MULTI-INDEX SYNTACTICAL CALCULUS

#
Hans Karlgren

In our work on analyzing Swedish nominal phrases as they
appear as document titles - particularly titles of articles in peri-
odicals - we have primarily utilized context-free rules. In an
endeavour to reduce the cumbersomeness of such rules, we

have used the notation:

(1) Ay bxy ® Sy for x =p, q rand y = u, Vv

as a shorthand for six substantially similar rules. The gain is

not merely that of avoiding scrivener s palsy - and puncher’s
impatience, since the analysis program also accepts this short-
hand - but also that of clarifying the parallelism between the rules.
The rule schema reads '"a syntagm of type a combines with one of
type b to form one of type c, each being respectively of subclass
p, q or r and u or Vv'. If the subscripts are interpretable as
linguistic categories, this notation seems quite natural. We might
write a fundamental rule of Latin grammar, by way of illustration,
thus

adjngc nomngc - nomngc

which would mean that to a nominal group may be joined an ad-
jective of the respective number gender, and case without chang-
ing the syntactical category of the group.
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This notational little device actually often reduces the
intuitive need for- context-sensitive rules, sihce it performs
what these rules are required to do in the domain where we
have a choice, - namely to bring out the common pattern and
leave aside for later consideration the minor adjustments.

Now, in practice, we have for each word or syntagm not
one subscript but a set of alternative subscripts. On the initia-
tive of Gunnar Ehrling,* who wrote the analyzer, we further re-
duce the notation by giving a name to all such sets of alterna-
tives and by specifying in a "multiplication table''the name of
the set of alternatives forming the intersection between any pair
of such sets. Thus, in place of (1) our rules actually read
(2) 2k Pj1 *7%inj, xknl
where the values of ij and kN1 are taken from the "multipli-
cation table!'

We now ask what will happen if we generalize this index
“multiplication'" so that it will represent not intersection of in-
dex sets but an arbitrary binary opération on the set of index
symbols. Particularly, we are int‘erested in the case where
this multiplication is non-associative and the set of index sym-
bols is not closed under multiplication. This would mean that
the restrictions imposed by the indexes on the sentence or part
thereof could, in their turn, be written as a context-free - not
a finite-state - grammar over the index symbols.

When the subscript multiplication rules are generalized
so far, they are of the same kind as the "multiplication" on the

main level, and we prefer to write a'i'k for a;) and we define

)
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multiplication of such index vectors as "inner' multiplication,
that is, the corresponding elements are multiplied:

a'i'k b'j'1 ~ ab'ij'kl

We note that, in general, these rules cannot be reduced
to a finite list of common context-free rules, as could rules
like (1) and (2). For if we can replace ab by ¢, we may well
be unable to replace ij by anything shorter than ij, the multi-
plication table being blank for ij or even having no row i or
column j, since i and j may, in turn, be strings and not ele-
ments in the index set. And if the well-formed sequences of
indexes are defined by a general context-free grammar and
not by a finite-state one, we cannot remedy this by adding more
symbols to the index set: the set of triples i, j, ij may then

be infinite.

This paper is an attempt to investigate this problem,
elaborating such a multi-index calculus a little. First, however,
we may be excused for making a summary of the background
of the recognition grammar problems for which such a calculus
may be useful. The reader who expects to be bored by such a

survey should turn directly to page 10 below.

Reduction systems

We introduce some definitions. The terms employed
largely coincide with those of current generative linguistics,
but some minor adaptions have been made to make the terms
adequate for describing the kind of recognition grammars with

which we are concerned.



We consider strings over an alphabet S ={a, b, ¢,..}.
We write ab for the string formed by coxica;:enation of two letters
a and b, and of for the concatémation of two str,ings o and 8.
Concatenation is considered a reflexive, associative but not
commutative relation.

We write M for the set of all concatenations of strings

in a set M:

# * #* #
M =MU {up [weEM, u eM ]

A rewriting rule, ¢ = B is a rule which permits us to
replace the string o in any string where it may occur by the
string B. A reduction rule is a rewriting rule which does not

increase the number of words in the string. A reduction system

is a set of reduction rules:

2,002, Bebib
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R_={a—~slaea 20+ by 3€85, bES, men])

By means of R we can define a derivability relation over
S *. We say that ¢ is reducible to B, @ - B, according to R,
if there is a succession of applications of rules in R by which
o can be rewritten as 8. We include the case where no rule is
applied so o~ o for ally . Thus, '"»'" is a reflexive and trans-
itive relation.

