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Generative systems (GS) are defined in this paper as a
composition of simple translation schemes with depen -
dency trees. The following issues are discussed:

(a) explicative power of GS, (b) the time complexity
for the analysis and synthesis for GS.

INTRODUCTION

A generative system for Czech was presented in Sgall 6] .

The concept of a generative system was studied by Fldtek (4] end
Plitek and Sgall [5 . In this paper we use a similar approach as
that presented by Hajidovd, Pldtek and Sgall in [37 .

We define generative systems as a fundamenial device for construc~
tion of gremmars of natural languages. We give here some mathema -
tical results to illusirate the usefulness of the new concept.

We try first to formulate the necessary requirements on & grammar
G of a natural language L. The grammar G must determine:

a) The set of all correct sentences of the language L.
The set will be denoted by LC.

b. vhe set of the correct structural descriptions (SD) of the
enguage L. SD represents all meanings of all sentences of LC.

¢c) ‘he relation SH between LC and SD. The relation SH describes
the ambiguity end the synonymy of L.

By & structural description we understand a dependency tree (D-tree).

The concept of & simple translation scheme from [1] is e generalisa ~
tion of context-iree grammar. We introduce here a similar concept

of a translation scheme, in this case as a generalisation of
dependency grammar (see [2] , [5]). -

A generative system (GS) is defined as a sequence of tramslation
schemes with a special asymmetric property.

We show that the explicative power of GS increases with the length
of GS. We present results concerming on algorithm for the analysis
and synthesis of GS and show that its time complexity is independent
on the length of GS,

Moreover for a given GS we can construct & similar GS, for which a
fast algorithm for synthesis exists.

Definitions.

Notation. The vocabulary, sets of nodes, edges and rules are here
nonempty and finite sets.
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314 M. PLATEK

Let R be & relation. We denote
Dom (R) = ja; [ a,b] € R} and
Range (R} = :b 3 [a,b] & R}
By f : U5V we denote a total mapping from U into V.,

Def. A string over a vocabulery V is a triple S=(U,IR,0), where
U ig a set of nodes, IR & linear ordering of U, o:U—V. Let
o(u)=A. We say that A is the value of node u. Let S=(U,IR,0),
S1=(Ul1,IR1,0l), S2=(U2,LR2,02) be the stri and u € U, We say
that 52 is groduced from S by replaci u by S1, when the siring
S1 is place etween the predecesor and the succesor o_{ node u
and otherwise S2 does not differ from S. We denote as V'  the set
of all nonempty strings over V.

Def. Let S1 = (Ul,IR1,o0l), S2 = (U2,IR2,02) be strings.
Let Ul = §fuly,...,ul f and U2 = {uzl,,..,uzn} and uly,...,ul,
be in the ordering LR1l, and “21""’“211 in the ordering LR2 and
ol(uli)= 02(u2i) for all i between 1 and n. Then we say
that S1 and S2 are equivalent.
We shall not distinguish between equivalent strings.

Def. A quintuple SR=(U,IR,B,r,0) is called a D~tree over V,when
s(sK)=(U,1R,0) iz a string and o:U—V, B(SR)=(U,B.r) is a tree
with the root r and when the following condition holds: The nodes
of every path in B(SR), which begins with a leaf, are nodes of a
substring of S(SR). We say that S(SR) is a projection of SR.

Def. Let SR1=(Ul,LR1,Bl rl,ol) and SR2=(U2,LR2,B2,r2,02) be
D~trees. Let strings S(SR13 and S(SR2) be equivalent. Let £ be
& one-~to~one mapping from Ul on U2, which préserves the ordering
IR1 to the ordering IR2. Let f(rl)=r2 and let it hold that

[u,v] ¢ Bl iff [f(u), f(v)] & B2. Then we say that SRl and SR2
ere equivalent. We shall not distinquish betiween equivalent D-trees.

Def. Let D=(U,IR,B,r,0), D1=(Ul,LR1,Bl,rl,0l) and
D2={U2,1R2,B2,r2,02) be D~trees and u € U, We say, that D2 ig
roduced from D by replacing u by D1, when S(D2) is produced from
5(37 by replacing u Dby 3(%1) and the neighbours of rl in B(D2)
are the same as neighbours of wu in B(D). Otherwise D2 does not
differ from D.

Def. A translation scheme of type string -~ D-trees (TS [S,D] )
is a gquadruple T= sy VI,5,P), where VN ig a the vocabulary of
nontermingls, VT the vocabulary of terminals, VN N VI=p, S € VN and
P is a get of rules of the follow type: LS<—A—RS, where
A € VN (the middle of the rule) LS (the lefthand side) is a string
over VN v VT, RS(the righthand side) is a D-tree over VN v VT and
the following condition holds: When all nodes with terminals are
erased from S(RS) and LS, then we get two equal strings.

