
COMPUTER-AIDED RESEARCH ON SYNONYMY AND ANTONYMY *

H. P. Edmundson
University of Maryland, College Park, Md., U.S.A.

and

Martin N. Epstein
National Institutes of Health, Bethesda, Md., U.S.A.

Abstract

This research is a continuation of that reported in Axiomatic
Characterization of Synonymy and Antonymy, which was presented at
the 1967 International Conference on Computational Linguistics [3].
In that paper on mathematical linguistics the relations of synonymy
and antonymy were regarded as ternary relations and their domains
and ranges were discussed. Synonymy and antonymy were defined jointly
and implicity by a system of eight axioms, which permitted the proofs
of several intuitively satisfying theorems. The present paper on
computational linguistics is a preliminary report which describes
some computer programs that have been used to investigate the extent
to which those axioms model an existing dictionary of synonyms and
antonyms [9]. A set of computer programs is discussed that (i) input
the dictionary data concerning synonyms and antonyms, (2) create a
data structure in core memory to permit the manipulation of data,
(3) query this data structure about words and relations, and (4) out-
put the answers to queries or the entire data structure, if desired.
Some examples of computer output are also given to indicate present
directions of the computer-aided research.

*This research was supported in part by the Office of Naval
Research under Contract N00014-67-A-0239-0004.

i. Introduction

i.i Previous Research

This work is a continuation of research initially reported in

the paper Mathematical Models of Synonymy, which was presented at the

1965 International Conference on Computational Linguistics [2]. That

paper included a historical summary of the concepts of synonymy and

antonymy. It was noted that since the first book on English synonyms,

which appeared in the second half of the 18th century, dictionaries

of synonyms and antonyms have varied according to the particular

explicit or implicit definitions of "synonym" and "antonym" that were

used. The roles of grammatical class, word context, and substitu-

tability in the same context were discussed.

As was noted, synonymy traditionally has been regarded as a bin-

ary relation between two words, Graphs of these binary relations

were drawn for several sets of words based on Webster's Dictionary of

Synonyms [8] and matrices for these graphs were exhibited as an equi-

valent representation. These empirical results showed that the con-

cepts of synonymy and antonymy required the use of ternary relations

between two words in a specified sense rather than simply a binary

relation between two words. The synonymy relation was then defined

implicitly, rather than explicitly, by three axioms stating the pro-

perties of being reflexive, symmetric, and transitive. The antonymy

relation was also defined by three axioms stating the properties of

being irreflexive, symmetric, and antitransitive (the last term was

coined for that study). It was noted that these six axioms could be

expressed in the calculus of relations and that this relation algebra

could be used to produce shorter proofs of theorems, even though no

proofs were given. In addition, several geometrical and topological

models of synonymy and antonymy were posed and examined.

The characterizations of synonymy and antonymy initiated in

Edmundson [2] were investigated more thoroughly in Edmundson [3].

Synonymy and antonymy were defined jointly and implicitly by a set of

eight axioms rather than separately as before. First, it was noted

that the original six axioms were insufficient to permit the proofs

of certain theorems whose truth was strongly suggested by intuitive

notions about synonymy and antonymy. In addition, it was discovered

that certain fundamental assumptions about synonymy and antonymy

must be made explicit as axioms. Some of these have to do with

specifying the domain and range of the synonymy and antonymy relations.

This is related to questions about whether function words, which lin-

guistically belong to closed classes, should have synonyms and ant-

onyms and whether content words, which linguistically belong to open

classes, must have synonyms and antonyms. Several fundamental theorems

of this axiom system were stated and proved. The informal interpre-

tations of many of these theorems were intuitively satisfying. For

example, it was proved that any even power of the antonymy relation

is the synonymy relation, while any odd power is the antonymy relation.

These results supported the belief that an algebraic character-

ization is .insightful and appropriate. For example, the assumption

that synonymy is an equivalence relation also has been made, either

directly or indirectly, by F. Kiefer and S. Abraham [4], U. Welnreich

[i0], and others. Since the axiom system defined the notions of syn-

onymy and antonymy jointly and implicitly, it avoidedlcertain diffi-

culties that are encountered when attempts are made to define these

notions separately and explicitly.