We now define a reduction grammar G =<S, R, I, T>

as a specification of a set of strings, a language, over an input
alphabet I < S: ' '
#*
L=L(<S R, I, T>)={c|c€I¥ om»Tc TCS }
where T is a set of - terminal or, to avoid diametrically opposite

associations - target symbols. We say T is an R-reduction of ¢.



Finite Rewriting Systems

Constituent structure grammars and grammar components

We first consider grammars where S is a finite set.

We call these grammars constituent structure grammars.

If T contains one single element, say s for sentence,
the grammar is a decision grammar, which specifies for

each input string whether or not it is grammatical.

Trivially, T can be extended to include a few elements,
say s for statement, q for question, and so on. Naturally, we
can reformulate a grammar with T = {tl’ . tn}, where n is
finite, into a grammar with a unique target element, merely
by adding one element, say s, to S and incorporating a few
rules {ti-osli = |t,..., n}to R.

However, allowing T to be an infinite set is not neces-
sarily a trivial extension.

Trivial but occasionally practical is to define a language
LS, R, 1, A*) where the targets are all the strings over an out-
put alphabet ACS.

If T is some non-trivially defined subset set, LI of
strings over a subset A of S, we have

L =L(S, R, I, L")

where L’ must be defined by some grammar G' =<SIRIA,T>

We say that G" = «S, R, I, A> is a grammar component and

note that G" and G' together completely specify L. We éhall
come back to this concept later when we describe more com-
plex grammars as combinations of simple on.es.

With the restriction imposed on the rules of R that the
right hand side should never be longer than the left hand side,
it is obviously always possible in a finite number of steps to

decide whether or not a given finite string is reducible to some



element in T, i.e., whether or not it is an element in the
set L, For if the given string ¢ contains m symbols and S
contains n different symbols, g can be shortened at most(m - 1)
times and after the i:th time it has been shortened,

(i =0,1,..., m~ 1), it can be rewritten without shortening
at most (o™ ~ 1 1) times without being rewritten as o,
which can always be avoided by keeping a finite record of

historical information.

Disjoint constituent grammars

1. A reduction rule where the right hand side contains ex-
actly one symbol is called a context-free rule. If all the rules
are context-free we say the grammar and the language is con-
text-free.

If the grammar is context-free we may give it the fol-
lowing interpretation. Let the letters of I be sets, ''categories',
of strings of linguistic signs. Let ab mean the set of strings
consisting of one string contained in category a followed by one
contained in b . Let the reduction rules mean inclusion so that,
e.g., ab © ¢ means that the set ab is included in the set ¢c.

A string o over I then represents a grammatical sentence
of type t, if and onmly if, R = gCteT.

2. A context-free cc'msAtituent grammar, then, can be ade-
quately described as a classificational system with finer and
broader terms where all classes can be written as concatena-
tions - interpreted as the set of concatenations of the cartesian
products - of a finite set S of categories. The process of ;.na-
lyzing sentences of such a language can be performed as a clas-

sificational procedure and the result is adequately and exhaustively



statable as the class adherence of sets of successive substrings,_
representable, e.g., by a tree with no crossing branches.

One may note that the character of a context-free language
well conforms with what used to be defined as agglutinative lan-
guages, that is with the agglutinative languages as they were
commonly deﬁnéd, not as any existing natural language of any
particular group.

The assumptions behind an attempt to describe a real
language by a context-free grammar, therefore, a.-re very
strong. It is not astonishing that these attempts partially fail;
it is astonishing that they have carried as far as they have. For
instance, there is no convincing empirical evidence that a deci-
sion grammar for a natural language cannot be written as a
context-free grammar, though there are ample theoretical rea-
sons not to stake too much on the prediction fhat no practical
counter-examples will turn up in the future.

3. If we add to our context-free grammar rules of the type

ab ~ bc

or, generally, permutation rules where the same elements recur
on the right, though in different order, we broaden, of course,
the family of languages under considerations and the interpreta-
tion above under 2. no more holds true. But all what was said
about the highly specialized character of the languages remains
true, except M class adherence is now not confined to sets

of successive substrings; the language is characterized by the

existence of discontinuous constituents, and except that the tree

drawn will have crossing branches here and there. But it is still

possible to assign each substring to exactly one immediately



higher order constituent and it is still possible to draw a tree.
We may summarize the constituent

so far mentioned under the name disjoint-constituent grammars,

i.e., grammars where each constituent is either disjoint from
or included in another and where, accordingly, the constituents
ca\n be defined as a hierarchial set of equivalence classes over
the substrings of the given input string.

