
v

ANTONfN R~HA-SVATAVA MACHOV.~

COMPUTER TESTING OF A GENERATIVE GRAMMAR

1.1. The emergence of materially elaborated variants of generative
description of languages has brought about a pragmatical question as
to whether a particular generative grammar is working in such a way
as it is assumed to be. This problem proved to be unsolvable by a lin-
guist not aided by computer. Therefore, programmes started to be
written, so as to enable the computers either a) to make a grammar
work or b) to allow to find out - through a recognition procedure,
e.g. changing the directions of arrows in all the rewriting rules - whether
an initial S can really be reached when starting from assumed output
strings.

1.2. In th e Computing Centre of Charles University, Prague, the
former of the above methods of computer testing of generative gram-
mars was selected - similarly as at the University of Michigan (J. F~a~D-
MAN, 1971) and at other research centres. Tests are being worked out
for a certain variant of functional generative description of the Czech
language (the author of its frame is P. SGAr~). For the time being,
the object of the testing is the generative component (GC) of this
description enumerating semantic representations (SR's) of sentences.

1.3. Before demonstrating the way in which the testing is car-
ried out we shall give a brief outline of the basic properties of the GC
of the functional generative description. For a more detailed charac-
terization of this type of description see P. SgAtt, et al. (1969).

The GC is a context-free phrase structure grammar, i.e. a grammar
of the type 2 in Chomsky's classification of grammars. Together with
the theory of immediate constituents the dependency syntax finds its
application in it. In the GC there are several types of context-free rules:
modifying, substitutional and selectional ones. They are shown illustra-
tively in Fig. 1, where U, V, W are auxiliary non-terminal symbols,
u is a terminal symbol, r is some functor - terminal symbol indicating

144 ANTONIN ~iI-IA- SVATAVA MACHOV/t

which of the two non-terminal symbols on the right-hand side of the
rule is the dependent one and which is the governing one as well as
the type of dependency. For the sake of simplicity each of the terminal
and non-terminal symbols is represented by a single letter.

modifying rules U ~ (V r W)

rewriting ~ substitutional rules U ~ V

rules ~ seleaional rules U ~ u

Fig. 1.

In the written form of the grammar, non-terminal symbols of the
grammar are ordered (n q- 2)-tuples X, X0, X1, ..., X~ where X is the
so-called name-symbol, i.e. a name shared by a certain class of non-
terminal symbols, and X0, ..., X,, are indices specifying individual non-
terminal symbols of that class. Terminal symbols are characterized by
a similar structure. From a linguistic point of view the name-symbols
in terminal symbols correspond to the so-called lexemes, grammatemes
and functors. For the time being the lexemes represent semoglyphs,
their total number in the variant tested being 275. Thus this exper-
iment ranks among those experiments operating with a "lexicon" of
a small extent which is typical so far of most computer experiments
with generative grammars. One name-symbol corresponds to the left
bracket and one to the right one.

A substitution of some units for others is often possible in Czech
in certain contexts only. The GC meets this fact generally by introducing
new, more refined categories specified by indices. The number of in-
dices actually used differs with the individual name-symbols, the brack-
ets and some other name-symbols having no indices at all. The max-
imum number of indices attached to one non-terminal name-symbol
is 15; the maximum number of indices attached to one terminal name-
symbol is 30; the maximum number of values of each individual index
is 94 and the average number of values per one index is 8.

The right-hand side of the rules in the GC is subject to certain restric-
tions, namely the right-hand side of the rules does not contain more
than two non-terminal symbols. Hence we work with a binary con-
text-free grammar. The GC contains recursive rules. The order of the
rules applied is determined by the form of the rule itself and by a selec-
tion of non-terminal symbols. The rules are not distinguished as oblig-

COMPUTER TESTING OF A GENERATIVE GRAMMAR 145

atory and optional ones. However, the answer to the question whether
it is necessary, or only possible, to use some rule in generating some
SK of a sentence is given by the form of the rules itself. To make the
representation brief and to increase the legibility, rule-schemes are
largely made use of.

2.1. The form of grammar was maintained in a shape close to
the original one, with which the linguists are used to work; it makes
a good orientation in the grammar possible. Some modifications, how-
ever, were introduced.

The values of the indices were coded with natural numbers and
some designations were employed, such as so-called references, which
make it possible to register only once the lists of index-values and even
whole non-terminal symbols that occur more than once, and to refer
to these values in other cases; they also make it possible to describe
the fact that the value of some index is determined by a value of some
other index, etc. These lists, symbols and values are usually referred
to by means of references in the frame of a single rule-scheme so that
these references do not cause any serious slowing down of the work
of the programme and at the same time they save the storage space.

