
USING A NATURAL-ARTIFICIAL HYBRID LANGUAGE

FOR DATABASE ACCESS

Teruaki AIZAWA and Nobuko HATADA

NHK Technical Research Laboratories

1-10-11, Kinuta, Setagaya, Tokyo 157, Japan

In this paper we propose a natural-
artificial hybrid language for database
access. The global construction of a
sentence in this language is highly
schematic, but allows expressions in the
chosen language such as Japanese or
English. Its artificial language part,
SML, is closely related to our newly
introduced data model, called scaled
lattice. Adopting Japanese as its
natural language part, we implemented a
Japanese-SML hybrid language processing
system for our compact database system
SCLAMS, whose database consists of scal-
ed lattices. The main features of this
implementation are (i) a small lexicon
and limited grammar, and (2) an almost
free form in writing Kana Japanese.

1. Introduction

Various query languages for database
access have been developed, among which
unambiguous artificial ones are better
adapted to computers. For man, on the
other hand, it would be more convenient
to communicate with computers in a
natural language. The possibility of
man-machine communication in a natural
language has been one of the main
concerns in the field of artificial
intelligence, and considerable results
have been obtained specifically in
research into natural language access to
a database. I~5 These results, however,
seem to be too complex and inflexible
for practical application to general-
purpose database systems.

We will propose in this paper a
"natural-artificial hybrid" language for
database access. The global construc-
tion of a sentence in this language is
highly schematic but allows expressions
in the chosen language such as Japanese
or English. A Japanese version of this
language has been implemented for our
compact database system SCLAMS6;(SCaled
LAttice Manipulation System). The main
features of this implementation are:

(I) Use of only a small lexicon and
limited grammar so that they are
quite easy to implement, and

(2) Allowance of almost free form in

writing Kana Japanese.

Feature (i), which will be achieved
also when using other languages like
English, French, and so on, is one of the
most noticeable merits obtained by using
such a natural-artificial hybrid language
for database access.

We begin with an explanation of our
basic logical unit of data, Scaled
Lattice, or S.L. for short, since the
proposed language is closely related to
this unit.

2. SML:Scaled lattice manipula-
tion language

2.1 Scaled lattice as a data model

What the normalization theory in
the relational data model tells us can
be stated very loosely as "one fact in
one place" 8 The concept of Scaled
Lattice, or S.L. for short, also goes
along this direction.

Roughly speaking an S.L. is a multi-
dimensional table, and is defined as a
collection of data of one species arrang-
ed at multi-dimensional lattice points
corresponding to the combinations of
attribute values. Fig. 1 shows a
graphical image of S.L. which represents
population data by year, prefecture, and
sex.

Ye.

1980

d
1950

mYi
I (

Sex

r Population data

o

o ~

///

---~'<

LJ
/ / /

/

, Male popula-
tion of Tokyo

_--=in 1980.
Female popul~
tion of Tokyo
in 1980.

Prefecture

r
o ~

All of male population
data are arranged on
this axis.

Fig. 1 Graphical image of S.L. data model

--543--

This is an example of three dimen-
sional S.L's, which can be furthermore
regarded as a mapping or a function
with three variables in the mathematical
sense. Let SI, $2, and $3 be finite
sets such as

S1 = { 1950, 1951 1980},

{ Tokyo, Osaka, Nagoya }, $2

and

$3 ={ male, female}.

Also let A be an appropriate set having
enough elements to represent values of
population. Then the above S.L. can be
naturally regarded as a mapping:

F : S1 x $2 x S3 ~ A, (i)

which associates any triple (x, y, z)
of attribute values in S1 x $2 x $3
with the corresponding population value
F(x, y, z). Thus, for example,

F (1980, Tokyo, male)

denotes the male population of Tokyo in
1980.

Generally an S.L. is a mapping F
of the direct product of finite sets
SI, ..., Sn into an appropriate set A
denoted by

F : S1 x ... x Sn~ A. (2)

These sets S1, ..., Sn and their
elements will be sometimes called root
words and leaf words respectively.