Such a classification of substrings is called a p-marker.
The hope of expressing the essence of the syntactical structure
of a sentence by one p-marker therefore implies strong assump-

tions about the language.

Overlapping constituent grammar

If the rules of R do not obey the restrictions mentioned
for disjoint-constituent structure grammars, that is, if rules
occur of the type

abc ~ de
abc - dc
no equivalence classification of substring is obvious and no tree

can be drawn without further assumptions.

The most natural would be to draw a graph of the fol-

P
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lowing kind:



Unlike p-markers, this graph attributes one and the same
substring of the input string to more than one higher constitu-
ent also when these higher constituents are disjoint. Here abc
belongs to d and to e, to k and to i.

It is by no means an unnatural description of a sentence
to let one segment have more than one function, nor is it im-
practical to represent such structures as graphs. On the cont-
rary, that is what graphs are for, and in the special case where
no two branches ever coalesce, the graph seems to be so utterly
simple that it is, at any rate, rather a waste of paper to print
drawings of it.

For a subset of the grammars now under discussion we
can, with some good will, construct p-markers, although the
same rules contain more than a single right handed element.

If the rules are of the type .

abc -~ dc
or, generally, only one symbol on the right is different from
the corresponding symbol to the left, we may, by convention"ﬁ‘,'
consider ab to be a constituent of type d, whereas c¢ only func-
tions as a context. For these context-sensitive cases we there-
fore can agree to represent our reduction as follows:

a b ¢ instead of a b ¢ .

Vi BRY-7

d ¢

It might seem as natural to draw

M
d c

saying that 4 is a representation of ¢ as well as of ab, since

d could not have been rendered as Q unless ¢ had been present.

. .
Chomsky (1963) p. 294, Handbook of Mathematical
Psychology, edited by Luce, Bush, and Galanter.



One would then have overlapping constituents in cases such as

Swedish gott, reducible to godt:

g o t t
N
g . o d t

adj flexional element

Nobody seems to be over-happy with this attempt to
"add conditions to guarantee that a p-marker for a terminal
string can be recovered uniquely from its derivation" ;nd for
this and more serious reasons linguists turn away from these
types of constituent grammars altogether. But it is character-
istic that one attempts to find '"'unique" equivalence classifica-
tions, i.e., tree graphs of the simple kind described. '"We
assume that such a tree graph must be a part of the structu-
ral description of any sentence; we refer to it as a phrase-
marker p-marker. A grammar must for adequacy provide a
p-marker for each sentence":* In other words, rather than
modify the kind of graph employed, one replaces it, in trax;xs-

formational grammar, by an ordered set of such simple graphs.

The multi-index notation permits an alternative mode of

presentation, as will appear in the next few paragraphs.

Infinite Rewriting Systems

We now consider the case where a grammar G =< S,R,I, T>
contains an infinite alphabet S.

In particular, we consider the set S of vectors over a
finite set S' of indexes:

s =S|U{51|82""' '-snlsiGS'-}

»
Chomsky, op. cit. p. 2§
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For S we introduce the general multi-index multiplica-

tion schema:

] (I '

(1) (s1 8, +-- sn) (t1 L7 tm)—o
(sy6)" (sp5)" ...t (st ) tnﬁ-!....'tm ifn<m
(sjt1)'(szt2)""l(sntn) if n =m
(sltl)'(sztz)'...'(smtm)'sm_‘_i'...'~sn if n>m

that is, for i > n and j > m we consider s, = tJ. =e, where e
is a unit element such that ae =ea =e for all a.
R' contains, except the general multi-index schema (1),

a finite set R' of rules or rule schemata over S

(2) R'={a-oa|a=a1a2...an,s=blbz...b , nsm)

m

where a; and bj are elements in S or variables over S or over
specified subsets thereof.

T is given either explicitly or as an infinite subset of S
T ={t'x|te Acs, x€8}

i.e., as those elements in S which consist of an element in a
finite set A, arbitrarily subscripted.

We note that every element s in S defines an infinite
class of elements beginning with the vector 8, just as a decimal
number defines a class of number with the same or a greater
number of digits.