1.2 Axioms

Before investigating axioms for synonymy and antonymy, we will

recapitulate some notions and notations for the calculus of binary

relations. Consider a set V of arbitrary elements, which will be

called the universal set. A binary relation on V is defined as a set

R of ordered pairs <x,y>, where x,y ¢ V. The proposition that x stands

in relation R to y will be denoted by xRy. The domain ~(R) of rela-

tion R is defined as the set ~(R)~{x:(~y)(xRy)}. The complement,

union, intersection, and converse relations are defined by

xRy - ~ xRy

x(R n S)y - xRy A xSy

x(R US)y -z xRy V xSy

xR-ly - yRx

The identity relation I is defined by

xly _= x = y

The product and power relations are defined by

xRiSy - (,~z)[xRz A zSy]

R n : RIR ~-~ n~l

The inclusion and equality of relations are defined by

R = S - xRy -----> xSy
I

R = S - R = S A S = R

Under the assumption that synonymy and antonymy are ternary rela-

tions on the set of all words, the following definitions will be used:

xSiY E word x is a synonym of word y with respect to the

intension i (or word x is synonymous in sense i to word y)

xAiY E word x is an antonym of word y with respect to the inten-

sion i (or word x is antonymous in sense i to word y)

In addition to the synonymy and antonymy relations, it will be use-

ful to introduce the following classes that are the images by these

relations. The synonym class of a word y is defined by

si(Y) ~ {x : xSiY}

which may be extended to an arbitrary set E of words by

si(E) ~ {x : (~y) [y c E A xSiY] }

Similarly, the antonym class of a word y is defined by

ai(Y) ~ {x : xAiY}

which may be extended to a set E of words by

ai(E) E {x : (~y)[y c E A xAiY]}

Following Edmundson [3], it will be assumed that the synonymy

and antonymy relations are defined by the following set of axioms--

rather than as in Edmundson [2].

Axiom i (Reflexive):

Axiom 2 (Symmetric):

Axiom 3 (Transitive):

Axiom 4 (Irreflexive):

Axiom 5 (Symmetric):

Axiom 6 (Ant~transitive):

Axiom 7 (Right-identity):

Axiom 8 (Nonempty):

(Vx) [xSix]

(Vx) (Vy) [xSiY => xS i ly]

(Vx) (Vy) (Vz) [xSiY A YSiz --> xSiz]

(VX) [xAix]

(Vx) (Vy) [xAiY --------> xA? l ly]

(Vx) (Vy) (Vz) [xAiY A YAiz ~--> xSiz]

(Vx) (Vy) (Vz) [xAiY A YSiz ------> xAiz]

(Vy) (~x) [xAiY]

The above eight axioms may be expressed more succinctly in the calcu-

lus of relations as follows:

Axiom i (Reflexive): i = S i

-i
Axiom 2 (Symmetric): S i = S i

Axiom 3 (Transitive): S 2 ~ S i
i

Axiom 4 (Irreflexive)': I = Ai

Axiom 5 (Symmetric): A i ~ A i

Axiom 6 (Antitransitive): A~ l ~ Si

Axiom 7 (Right-identity): AII S i ~ A i

Axiom 8 (Nonempty): (Vy)(~x)[xAiY]

As mentioned in [3], even though si(Y) ~ @ since YSiY by Axiom i,

it may be necessary to add the following axiom:

Axiom 9: (Vy)(~x)[x # y A xSiY]

to guarantee that the domain of the relation S i is not trivia], i.e.,

si(Y) - (y} # ¢

Axiom 9 is not necessary if si(Y) is permitted to be a unit set for

certain words. Thus, we might define si(Y) = {y} for any function

word y, e.g., si(and) = {and}. But this will not work for antonymy

since ai(Y) might be considered empty for certain words such as func-

tion words, e.g., ai(and) = ~. The alternative of defining ai(Y) = {y}

is not reasonable since it produces more problems than it solves.

Axiom 8: (Vy)~x)[xAiY], which is equivalent to

(~y)[ai(Y) # ~] ,

is reasonable if the contrary y of word y (e.g., "irrelevant", "imposs-

ible", "nonuse", etc.) is permitted, i.e., ~ ¢ ai(Y).