Let p=LS<«—A—RS. We write [ LS1,RS1] p=—>[LS2,RS2] , when
(1):the lefimost nonterminal node of LSl is some u with the value
A, (ii):the leftmost nonterminal node of RSl is some v with the
value A and (iii):LS2 is produced from LSl by replacing u by LS
and RS2 is produced from RSl by replacing v by RS.

v pP:‘> is denoted as$a.nd‘£> is the transitive closure of—>.
P&

.

We denote as TR(T)= i [LS,RS] ; [s,s]%[Ls,Rs} , 1S,S (RS)e vrt} .
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Remark. Anslogically as a translation scheme of the type string =~
ree was defined, also definitions of the type string - string
(s [s,8) ) or of the type D-tree ~ D-tree (T5 [D,D] ) can be given.
By TS [S,3] the lefthand side and righthand side of a rule is always
a string. By TS [D,D] both sides of a rule are always D-irees.
%s TS we denote the set of all translation schemes of all the three
ypes.
Def, Let Tl,...,Tn be a sequence of TS, We denote as
TR(TI,...,™n)=TR(T1). TR(T2)..,TR(Tn), The main definition of this
paper is the following:

Def. A generative system (GS) is a sequence Tl,...,Tn of TS,
where TR(TE,...,E) is & relation between strings and D-trees and
for every [d1,d42]1 € TR(Tn) there exists a sl,so,such that

sl,d2 ]J&€ TR (Tl,...Tn). The set AN (Tl,...,Tn;v)= {[v,d] &€ TR(T1,.

vesacesyIn)} is called the anaslysis of v. The get ST(Tl,...,Tn;d)=
= {[a,dﬁ € TR(Tl,...,Tn)} 'i?’EEIIa—EEe_‘fun syntheslis of D-tree 4.
Remark., Let (.%S.'I.:E[‘]_,...,Tn be a GS. Then

Re.nge(TR(Tl)) D Dom (TR(T2))’.D...Range(TR(Tn_l))D Dom('l‘R(Tn)).

We call this property of GS1 an asymetric property of GS.

Def. Let GS1 be a GS. We say that the function MS is a funciion
of the minimel synthesis of GS1, if the following conditions are

fulfiled: _
e) MS™* £ TR(GS1)
b) Dom(MS)=Range(TR(GS1)).

Def. D~gremmar (DG) is a T & 7S [S,D], where T=(VN,VT,S,P) and
for every p € F,p=LS< A —3RS there holds, that LS=S(RS).

Def. We denote DR =} TR(T);T € DG}and DR 4= § TR(TL,...,T5);

T,...,75 € GS} for jE& N. For j&€ Nv {0} we write
1DRy= {Fe DRy; F is & function} .

Note. We need also one more concept. It is the concept of an
b~morphic generative system for another one.

Def. Let V1,V2 be itwo alphebets and h:V1-—>V2, Let
51=(UI,IR1,0l), S2=(U2,IR2,02) be two strings, where ol:Ul—> V1,
02:U2--5 V2, We say that a tuple (f,h) is an hemorphism from S1 to S2,
when f£:Ul-—U2 is a one~-to~one mapping which pregerves the ordering
on nodes and for every u & Ul there holds that h(ol(u))=02(f(u)).

We sayltléat Sl is h-morphic for 52, if there exists an b-morphism
from S o S2, i

Def. Let Di=(Ul,IR1,Bl,rl,0l) and D2=(U2,LR2,B2,12,02) be D=-trees.
Let (%,h) be an hemorphism S(D1) to S{D2)., Let there hold that
[u,v] € Bl iff [t(u?, t(v)] € B2 and t(rl)=x2,
We say that (t,h) is & hemorphism from D1 to D2.
We say that D1 is h-morphic to D2, when there exists an h~morphism
from D1 for D2.

Def. Let T1=(VN1l,VT1,S1,Pl) and T2=(VN2,VT2,S2,P2) be TS.
Let R:VNL & VT1—> VN2 v VT2, where h(VN1)=VN2, h(VT1)=VT2.
Let there exist a one~to-one mapping MP from P1 on P2 such, that
if LS]1 «<— Al— RS1
and MP(p)=LS2 &— A2—> RS2, then LSl is bemorphic to LS2, RSl is
bemorphic to R52 and u(Al)=A2,
We then say, that Tl is hemorphic for T2.
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Def. Let GS]:Tll,... ,Tln and G82=T21,... ,Tzn both be GS.
Let Tll be hl-morphic to T21, T1, hz-morphic to T22,... and so on
to n; we say then, that GS1 is hemorphic for GS2, where

B=(By,. .0, h).

Examples
Example 1.