The rules of R are such as

1 ab = ¢

2 a'x b'y - c'z
3 a'x = b

4 a-b'x

11



and so on. To make a language decidable it is obviously suf-
ficient - by way of analogy with the reasoning above - to re-
quire that the right-hand side should never contain more let-
ters out of the alphabet S' than the left-hand side, thus ex-
cluding rules like rule 4 above. The fact that the letters are
here distributed over different levels, so constituting one or
more symbols of 5, cannot invalidate that argument.
The conclusion obviously also remains intact if we accept
rules with a longer right-hand side for rewriting symbols which
never occur on the right-hand side of any rule, that is, if we
make allowance for assignment rules.
In the following we shall restrict ourselves to coantext-
free multi-index, rules, that is, the rules shall
a) contain one element of S on the right-hand side
and wherever practical the rules shall also

b) contain at most as many elements of S' on the right-hand
side as on the left-hand side, except where the left-hand
side consists exclusively of elements which occur on the
right-hand side of no rule.

Though each rule is a context-free rule, such a multi-
index grammar is not a disjoint-constituent grammar; consti-
tuents do overlap:

Let us consider a grammar where

ab - d
dc = s
Xy = u
uz - v
and where s'veéT. Let us consider the analysis of the string

a'x b'y 'z

12
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The second restriction is unnecessarily severe. One may
well include, e.g., r ules which are not reductive with ref-
erence to §" but which are strictly reductive on the highest
level they refer to and which do not increase the number of
levels referred to by any rule. '



a'x b'-y c'z
d xy c'z

s'xyz

or graphically:

NCY

We see that segmentation is overlappﬁng but that each
level of indexes represents one equivalence classification and
one tree-shape graph.

In many cases, context-free multi-index rules are
v'veakly equivalent to context-sensitive rules, as will appear
from the following few examples of languages which notorious-
ly cannot be described with ordinary context-free rules. Crude-
ly, we may say that taking an index on another level into ac-

count is an implicit way of regarding context.
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Example {. The language 1aPple™,

R': a—-x'p
b= y'p
¢~ 2z'q
.xy-vs
X8y = S
8z = 8

pPpPq — € where e is the unity element.

Illustration :
. aabbcc
x'p x'p y'p y'p 2z'a z'q
x'p s'pp y'p z'q z'q
s'pprp z'q z'q

s'pp z'q

14



Example 2. The ''reduplication language, consisting of an

arbitrary string of als and bls followed by the same string °

repeated.
R : xy—'x'y for x = a,b and y = a, b
XX = S for x = a,b
s's - s
Illustration:
abbababbab

a'(b' (b'(a'p))) a' (b (b'(a'b)))
s' (s'(s'(s'5))
]
Example 3. The language (a™b")™
R': x x'y -~ x'(x'y) for x = a,b and for all y€S§
ab = t

t'x t'x - t'x for all x€8

t = s
s's » s
T = {s}
Illustration:
aaabbbaaabbb

a'(a'b)b'(b'b)a'(a'a) b’ (b'b)

th (et ) e (')

t'(t't)
s'(s's)
8
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Example 4. The language aTpte™?

R': x x'y= x'(b'y) for x = b,c and all y€S

a b'x ¢'x » b'x for all X€ES

b~-s
s's - s
T = {s}
Illustration:

aaabbbbccceccccccee
aaab'(b'(b'p))c' (B' (B'B))c' (B’ (B'B))c' (b' (b'b))
aab'(b'(b'b))c' (B ' (b'B))c' (b (b'b))

b' (b (b'b))

s'(s'(s's))

Thus, the possibility to add further index levels at
option provides a meansof performing arithmetical operations.
The context-free multi-index rules are powerful and cover
many languages of what is known as the context-sensitive type.

We shall now turn to linguistic interpretations of such

a calculus.
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Multi-index Calculus in Linguistics

The multi-index calculus can be applied in linguistics
above all for two purposes: to replace context-sensitive rules

and to provide a means of representing p-markers.

Context-free multi-index rules derived from context-sensitive

rules

It is possible to replace many - all? - context-sensi-
tive rules by an equivalent set of context-free multi-index

rules.

Thus, the rule
a-b/~c
can be replaced by
a — b'p, c~c' q and pq - e or, more cautiously

by the assignment rules

a - A'p
c -C'q
and the reduction rules
A'p-A'r
A'r-B'r
rq ~ e
p - e

q - € where e is the unity element.