The leftmost-derivation method is used, as well as a random choice
of alternatives. It was, however, necessary to avoid, e.g., a repeated
choice of some recursive rules, which would lead either to an excessive
prolongation of the string generated, possibly without any transition
to terminal symbols, or to a situation where the number of some types
of Slk's ifi the generated sample would be far removed from their
actual frequency in the language. Therefore, the alternatives on the
right-hand sides are not picked out simply at random but with a cer-
tain prescribed probability. As a consequence of the use of rule-schemes
it is not possible to prescribe probabilities for the schemes of the right-
hand sides as wholes only, and it is necessary to prescribe also proba-
bilities for various values of indices used in these schemes. The prescrib-
ed probabilities make it possible to control the derivation of the SPCs
so as to make the generated sample contain, first of all, some strings
of a particular type chosen a priori, which we intend to examine more
closely. Thus it will be possible to change the set of the generated strings
by means of a change of the probabilities prescribed. In other words:
by a modification of probabilities of some subset of rules it will always
be possible to meet the demand: "Let the given phenomenon occur
in SR.'s with much higher (or lower) frequency! ". However, an answer

l0

146 ANTONiN RfI'IA- SVATAVA MACHOVfit

to the question: " W h a t will be the effect o f a modification o f the
probability in the rule number n~ upon the generation o f SK's? " can
only be given after evaluating the further experiment o f random gen-
eration in which the probability modification intended will be ma-
terialized.

The programme makes use o f a special subroutine to obtain pseu-
dorandom numbers.

An example of a modifying rule:

VERBUM 0 = 18
-..>.

VERBUM, NP
RD
8 = 0,1

$9 = 13

40

0 =- 9(20),I0

3 = L8

LS

7----1 8 = 0 , 1 $ 9 = 1 3 - ~
40 (NP 0 = 9(20),10 2 ---- 1 3 = L8 RD LS)
are non-terminal name-symbols
is a functor - terminal name-symbol
means that this rule can be used when the value of
index 8 with given non-terminal name-symbol is 0 or 1
means that the rule can be used for non-terminal name-
symbol VERBUM when index 9 either has the value
13 or is not used
a prescribed probability for choice of this alternative
(other alternatives are not quoted here for this example)
means that in 20 ~o of cases the value 9 is to be chosen,
in the rest of the cases the value 10
the value of index 3 with a non-terminal name-symbol
NP will equal the value of index 8 of the rewritten
non-terminal symbol
reference; it means that at this place the whole left-
hand side should be repeated
(i.e. VERBUM with all its indices).

Some quantitative characteristics of the tested variant:

(The given average values are mere estimates based on partial calcula-
tions, exact values will be reached on the computer in the course of trans-
ducing the grammar into a form suitable for the work of the programme).

The number of
non-terminal name-symbols 62

the number of indices
with one non-terminal name-symbol 15 max, 5 average

COMPUTER TESTING OF A GENERATIVE GRAMMAR 147

the number of possible values
of one index
with one non-terminal name-symbol

the number of
terminal name-symbols

the number o f (, proper
terminal name-symbols
(corresponding to lexemes)

the number of indices
with one terminal name-symbol

the number of possible values
of one index
with a terminal name-symbol

the number of schemes
of left-hand sides
for one name-symbol

the total number of schemes
of left-hand sides

the number of schemes
of right-hand sides
for one left-hand side

the total number of schemes
of right-hand sides

the number of all name-symbols
of one right-hand side

94 max (with the so-called de-
terminations)
34 max (in other cases)
8 average

304

275

30 max (with verbal lexemes)
7 max (with noun lexemes)
3 average

94 max (with the so-called de-
terminations)
18 max (in other cases)
7 average

79 max
6 average

460

20 max
2 average

1010

6 m a x

3 average

3. In giving information on research work, including linguistics,
a great deal depends on the way chosen for the presentation of the
results (A. MalITINrT, 1970). In the field o f computer treatment o f

148 ANTONflq ~.fI--IA- SVATAVA MACHOV,~

grammar we have not found it very easy to choose the most adequate
way for transferring the acquired knowledge and we assume to
have reached this goal only partially.

3.1. The most essential work involved in the transduction of the
grammar into a shape which is cohvenient for the work of the computer
was left to the aRAMMAR TRaNSDtrCER programme which also performs
the input check of the representation.

The programmes are being prepared for a computer of the type
IBM 360 or 370 and will be written in PL/1 programming language.

3.2. The whole grammar will be written on a magnetic disk as
one file by means of the GRAMMAR TRANSDUCER programme. This file
will contain records of variable length. One record will always contain
information about all left-hand sides with the same name-symbol and
about the corresponding right-hand sides.