The following are the advantages
of this data model:

(i Data contained in an S.L. can be
displayed exactly in the two-
dimensional table form, which is
visually very understandable.

(2 In order to display data in table
form, it is necessary to cut out
an appropriate two-dimensional
cross section from the S.L., or
more precisely to select two
appropriate scales on which the
table is constructed, and, at the
same time, to fix the remaining
scales at some attribute values.
This is nothing but a retrieval
operation. Cutting out such a
section is very easy, which means
that certain retrieval operations
are also easy.

(3 Since an S.L. is regarded as a
mapping, precise and powerful

notations concerning "sets and
mappings" are directly applicable
for manipulation of the S.L. data.

2.2 Brief outline of SCLAMS

We have implemented a compact data-
base system SCLAMS (Scaled lattice
manipulation system), whose database
consists of S.L.'s.6, 7 SCLAMS has the
following three major modes:

(i) Storage mode: Storage of data as a
set of S.L.'s editing from any file
into the database.

(2) Retrieval mode: Selection of one
or more suitable S.L.'S from the
database.

(3) Manipulation mode: Data extraction
from the above S.L.'s and some
operation on the data.

Thus, a retrieval operation accord-
ing to a user's query is divided into
two modes: Retrieval and Manipulation.
Retrieval mode is similar to the docu-
ment retrieval system, and ManiPulation
mode to the database system, in a narrow
sense, regarding each S.L. as a small
file. The main concern of our design
of SCLAMS was to combine effectively
these two modes, in other words, to
integrate the function of document
retrieval systems and that of database
systems.

2.3 Manipulation of scaled lattices by
SML

In this paper we will focus our
attention exclusively on Manipulation
mode of SCLAMS. The major function of
this mode is to manipulate S.L.'s in a
variety of ways such as extraction of
data satisfying specified conditions,
join of more than two S.L.'s data,
elementary calculations for extracted
data, etc. These operations are done
through a query language for end users,
named as SML (Scaled lattice Manipula-
tion Language).

We now show a few examples to
illustrate some aspects of SML. Let F1
and F2 be two S.L.'s, i.e. two mappings
such as

F1 : Slx $2 x S3~AI, and (3

F2 : S1 x $2 ~A2, (4

where S1 = Year scale

{ 1950, 1951 1980}, (5

--544

$2 = Prefecture scale

= { Tokyo, Osaka, Nagoya,..), (6)

$3 = Sex scale

= { male, female}, (7)

A1 = Set of population values,

A2 = Set of numbers of TV sub-
scribers.

These S.L.'s may be considered as an
output of Retrieval mode.

Each example below consists of an
informal query and the corresponding
formal one expressed by SML. Notice
that the SML expressions contain the
mathematical notations to describe sets
and mappings.

Example i. List the male popula-
tion of Tokyo in 1980.

LIST A;

A = FI(1980, Tokyo, male);

Example 2. List names and the
number of prefectures in which the male
population in 1980 is greater than one
million.

LIST B, C;

B = <X:FI(1980, X, male)>
1,000,000>;

C = COUNT (B);

In this example B is defined as
the set of prefecture X's with the
population value FI(1920, X, male) >
1,000,000, and C as COUNT of B, where
COUNT is one of aggregate functions
prepared in SCLAMS.

Example 3. List numbers of TV sub-
scribers in 1980 of prefectures £n
which the female population in 1975 is
less than one million.

LIST NUM;

NUM = F2(1980, P);

P = <X:FI(1975, X, female)
<i,000,000>;

In this example two S.L.'s F1 and
F2 are related by a common scale $2.

General format of a query or a
sentence by SML is shown in Fig. 2.

LIST al, a2, ..., am;

bl = expression i;

b2 = expression 2;

bn = expression n;

Fig. 2 General format of a query by SML

In this format each of variables al,...,
am is equal to one of those bl, ..., bn;
and the order of bl, ..., bn is arbitrary.
The types of expressions can be classi-
fied into £he following six categories:

i) Numeral or literal constants; e.g.

1980, Tokyo, male, etc.

2) Aggregate function values; e.g.

COUNT (x), SUM (y), etc.

3) S.L.'s values; e.g.