2. Research Methodology

2.1 Research Goals

The synonymy and antonymy relations possess interesting proper ~

ties, which can be treated mathematically to provide insight about

semantic relations and connectivity among words in a natural language.

One such model is the axiom system just stated. The immediate goal of

the current research is to compile, in computer-accessible form, a dic-

tionary containing all synonymy and antonymy relations holding between

selected words. Such a dictionary is useful in gaining a better un-

derstanding of how the English lexicon is semantically structured

since it can eventually enable the determination of the completeness

of the descriptions in any synonym-antonym dictionary. Another objec-

tive is to assist the lexicographer in compiling such a dictionary so

that all words are defined and related in a consistent manner.

2.2 Data Base and Data Structure

For the present research a test dictionary was compiled by select-

ing English words from Webster's New Dictionary of Synonyms [9]. Ac-

cordingly, a set of computer programs was written to do the following:

i. Input, in a prescribed format, words selected from the above

dictionary together with relevant data concerning their synonyms and

antonyms.

2. Create in core memory a suitable data structure (see [5]) for

the input, which permits the manipulation of the dictionary data. Fu-

ture extensions to the system would make use of direct-access storage

to enable the processing of more data.

2.3 Data Analvs~

The test dictionary is analyzed with the aid of computer programs

that were written to do the following:

I. Query the data structure about words and relations. Two

query modes are built into the system. The first mode allows the se-

lection of words fulfilling an input request and the second mode per-

mits the verification that certain relations hold between selected

words.

2. Output the answers to queries or output the entire data struc-

ture, if desired.

3. Verify the consistency of word groupings, the degree of com-

pleteness of related subgroups, and the presence or absence of anom-

alies-in the data base.

3. Input

3.1 Input Specification

First, it is necessary to specify and format the input data so

that a set of programs may process and query a test dictionary, which

resides in core in the present version of the system. This is accom-

plished using the following input prototype:

<word>,<grammar code><sense #><relatlon~,~word>,...,<word>,;

where

i.

2.

<word> is an entry in Webster's New Dictionary of Synonyms.

<grammar code>makes use of the following coding mnemonics:

N - Noun
V - Verb
J - Adjective
B - Adverb
0 - Pronoun

D - Determiner
L - Auxiliary
P - Preposition
C - Conjunction

3. <=ense #> is a one-digit number representing a sense associ-

ated with a word in the dictionary.

4. <relation> is denoted by

S - Synonymy
A - Antonymy

M - word used in the description of another word
but not itself a main entry.

5. <word>,...,<word> is the set of words standing in the given

relation to the main entry in the given sense.

Thus, each input item consists of a main-entry word followed by

a comma, a one-character grammar code, a one-digit sense number, a

one-character relation, a comma, a list of words (separated by commas)

that in the given sense stand in the given relation to the main entry,

a comma, and a semicolon that denotes the end of an input item. A

sample computer input is:

51nPLE,J2S,E&SY,FACILE,LIGHT,EFFORTLESS,SMOOTH,;

Continuation cards may be appended to any item by placing a "+" in

column 80 of subsequent cards.

3.2 Comments

Several problems remain in fully attaining the above stated goals.

On the one hand, it is difficult to select from a manual dictionary

sufficiently small sets of words that are closed under the relations

S and A, while on the other hand large segments of such a dictionary

cannot be input at present. Programs have been written to stgucture

and process small test dictionaries, to select words from the data

i0

structure using a query language, and to verify that certain rela-

tions hold between words.

4. Processing

4.1 Input Analysis

In the first phase of pro¢essing the program checks the well-

formedness of the input entries, isolates words, records grammatical

classes, and establishes relations between words.

4.2 Creation of the Data Structure

The data structure created in core provides for the construction

of two tables.

The first is a directory table whose items consist of a location

identifier, an entry, the grammar code, the sense number, and the rela-

tion. This directorysequentially stores the input information, ellm-

inates duplicates, and provides a reference pointer to a second table,

the matrix table.