Let us have an example of a translation scheme.
Let T3=( {S,51,82,53} , {s,b,c} S, P3) and

P3: & S81¢< S — S3a ¢— S->
a Sl ¢— S1— §) S3a e— 53— 61 @
¢ S2¢— 51—» S2¢ ¢ S3—>»
a S2a¢é— 82— > 82 6?\@

¢ < S23@

®

It holds that:

*
[s, & =—>]a s1, j=:>[aa s1, & =
@)

® ®
é—) [ aacaacsac, c .
g @ e © ® ® J
We can sea that Dom(TR(T3))= ) _
=faPcaPcal; njeN}v fed cace®; ju €N
and that TR(T3) is a function.

Exeanmple 2,

We present in this example some interesting set of tramnslation
schemes.

G4 = ( {S,AY , fa,e , S, P4) where
P4: calact— S—> calac

aldg «—— A—) alda

c<—A—> ¢

ThenTR(G4)={fc a® ¢ a® ¢, c alc a® c] ] néN}
25=({ S,A} , {e,c}, S, P5)
P5: ceA (—- S -—ycAc

chA &— A—cAc

el ¢—— A— ala

¢ &—— A ¢
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;%i (iSQAE ’ {3’0} s Sy P6)
P6: cA—— 8 ——(©
cA—— S-- »c) @
ahe— A —@ @ ©
c+—A—0Q @ _©
a

and let
R4(k)=TR(G4, T5,...,T5),

k--times Kol

n n n.2 .

then R4(k)= 3} lc a® c a® ¢, (c a™) c],neN}
and if TR(G4,T5,...,T5,76)= I T(k)

(k~1)times .
then R4(k)= § [a,b] ; [a,0] € IT(k) and b=S(e)j(

Results.

. P . <
Agsertion 1. Por j= O it holds that DR;j Z DRJ.+1 and

. . .
1DR3 < 1DRJ +1
Hotation. 18| denotes the length of the string s, which is the
card (U), where U is the set of nodes of s.
Aggertion 2. Let GS1 be e generative system, :
a en there exist an slgorithm that computes for every string v

the set AN(GS1l,v) (analysgis) with the time complexity bound by
a function K1. !v/3, max $ card (AN (Tl,...,T.;v)_} ’?_1 , where
K2 depends only on GSI. J J=

b) Then there exists an algorithm thet computes for every D-tree d
the set ST(GS1l,d) (full synthesis) with the time complexiiy
bound by function K2, [S(d)¥ . card (ST(GS1)), where K2 depends
only on GSl. .

Assertion 3, Let GS1 be a GS. Then there exists an h-morphic gene-
retive system GS2 for GS1 and an algorithm that for every D-tree
d computes ST(GS2,d) with s time complexity bound by funciion

K. |38(d)! . card (ST(GS1l,d)) where K depends only on GS2 and
Dom(TR(GS1) )=Dom(Tr{GS2))

Aggertion % Let GS1 be a GS. Then there exigis an he-morphic gene -
rative system GS2 for GSl and an algorithm such that for every
D-tree d computes MS(4) with a time complexity bound by function
K . |S(a)l ', where MS is the function of minimel syntesis of GS2,
Dom(TR(GS1) )=Dom{TR(GS2)) and K depends only on GSZ2.

Remarks.
Remark to Agsertion 1.
We sketeh here & preof of Ass.l. We see that DRO < DRl and

1DR, C 1DR;. Dikovskij and Modina have shown in [2] , that TR (T3}
from Example 1 cannot be in DR,c We see that T3 is a TS. Thus

DRO;DR]_. Since TR(T3) is a funciion , we see that 1DR g 1DR,.
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In the Example 2 we have shown that IT(k) &€ 1DR,. From the results
on composition of pushdown tramsducers (PST) in Z4j and from the
equivalence theorem between TS°s and PST s from _1. it follows,
that IT(k+l) DRk . Thus DR, C.DRj+1 and 1DR DRJ+1.

Remark to Assertion 2,

e algor or ysis and synthesis for a GS is based on the
idea of Cocke~Younger-Kasami algorithm. For a seguence of simple
translation schemes of the type siring~string the algorithm is
presented in Suchomel [7] . The difference between the upper
bou.ndary of the time complexity of the full synthesis and analysis
is given by the asymmetric property of a GS.

Remark to Assertion 3.
e basic l1dea O e proof is a comstruction of a new GS to GS1.

The new GS, denoted GS2, has full information in the alphebets for
a gtraightforward algorithm for a full synthesis.

Remark to Agsertion %
e 1dea o e proof is analogous to that of Assertion 3. When we

have a partition of Dom(TR(GS1l)) in the clases of synonymous gen =~
tences, the funciion of minimal synthesis chooses always only one
representant of his clasgs. Therefore the algorithm can be so fast,

Conclusion remarks.

en formulating & gremmar for natural lenguage, we can use with
advantage the modularity of GS. We have shown that the time comple~-
xity of the analysis and synthesis for DR.,j> 2 is independent on
d. Otherwise the explicative power of DR. Jls increasing with j. We
have also shown, that to any generative szstem there can be con -
structed an h~morphic generative system with the full information
for a fast algorithm of the minimel synthesis.
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