F(xl , xn) , etc.

4) Set operation formulas; e.g.

x & y, xly, x-y, etc.

5) Set definition formulas; e.g.

<3, 5, 7, ii>, <Tokyo, Nagoya,
Osaka>,

<xi:F(xl,...,xi, ...,xn)<y>, etc.

6) Abbreviate notations for elements of
a scale, i.e. leaf words; e.g.

S.l, S.II-20, etc.

• The latter, for example, represents
from llth to 20th elements of a
scale S.

It would be easily seen, from the
above explanation, that a query by SML
is expressed basically as a set of "non-
procedural" local queries, and thus the
query as a whole has also of non-
procedural nature.

3. Hybridization of SML with
a natural language

3.1 An illustrative example

We have assured that our query
language SML is sufficiently flexible
and has strong expressive power,
specifically for those who are familiar

--545--

with mathematical notations concerning
sets and mapping s . However, we can also
say that SML is less convenient than a
natural language which seems to be best
suited for casual users. We therefore
tried to hybridize SML with a natural
language like English, Japanese, etc.,
believing that such a natural-artificial
hybrid language should be one of the
milestones to a realization of database
systems wholly accessible via unrestrict-
ed natural languages.

The next example, closely related
to Example 2 in the last section, will
show us how to hybridize SML with a
natural language, say English.

Example 4. List names and the
number of prefectures in which the male
population in 1980 is less than the
female population of Tokyo in 1970.

Now we consider the following two
types of expressions for this query.

T_~e I (Original formal expression by
SML)

LIST A, B;

A = <X:FI(1980, X, male) < C >;

B = COUNT (A) ;

C = FI(1970, Tokyo, female);

Type II (Extended new expression)

LIST A, B;

A = Names of prefectures in which
the male population in 1980 is
less than C;

B = Number of elements of A;

C = Value of the female population
of Tokyo in 1970;

The features of Type II expressions
are:

(i) The global construction is quite
similar to that of Type I expres-
sion, but it allows us to write
phrases in the chosen natural
language for definitions of vari-
ables such as A, B, and C. (If
necessary, some of the variables
may retain the original formal
definitions.)

(2) Notice that variable symbols such
as A and C can be embedded in
ordinary English phrases, so that
the original query expressed as a

complex sentence is divided into
some simple queries. This contri-
butes to readability of queries
both for man and computer.

3.2 Features of a Japanese-SML version

We have implemented a "Japanese-
SML" hybrid language processing system,
as an extension of SCLAMS. The major
design goal was to be practical rather
than just ambitious. The processing
system, which will be called Translator,
is essentially a translator of a Japanese
phrase into the corresponding SML expres-
sion, or in the above terminology, of a
Type II expression into its Type I
equivalent. The main process of Trans-
lator is shown in Fig. 3.

Type II eipression

Syntax Analysis l<--------

Conversion] ~ -

Type I expression

Japanese
Grammar

Rules

Fig. 3 Process of Translator

Some considerations in achieving
practicability of the implemented system
are :

(i) In our implementation a Japanese
sentence or phrase can be written
as a string of only Kana characters,
in which case it is desirable, for
convenience, to guarantee freedom
from segmentation as much as
possible. Our system indeed allows
the free writing of a Kana sentence,
as long as the leaf words (the
elements of scales) cause no con-
fusion with the reserved words in
the lexicon.

(2) It is desirable to keep the grammar
as compact as possible to save
storage space and processing time.
This was done by restricting forms
of possible Type II expressions.

4. Translation of Japanese into SML

4.1 Micro-grammar for Japanese

As mentioned in Section 2.3, the
set of all Type I expressions are

546

classified into six categories i)~6).
Then the possible Type II expressions,
which our Translator can accept, are
restricted to those corresponding to the
categories 2), 3), and a part of 5),
i.e. the so-called implicit set defini-
tions. It should be noticed that
expressions belonging to the other
categories are neatly expressed rather
by Type I forms.

We now show the lexicon and the
grammatical rules prescribing these
Type II expressions.

Lexical items and their categories.
There are 12 categories of lexical items.

l) Num : Numbers, e.g.