The matrix table consists of an ineidence or connectivity matrix,

which is used to store the synonymy and antonymy relations between

words. It should be noted that xSy is stored differently from ySx.

In addition xSx is recorded in the data structure only if it so ap-

peared in Webster's New Dictionary of Synonyms.

It is also possible to develop a teachability or accessibility

matrix from the stored input. In graph-theoretic terms the matrix may

be regarded as follows: words correspond to vertices and relations

correspond to directed edges. Note that for all x and y in the data

structure, it can be determined whether xSy and xAy are true or false.

ii

4.3 Query Language

The two basic modes of operating upon the data structure are the

selection mode and the verification mode. Both modes permit queries

to be composed and matched against the data structure. The response

to a query statement in the selection mode is a listing of all those

entries in the data structure satisfying the request, lh the verifi-

cation mode the response indicates whether a statement is true or false

and, if false, points out which segment of the query statement does

not hold.

Simple query statements are of the form:

? if QUERY

where "?" is used to initiate the request; "if" is used as a prefix

for particular query types; and "QUERY" consists, in the simplest

case, of one of the following five statement types:

i. xRy
2. x*y
3. xR*
4. *Ry
5 . *R*

where "*" denotes that any value in the specified field is allowed

and the sense i is not explicitiy denoted. Item 1 above operates in

the verification mode, while items 2-5 operate in the selection mode.

Simple query statements can be extended to allow compound expre-

sions by means of the operators "not", "and", and "then". For example,

the query

? if xSy and ySx

12

tests whether synonymy (in sense i) is a symmetric relation for the

words x and y, while the query

? if xSy and ySz then xSz

checks to see if transitivity of synonymy (in sense i) holds for the

words x,y, and z.

It is also possible to determine if the composition SIS of the

relation S holds, i.e., for given words x and y, does the given

word z in the data structure satisfy t%e request:

? if xSz and zSy

To select all such z from the data structure, the request is formu-

lated as follows:

? if xS* and *Sy

The synonymy relation S is assumed to be reflexive, symmetric,

and transitive, while the antonymy relation A is assumed to be irre-

flexive, symmetric, and antitransitive. The input forms of queries

representing these properties are as follows:

i. Reflexive:

2. Symmetric:

3. Transitive:

4. Irreflexive:

5. Symmetric:

6. Antitransitive:

? x,S,x,;

? if x,S,y,.then.y,S,x,;

? if x,S,y,.and.y,S,z,.then.x,S,z,;

? not x,A,x,;

? if x,A,y,.then.y,A,x,;

? if x,A,y,.and.y,A,z,.then.x,$,z,;

In addition, the input format for the properties of right-identity

and nonempty are as follows:

• x,A,y,.and.y,S,z,.then.x,A,z,; 7. Right-identity: ? if r

8. Nonempty: ? if *,A,y,;

This last property is interpreted as follows: for all y in the data

i 13

structure, does there exist a word x such that x stands in the rela ~

tion A to y?

An example of the input to test if transitivity holds for the

words "big", "great", and "large", in that order is as follows:

? if big,S,great,.and.great,S,large,.then.big,S,large,;

4.4 Verification Algorithms

Two basic verification algorithms have been programmed. The

first seeks to detect the presence of either a chain or a loop among

the given words. The input consists of pairs of words standing in

the relation S. A chain exists if it is possible to linearly order

the set of input words so that the relation S holds between adjacent

words. A loop is detected if every word is preceded by another word

and the algorithm cannot locate a word that has no predecessor. This

algorithm may be useful in developing techniques for structuring the

vocabulary of a synonym-antonym dictionary so that no word is used

before it has been defined.

The second algorithm determines whether selected groups of words

form an equivalence class with respect to synonymy in a given sense.

A binary relation R is said to be an equivalence relation if it is

reflexive, symmetric, and transitive. An equivalence relation R parti-

tions a set of elements into disjoint classes such that two elements

are equivalent if and only if they belong to the same class. The

routine determines whether two given words are in an existing synonym

class and, if not, establishes a new class. The test fo~ equivalence

classes in a set of words is initiated by the input statement.

EQUV(<word>,...,<word>)

14

which incorporates tests for reflexivity, symmetry, and transitivity.