Let us consider the following little grammar:
i=i/g-
hg-+gh
i-d/h—
gh - ¢

f-a/—c
cd=Db

ab-~ 8

17



With this grammar, the sentence fhgj will be analyzed

thus

We have here adopted a ''mixed" tree representation
for context-sensitive structures, with obvious significance,.
We can reduce the same sentence to s by the follow-
ing set of rules:
i ~i'k
g -g'l
1k - e
h -~ g'-m

g ~g't

18



Thus,

-
-]
u-‘—
-
g
B
-
-

[}
(1]
-3
a
Py
5
~

ac'(rt) d
a b
s

Graphically, this means that we have a set of inter-

connected treegraphs:
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In a transformational grammar, we interpret G" as a
grammar component, adding to our grammar a component

G' =<s', r', I

y T'> where 1' is the set T of p-markers,
T' is a subset thereof and R' is a set of multi-index re-
writing rules such as

a'x - a'y

a'x b'y - ¢'x

a'x a'x b'y - a'x b'y a'x b'y

a'x - by - b'y . a'x

for specified sets of values for x, y, etc., that is, suhsti-
tution, reduction, expansion and permutation rules for which

the conditions are not confined to one index level at a time.

Regarding the analysis as a syntactic tree, we may
characterize transformational rules as such where the con-
ditions for some symbol(s) to be rewritten in a specified way
refer to the '"vertical" neighbours (not to the '‘horizontal”
neighbours as in context-sensitive rules). We might speak
about pretext and posttext sensitive rules, or generally
about "kintext sensitive" rules. Obviously and notoriously,
"kintext'" must play a different role in generative and in
recognition procedures, since pretext in one case is post-
text in another.

Thus, one component may map the input strings on

= { t Yx| t €T; x €85} and a transformation compo-
nent may map I' = T" on T' = {t'y|te A} and
v ={a1' a2'~a3' .+.|p; €B} where B is a subset of S" and
Ag T. Or we may define the target set for each component

in other ways.
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Multi-index calculus in a transformational grammar

Given a constituent structure grammar G =<8, R, I, T>
we obtain an infinite grammar G'" by replacing S by

s" =Sy f{s, '32'83' ..-|s;€s"} and R by

R" = [aiaz...an«b'(aiaz...an)l(aiaz...an-' b) €ER}

if R is context-free and otherwise

1 . 1
R'= {aa,...a "bil (aiaZ“'an)'b?_ (aiaz...an)-... b

(aiaz..;an)l(a!az...an - bibz"'bm)ER}

and replacing T = {ti’ tZ’ ey tk} by
™ = {ti'xltiETxES"}.

That is, we obtain a grammar* which maps given strings on

an infinite set which may be considered as a set of p-mar-

e

kers™. G" is then an interpretation grammar, corresponding

to G.

*
a decidable one, see p. 13 above, footnote. The
number of levels does increase, but all rules refer
exclusively to the uppermost level.

w* These multi-index expressions naturally contain all
information that transformations operate upon. Indeed,
they will often contain too much, but superfluous in-
dexes can easily be eliminated by multi-index rules;
the point is that no side conditions for permissible
transformational rewritings need be observed. Every-
thing needed for the calculus is in the string.
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Thus, one-level reduction rules suffice for a decision
grammar for a constituent-structure language and multi-index
reduction rules suffice for an interpretation grammar for such
languages. Multi-index rules also suffice for a decision gram-
mar for a transformationally defined language? The question

remains if they suffice for an interpretation grammar for the

latter.

A structural description of the sentence may be given
as the sequence of p-markers obtained during the analysis.
Now, since the relative order of operations is not inherently
fixed, we would like to find a representation of such sequen-
ces such that equivalence can easily be defined. That is, we
want to find an adequate interpretative grammar correspond-
ing to G'. Can multi-index rules serve those purposes ?

The unified formalization, provided by the multi-index
representation, might prove an aid to finding an effective
interpretative calculus for transformationally defined langua-

ges.

Conclusion
b a1

The multi-index calculus seems promising for several
linguistic purposes, especially where restrictions can be

assigned to several, weakly interacting levels.

if this is decidable. They may also, incidentally,
provide simple decidability criteria for a transform-
ational grammar. Cf. the hints above (p. 13).
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