12, 165.3, -0.137, etc.

2) Naux: Auxiliary numbers, e.g.

hyaku, byaku, pyaku, sen, man
(hundred, thousand, million),
etc.

3) ~ : Names of aggregate functions,
e.g.

kosu, souwa, saidai, heikin
(count, sum, maximum, average),
etc.

4) e~ : Equality words or copulas,
e.g.

no, dearu, deatte, nihitoshii,
nihitoshiku (is equal to),
etc.

5) ~ : Words for comparison, e.g.

ijo, ika, miman, igo
(more, less, later), etc.

6) Comp____~2: Particle for comparison, i.e.

yori, yorimo (% than).

7) adj : Adjectives, e.g.

ookii, hayail shouno, daino
(large, early, small, wide),
e tc.

8)* Root : Root words, i.e. names of
scales, e.g.

nen, ken (year, prefecture),
etc.

9)* Leaf : Leaf words, i.e. elements of
scales, e.g.

1980, Tokyo, otoko (male),
etc.

l0 * Unit: Words for data units, e.g.

en, nin, km (Yen, person,
kilometer), etc.

ii) * SL : Names of S.L.'s representing
the sort of the S.L. data,
usually given at Storage
mode, e.g.

jinko, TV keiyakusha
(population, TV subscriber),
etc.

12)** Var: Variable names such as

A, B, KEN, etc.

The items in the categories marked
by one asterisk are automatically added
to the lexicon at the beginning of
Manipulation mode in order to cover
those S.L.'s which are passed from
Retrieval mode, and deleted after use.
They are thus highly application oriented.

The lexicon would become very large
if it included the items in Leaf
category. We tried to exclude them
from our lexicon by contriving a re-
cognition method of them from the
contexts, so that the lexicon contains
only about 100 application independent
items plus application oriented ones.

Var category marked by two asterisks
was also excluded from our lexicon,
since the formation rules of this
category is well-defined and easily
programmed.

Grammatical rules. It was suffici-
ent to prepare merely a dozen grammatical
rules expressed as context-free-like
productions with conditions of applica-
tion.

l) Initial production

IRI S~ D
V

2) Range-of-S.L. phrase

R-~- I Var
M od M od . . . M od

i

n

SL

Condition: n = dim(SL), where the
right-hand side of the equality
denotes the dimension of S.L.
represented by SL.

547

3) Root modifier

~ ~Mod Mod ... Mod
Y

n

SL

Condition: n = dim(SL)-l.

4)

5)

6)

Modifier

Mod ~ {(R°°tD ga)
Leaf

k

Domain-of-S .L. phrase

D ~ I Var }
(R ga cond) Root

Numer ic value

eq

V~ i Var 1
Num (Naux) (Unit)

D nita--~suru Agg

7) Condition

cond~V < (c°mp i) eq }
comp 2 adj

An example of parsing trees by this
grammar is given in Fig. 4. We assume
that 'jinko' S.L. is of dimension three.

D

I E
Mod Mod

A
Leaf eq Leaf eq SL

I J I it

eolnd

Var compl eq Root

i u i i
1980 no otoko no jinko ga C ijo no ken

(Prefectures in which the male population in
1980 is greater than C.)

Fig. 4 Example of a parsing tree

4.2 Translation into SML

Translation from Type II expressions
in Japanese into Type I expressions in
'pure' SML is performed by using two
fundamental tools: a word-for-word
conversion table and a conversion
procedure.

Word-for-word conversion table.
This is prepared for the following five
categories of lexical items:

Agg, compl, adj, Root*, SL*.

For the asterisked categories the table
is made up whenever Manipulation mode is
invoked. A portion of the conversion
table is shown in Table i.

Table 1 Word-for-word conversion
table (a part)

Category

Agg

compl

adj

Root

SL

Words (Items)

source target

kosu COUNT

souwa SUM

saidai MAX

ijo >=

miman <

ookii >

hayai <

daino >

nen Sl

ken $2

jinko F1

menseki F2

Conversion procedure. Since the
proposed grammar is so compact, we
considered that the conversion procedure
including syntax analysis would be best
realized through a general-purpose
programming language, say PL/I, rather
than a comprehensive grammar-writing
system like ATN. 9) This will also
contribute to a portability of the
system.