The output is a table indicating class membership of wozds o[, if no

equivalence relations exist, indicates those properties not satisfied

by particular words. For example, the routine found that, aside from

reflexivity, the words "pure", "simple", and "absolute" formed an

equivalence class in a particular sense i. On the other hand, the

words "aft", "astern", "abaft", "after", and "behind" formed two

equivalence classes {aft, astern, abaft} and {after, behind}. At pre-

sent, the graphs of equivalence classes are drawn manually, rather

than by computer.

Appendix 2 outlines the structure of an input deck and lists a

sample input including both input data and query statements.

5. Output

5.1 Relational Form

The relational form of output verifies whether the simple state-

ment xRy is true or false and also whether compounds of simple state-

ments are true or false. For example, the query

? if stern A soft

produced

THE FOLLOUING RELATIOH HOLDS: STERN A SOFT

while for the query

? if far A high and high A low then high A far

the following set of responses was obtained: r

THE FOLLOWING RELATION HOLDS: FAR & HIGH
THE FOLLOHIHG RELATIOH HOLDS: HIGH A LOU
THE GIVEN REL£TION DOES HOT HOLD: HIGH A F&H
QUERY REQUEST NOT SATISFIED -- STATEHENT FALSE

15

5.2 List Form

In the list form of response to a query the main entry and all

words (if any) that are pointed to by the main entry are listed. For

example, the query

? if * S stern

produced

TEE FOLLOWING ~ORDS AEE IN THE RELATION S TO STERN

S EVEEE
AUSTERE
ASCETIC

In general, this form of output consists of lists of the follow-

ing two types: a list of all words synonymous or antonymous to a

given Word, and a list of all synonymy or antonymy relations holding

among a given set of words.

5.3 Matrix Form

The matrix form of output represents the relations by a matrix

consisting of S's and A's according to whether the relation S or A

holds between given pairs of words. A blank in such a matrix indicates

that neither S nor A relates two words in the data structure. For

example, the following matrix revealed four senses of the word

"simple".

16

.simplea
pure

absolute
sheer

*compound
complex
simplez

e a s y
facile
light

effortless
smooth

complicated
difficult

simple $
natural

ingenuous
naive

unsophisticated
artless
simple"

foolish
silly

fatuous
asinine

wise
sensible
Judicious

c
e o
f ~ d i

a c f pi n
b o c o i f n q

S S mos f r s i f s a e
i ospai a l t m c i i t n n
m p l h o p m e c i l o a c m u u a
p u u e u l p a i g e o t u p r o i
l r t e n e l s l h s t e l l a u v
e e e r d z e y e t s h d t e l ' s e
I a $

S S S & A
S S S S
S S S
S S S

& S
$ S S S S & A

SSSSSS
SS SSS
SSS SS
SSS5 S
SSSSS

S&
A

SSSSS
SSSSSS
SS SSS
SSS SS
SSSS S
S S S S S

u

n
s
o

P
h
i 1
s s u
t a f f a e d
irso aS ni
ctiosti sc
a l m l i u . w i i
t e p i l o f i b o
e s l s l u n s l u
d s e h y s e e e s

S S S S S A
S S S S
S S S S
S S S S
S S S S & ~
A S R

& A & S S
A S S

The s u p e r s c r i p t d e n o t e s t h e s e n s e number t o be a s s o c i a t e d w i t h " s i m p l e " . A "*" i s p l a c e d t o
t h e l e f t o f t h o s e words t h a t do n o t a p p e a r as m a i n e u t r i e s i n W e b s t e r ' s New D i c t i o n a r y o f

17

6. Concluding Remarks

The programs were written almost completely in FORTRAN IV and

have been run on the IBM 360 and the PDP i0. A flowchart, which

stm~narizes these programs, appears as Appendix i. In addition, a

SNOBOL 4 program has been written for the detection of chains and

loops.

