A A/B -+ U/B. Intuitively, we can see that the applica-
tion of the I'P rule on a category which is not headed by S is not
crucial in the sense that it can be replaced by an application of
the F rule, because whenever U/A A/V appears in a valid
derivation to a sentence, the V part must be cancelled out sooner
or later, so we can make a new derivation that cancels the V part
first and get U/A A on which we can apply the F rule instead of
the FP rule. But this doesn’t hold if U/ A is headed by S. For ex—
ample, when we have A S/B B/ A, we can’t do backward combi-
nation on A and S/ A if we don’t combine S/B and B/ A first. So,
we expect that the weak generative power of categorial grammar
wouid remain unchanged if the FP rule is restricted tv be used
only on categories which are headed by S. This in fact follows as
our next theorem.

Lemma Given a categorial grammar Gp (VT , VA, S, F) with
R ={F,FP,Bg), for any w € CA* and A € VA, if thereis a
reduction w =>* A, then therc is a reduction of w to ¢ using FP
rule only on categories which are headed by S.

Sketch of Proof Formalize the idea illustrated above. 1
As an almost immediate consequence, we have:

Theorem The language accepted by categorial grammar
Gp(VT,VA,S,F) with R ={F,FP,Bg) is the same as
that accepted with B = {F ,FP s Bg}.

Proof It trivially follows the lemma. [

Corollary FP rule is uscless if there is no form of the B rule, i.e.,
any Gp (VT ,VA,S,F) with B ={F, FP} will generate the
same language as that generated with B = {F}.

A CONTEXT-SENSITIVE LANGUAGE GENERATED USING
UNRESTRICTED FP RULE

This section gives a categorial grammar with unrestricted ¥P
rule that generates a language which is not context—free. Consid—
er categorial grammar G = Gy (VA, VT, S, F), where VT —
fa, b, ¢}, VA ={A, C, S}, Fla)={A), F(b)={S/A/C/S,
S/A/CY F(c)={C)l,and R = {F,Bgs,FP}.

Claim Lo’ b' ¢' €L (Gy) for i > 0.
Proof For any i > 0, we can find a corresponding categorial

string for a' b¥ e’ AV (S/A/C/S) YS/A/C)CT. A reduc-
tion to S is straightforward. 0

Let ¢, (¢ ) denote the number of occurrences of @ in string
w.

Claim 2 Yor all

bu(a) =du (b) = bu (c).

Proof First, it is easy to sce that from the lexical categorics, we
cannol get any complex category headed by either A or €, and we
can get atomic category symbol A or C only directly from the
lexicon.

Second, each morpheme b would introduce one A and one ¢
within a complex category symbol which must be cancelled out
sooner or later in order to reduce the whole string to 5. In gen-
eral, there are two ways for such A and C being cancelled: (1)
with an A -headed or C -headed complex category by the FP
rule, which is impossible in this example; (2) with a single atomic
category A or €' by either the I’ or B ¢ rule. We have seen that
such single A and C can only be introduced by the morpheme «
and ¢, respectively. So ¢, (a ) = b, (b) = ¢, (¢).

w € VT* if w € L(G)) then

0
To show that L (G';) is not context: free, we take its intersec
tion with the regular language a*b*c”*. By claim 1 and 2, the in-
terseclion is exaclly the language {a” ™ ¢® | n > 0} which is
well known to be non context free. Since the intersection of a
context {ree language with a regular set must be context free,
L (Gy) cannot be context free.

PROCESSORS

A categorial grammar is certainly no worse than context
sensitive. We can verify this by using a nondcterministic
linear bounded automaton to model the reduction process. For
even in the case of reduction by the unrestricted FP rule, the
category symbol obtlained by reduction is shorter than the com
hined length of the two inputs to the rule.

Ades and Steedman [1] propose a processor that is a push-
down stack automaton and pushdown stack automata are
known to correspond to the context—free languages. How can we
reconcile this with the context sensitive example above? The
contradiction arises because the stack of their processor must be
able 1o contain any derived category symbol of DA, and thus the
size of the stack symbols is unlimited. The processor is thus not
a pushdown automaton in the usual sense.
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