The programming considerations were:

(1) To insure a free writing of a
Japanese Kana phrase, we adopted a
left-to-right parsing, predicting
the succeedilg category. However,
the lexicon does not include the
leaf words, we had to impose the
restriction that any leaf word
should be enclosed by a space or an
apostrophe.

(2) An SML expression is generated, by
introducing a new variable symbol
in the form 'SYS**', whenever a
partial result of parsing becomes
sufficient to do so. (This point
can be best illustrated by the

" 5 4 8

example given below.)

(3) Two important steps in a parsing
flow are the decisions:

a) Which of the initial productions
can be applied; S~R, S---~D,
or S~V?

b) Which~phrase actually appears,
R or R?

4.3 An example

We now return to Example 4 in
Section 3.1. That query will be written
in Type II form in Japanese as follows.
(We adopt here a real notation of our
system using Kana characters.)

Example 5. (A Japanese translation
of Example 4).

LIST A, B;

A = 'I980'I'~="I~Y~C~/~w;

B = A/ = ~ ;

C = 1970 / ~¢#~ / ~YT / ~Y=~ ;

This Type II expression will be
translated into the following Type I
equivalent.

LIST A, B;

SYS01 = '1980';

SYS02 = '~ b = ' ;

A = <X:FI(SYS01, X, SYS02) < C > ;

B = COUNT (A) ;

SYS03 = '1970';

SYS04 = ' b ~ ~ ~ ' ;

SYS05 = ' ~ YT' ;

C = FI(SYS03, SYS04, SYS05);

5. ConcluSions

Our compact database system SCLAMS
with a translator from Japanese into SML
has been implemented for IBM 370/138.
The translator is a PL/I program con-
sisting of about 500 statements includ-
ing the lexicon and the grammatical
rules themselves. The overall per-
formance of the translator seems to be
sufficient for practical use. In fact,
the translation time of each Type II
expression is about 1 second.

We believe, from our experiences,
that a natural-artificial hybrid language
like ours will be a practical step to
explore the better languages for data-
base access, specifically for casual
users.

Acknowledgement. The authors wish
to exp-~s ~£~ g-r-atitute to Y. Suzuki,
the former Deputy-Director of NHK
Technical Research Laboratories and M.
Machida, Head of Information Processing
Research Group of the Laboratories for
encouragement and guidance. They are
also grateful to J. Kutsuzawa, Senior
Research Engineer of our group for his
valuable comments concerning the im-
plementation of the system.

i.

2.

3.

4.

5.

6.

7.

8.

9.

References

W.A. Woods et al.: The luner sciences
natural language information system.
BBN Rep. 2378, Bolt Beranek and
Newman, Cambridge, Mass., 1972.

E.F. Codd: Seven steps to rendezvous
with the casual user. In "Data base
management", J.W. Klimbie et al.,
eds., North-Holland, Amsterdam, 1974,
pp. 179-200.

L.R. Harris: User oriented data base
query with the ROBOT natural language
query system. Proc. 3rd VLDB, Tokyo,
Oct. 1977.

G.G. Hendrix et al.: Developing a
natural language interface to com-
plex data. ACM Trans. on Database
Systems, Vol. 3, No.2, June 1978,
pp. 105-147.

M. Sibuya et al.: Noun-phrase model
and natural query language. IBM J.
RES. DEVELOP., Vol. 22, No.5, Sep.
1978, pp. 533-540~

T. Aizawa et al.: SCLAMS - a data
processing system (in Japanese).
Preprint of WGDBMS of IPSJ, Tokyo,
July 1979.

T. Aizawa (ed.) : SCLAMS - a user's
manual. NHK Res. Lab., Tokyo, Apr.
1980.

C. J. Date: An introduction to data-
base systems, 2nd ed.. Addison-
Wesley, 1977.

P.H. Winston: Artificial intelli-
gence, Addison-Wesley, 1977.

--549