Several problems in fully achieving the stated research goals

have appeared. It was difficult to select small closed sets of words

from Webster's New Dictionary of Synonyms and it was not feasible to

keypunch the entire dictionary. Since the size of a truly suitable

data base was too large to retain in core memory, several sample

dictionaries have been selected to study the feasibility of the

principles and techniques involved. Most of the current effort has

been devoted to providing programming capability for the processing

of small test dictionaries. Different words may be input with each

run, thereby increasing the size of the sample data base to gain

deeper insight into the properties of the entries listed in a manual

dictionary. Further computer-aided research on synonyms and antonyms

will help to validate or extend the axiomatic model proposed earlier.

Also, future research could consider the additional relations "con-

trasting" and "analogous" cited in some manual dictionaries and the
i

automatic determination of the senses of words.

18

Bibliography

[i].

[2].

[3].

[4] .

[5].

[6].

[7] .

[8].

[9].

[lO].

[ii].

R. Carnap, Introduction to Symbolic Logic and Its Applications,
W. Meyer and J. Wilkinson (trs.). Dover, N.Y., 1958.

H. P. Edmundson, "Mathematical Models of Synonymy", Internation-
al Conference on Computational Linguistics, New York, 1965.

H. P. Edmundson, "Axiomatic Characterization of Synonymy and
Antonymy", International Conference on Computational
Linguistics, Grenoble, 1967.

F. Kiefer and S. Abraham, "Some Problems of Formalization in
,w

Linguistics , Linguistics, v. 17, Oct. 1965, pp. 11-20.

D. Knuth, The Art of Computer Programming : Vol.____~l, Fundamental
Algorithms, Addison-Wesley, New York, 1968.

V. V. Martynov, Pytannja prikladnoji lingvistykv; tezisy
dopovidej mi~vuzovs'koji naukovoji konferenciji, Sept. 22-
28, 1960, Cernivcy.

A. Naess, "Synonymity as Revealed by Intuition", Philosophical
Review, v. 66, 1957, pp. 87-93.

Webster's Dictionary of Synonyms, Merriam Co., Springfield,
Mass., 1951.

Webster's New Dictionary of Synonyms, Merriam Co., Springfield,
Mass., 1968.

U. Weinreich, "Explorations in Semantic Theory", in Current
Trends in Linguistics, III, T. Sebeok (ed.), Mouton and
Co., The Hague, 1966.

P. Ziff, Se__ mantic Analysis, Cornell University Press, Ithaca,
N.Y., 1960.

-- 19

APPENDIX I-FLOW CHART

INPUT ANALYSIS

1. Check well-formedness
of input entries

2. Edit input entries
-isolate words
-record grammar codes
-establish relations

i
DATA-STRUCTURE CREATION

i. Create directory
-eliminate duplicate
entries

2. Create connectivity
matrix

I ,

QUERY-SELECTION MODE

i. Analyze query
-scan query
-flag errors

2. Execute query
-look up words
-match data-structure

3. Output answer

QUERY-VERIFICATION MODE

i. Locate words
2. Determine equivalences
3. Output answer

20

APPENDIX 2- RUN INSTRUCTICNS

First the basic structure el an input deck is outlineS.
Comments and explanation are enclosed in parentheses. A
sample run which may be input to the system follows.

.......... FORMAT OF THE INPUT DECK
PARAMETER CARD (constant for each run) .
(input to the creation program in the input
described above)

proto%ype

rOD (input delimeter) .
-SELECT MODE
(guery requests in both the verify and select mode follow)
(all queries which are to be matched against the data til~.
using the query input format described above.)
-EQUIVALENCE MODE
(using the set of terms inputted, determine if the set teems
an equivalence class)
• * (run terminator) .