The structure of a record on a magnetic d~sk:

LS i ... information about a left-hand side (about indices, their values and their prob-
abilities)

RSii ... information about right-hand sides

having the form I P l W11 W21 ... I W~ I '

where W i describes the word of the right-hand side, i.e. the code of its name-
symbol, indices and their values, and the probabilities

P stands for the probability of the selection of the given scheme of
the right-hand side

Fig. 2.

The main programme DEmVATION OF SR'S and the generated string
will be stored in the internal storage of the computer. The programme
reads a corresponding record of the file on the disk storage, using the
code of the non-terminal name-symbol as a key. The read record is
processed directly in the buffer with the use of based variables. First,
an appropriate left-hand side of the rule is found, then a corresponding
right-hand side of the rule, and the substitution is carried out.

It follows from the shape of the rules that approximately 1/4 out
of the total number of symbols in the generated string are the so-call-

COMPUTER TESTING OF A GENERATIVE GRAMMAR 149

ed semoglyphs. An analysis of the process of generation has shown
that, if the generated string contains N semoglyphs, it was necessary
to use, in the course of its generation, about 5 N to 8 N-times a substi-
tution rule, N-times a selectional rule and (N-1)-times a modifying
rule. E.g. when simulating a generation of a string of 13 symbols - con-
taining 3 semoglyphs - 23 substitutions were carried out, which cor-
responds well to the estimation according to the method described above.
We can thus estimate the number of readings from the external storage
of the computer in the course of the generation of one string.

The maximum length of a string will be determined by the dimen-
sion of the storage space declared for this string. The probabilities pre-
scribed for the choice of the right-hand sides of the rules ensure that a
premature finishing of the process of generation caused by exceeding
a given length may occur only in exceptional cases.

On the output of the programme there will be two output files
containing generated SR's. One will be on the magnetic tape and
will serve as an input for the programme for the next (transductive)
component of the generative description, the other will be a print file
serving for checking up the results.

Possible changes and corrections of the rules of the grammar will
be carried out by means of a programme called CRAMMAR MOmr~R,
which will carry out the changes in the file stored on the magnetic disk
according to the data on punched cards.

In the present moment, we have finished the rewriting of the gram-
mar into the shape which will be punched on the cards. Some basic
problems have already been solved, e.g. the shape of the data has been
decided upon and the algorithm of the generation of SR.'s has been
formulated. The programming itself will be done during the autumn
of this year.

A system of programmes for testing the whole generative grammar
is illustrated by means of a flow-chart diagram in Fig. 3.

The diagram of the data preparation for a programme corresponding
to the GC is shown in Fig. 4. The other data files will be prepared in
an analogous way.

4. The main contribution of the computer testing of a generative
grammar is usually seen in the fact that the linguist acquires knowledge
on the interaction of the rules of grammar (J. FRIEDMAN, 1971). More-
over, the preparation of the data for the computer calls for more accu-

150 ANTONfN idHA- SVATAVA MACHOVA

Derivation of SIL's
Y

©

Transduction to the
Phenogrammatical Level

~r
O

Transduction to the
Morphemic Level

©
"V

Transduction to the
Graphemic Level

1 ... Rules of grammar
2,3,4 ... Rules of transduction

__Representation of
Sentences on the
Phenogrammatical Level

Representation of
Sentences on the
Morphemic Level

--3- Sentences in
GraphemicForm

Fig. 3

Rules of Grammar I

GRAMMAR TRANSDUCER

J Corrections and/or
I Modifications

GRAMMAR MODIFIER]

Rules of Grammar
Adapted for Computer

Fig. 4

COMPUTER TESTING OF A GENERATIVE GRAMMAR 151

rate formulations and solutions of some questions, which would other-
wise be neglected as less important.

We also find some value in the fact that the results of computer
testing of any particular generative grammar can help even a linguist
who is not precisely familiar with the theory in question: he can
promptly verify his own views, or those of somebody else, on linguistic
properties of the sequences generated, and gain useful information for
his own further work.

REFERENCES

j . FRIEDMAN with T. H. BI~r.DT, R.. W.
DORAN,]3. W. POLLACK, T. S. MAR-
TN~, A Computer Model of Transform-
ational Grammar, New York, 1971.

A. MARTINET, Analyse et Prdsentation:
Deux Temps du Travail du Linguiste,
in Linguistique Contemporaine. Horn-

mage ~ E. Buyssens, Bruxelhs, 1970,
pp. 133-139.

P. SGALL, L. NEBESK~ r, A. GORAL~IKOV~I,
E. HAJI~OV.~, A Functional Approach
to Syntax in Generative Description of
Language, New York, 1969.

