CONVERSATIONS WITH A COMPUTER - AN EXAMPLE OF NETWORK
PROGRAMMING IN RELATIONAL DATA BASE ENVIRONMENT

M. Nelbach, K. Studzinski and S. Weligorski

Institute of Informatics
Warsew University

00901 Warsaw, PKiN 850
Poland

Any efficient human-computer conversation in an ethnic
language needs rather large ammount of information, which
generally may be classified as follows:

1/ Script: rules governing entire exchenge of messages be-
tween computer and humen which generelly determine how
compuier reacts and responds in various possible situat-
ions.

2/ Gremmar and vocsbulary of the languege: rules of recogni-
tion of words, phrases and entire messsges, including
aelgorithms of lexical and syntacticel enalysis.

3/ Semantics: rules of understanding of words end messsges,
including methods of determining how the words end mess-
ages relate to date stored in memory and what should be
specific reactions of the computer according to the re-
cognized meaning messages.

This data mey be presented in various forms, e.g. as
dictionaries, transition networks for lexical enslysis,
augmented trensition networks (ATN) for syntactic analysis,
semaentic networks, reletions, esnd so on. They may be also
included into programs which control and run conversations,

- 203 =

X It is evident that this informetion must be eesily mod-

ifieble in cese of debugging or improvement. It is very use-
ful if the form of all data created by a user complies with
certain standards and the data are stored in a uniform way,
80 a3 to make understending end modification as easy as poss-
ible. For this reason we use as a standard storage a relat-
ionel date base.

We may consider any real conversation with & computer
as a sequence of atomic units, each comprising one exchange
of messages between human and computer, with all accompany-
ing actions. Every dialogue determines one sequence of such
units and trensitions. All such sequences of units and trans-
itions form a network. It turns out that it is very useful
to introduce recursion into such networks; since it is poss-
ible to store or to fetch data during a dialogue, this con-
cept resembles augmented transition netyorks (ATN). In fact,
these conversation control networks may be trensformed into
ATN. However, their original form provides better protection
egainst undesired indeterminism and becktracking. ATN in their
original form are applied for syntactical analysis.

Obviously, such networks ere nothing else as programs
in a special progremming languaege (or langusges). Quite nat-
urally, networks may be comfortably described by relations.
This paper presents results of an implementation of these
ideas. Data base manegement programs are in Fortran, but
user access to the data base is entirely converasationel. All
networks stored in the base have form of relations. For ex-
ample, elements of a relation for an ATN mey have the form
shown in Fig. 1. This reletion is trenslated into a simpler
one in which all conditions and actions sre replaced dby links
to Fortran subroutines obtained as results of translation of
corresponding expressions, end nemes of states in “to’ field
ere replaced by identifiers of appropriate tuples in the new
relation. Networks in this form may be interpreted or compil-

- 204 -

ed to Fortran. Compilation is usually mede for large ATN's
for which simple interpretation would be too slow. We obtain-
ed in this way good speeds even for very complicated syntact-
ic grammers. Conversation control networks are always inter-
preted, for in this case no speedup was necessary. The con-
versation control allows bootstrapping, i.e. an eppropriately
‘created network may control process of conversational creat-
ion or modification of any CCN.

Our implementsation was mede in Fortren, in spite of all
its disedvantsges, mainly for Portability reasons. It is still
much more easy to transfer to other computer or mini soft-
were written in Fortren than in eny other langusge, including
LISP,.

STATE({ ARCNAM| ARGUMENT CONDITION ACTIONS TO
s/ TST ONTEST EQ(LEX SETR(WHERE ON){S1/]
' QUOTE (ON))
S5/ |PUSH |NPS/ MEMQ (GETF (CAT) SETR(ADJ S4/]
QUOTE (ADJ PRON)) | GETF(F))
$10/ | POP APPEND(GETR(N) | T - -
GETR(PRED))
Fig. 1

- 205 =