A SAMPLE RUN

,; +ZSAEONIF~.
FOR,C S,BECAUSE,SINCE,AS,INASMUCH AS,;
BECAUSE, S,FOR,SINCE, AS,INASMUCH AS,;
SINCE, S,BECAUSE,FOR,AS,INASMUCH AS,;
AS, S~SINCE,BECAUSE,FOR,INASMUCH AS,;
INASMUCII AS, S,SINCE,BECAUSE,FOR,AS,;
FULL, S,CO~PLETE, PLENARY,R'EPLETE,;
FULL, A,EMPTY,;
COMPLETE, S,FULL,PLENAR¥,REPLETE,:
COMPLETE, A,INCOMPLETE,;
REPLETE, S,FULL,COMPLETE, PLENAR¥,;
PLENARY, S,FULL,COMPLETE,REPLETE,;
PLENARY, A,LIMITED,;
EMPTY, S,VACANT,BLANK,VOID,VACUOUS,;
EMPTY, S,EMPTY,;
INCOMPLETE, M,;
LIMITED, ~,;
SEVERE, S,STERN,AUSTERE,ASCETIC,;
SEVERE, A,TOLERANT,;
STERN, S,SEVERE,AUSTERE,ASCETIC,;
STERN, A,SOFT,;
AUSTERE, S,SEVERE,STERN,ASCETIC,;
AUSTERE, A,LUSCIOUS,;
ASCETIC, S,AUSTERE,SEVERE,STENN,;

21

ASCETIC, A,LUXURIOUS,;
REMOTE, StDISTANTwFARwREMOVE~,;
~EMOVED, 5,REMOTEtFARrDISTANT,;
DISTANT, S,FARsREMOVED,RENOTE,;
FAR, S#RE~OTE,RENOVEDwDISTANT,;
FAR, A,REAR,HIGHwNEA~BY,;
NEAR, S,CLOSEeHIGHrNEARBYr;
REAR, AwFAR,;
HIGHf SwTALL,LOFTY,:
TALL, StHIGHwLOFTY,;
NEARBY, SwCLOSEtNEA~,H~GN,;
HIGH. A,LOM,;
CLOSE o S,NEAR,IiIGH, NEARBy,:
CLOSE, S,CLOSE,;
CLOSE, A,REMOTE,;
SIMPLE,JIS,PU~E,ABSOLUTE, SHEER,;
SIMPLE#JIA,COMPOUND,CONPLEX,;
PURE,J S,SIMPLE,PURE#ABSOLUTE,SHEER,:
ABSOLUTE,J S,SIMPLE, PURE,SUEER~;
ShEER,J S,SIMPLE,PURE, ANSOLHTE,;
COMPLEX,J S,COMPLEX,COMPLICATED, INTRICATE, TNVOLVED,KNOTTY,;
COMPLEX,J A,SIMPLE,;
CO~PCUND, M,;
Z
SI~PLE#J2S,EASY, FACILE,LIGHT,EFFORTLESS, S~OOTH,;
SI~PLE,J A,COMPLICATED,DIFF[CULT,;
COMPLICATED, S,~NTRICAT~,INVOLVED,COMPLEX,KNOTT¥,;
COMPLICATED, A,SIMPLE,;
COMPLEX, S,CUMPLEX,COMPL[CATED, INTRICATE, INVOLVED,KNI}TTY,;
FACILE, S, EASY,SMOOTR,LIGHT,SIMPLE,EFFORTLESS,;
LIGHT, ,,EASY,SIMPLE, FACILE,EFFORTLESS, SMOOTH,;
~FFORTLESS, S,EASY,SMOCTH,FACILE,SIMPLE,LIGHT,;
SMOOTH, S,EFFORTLESS,EASY,LIGHT,SIMPLE,FACILE,;

SIMPLE, 3S,NATURAL,INGENUOUS,NAIVE, UNSOPHISTICATED,ARTLESS,;
NATURAL, S,NATURAL, SI~PLE,INGENUOUS,NAIVE,;JNSOPHISTICATED,ARTLESS,0NAFFECTED,;
INGENUOUS, S,NATURAL,SIMPLE, NAIVE, UNSOPHISTICATED,ARTLESS,;
NAIVE, S,UNSOPHISTICATED,ARTLESS,INGERUOUS,NATURALrS[RPLE,;
I]NSOPHISTICATED, S, NATU~AL, SIMPLEoINGENOOUS,NAIVE,A~TLESS~;
ARTLESS, S,NATURAL,SIMPLE,INGENUOHS,NAIVF,UNSOPRISTICATED,URAFFECTED,;
UNAFFECTED, S,ARTLESS,NATURAL,SIMPLE, INGENUOUS,NAIVE,UNSOPNISTICATEU,;
Z
SIMPLE,,]~S,FOOLISH,SI~LE, SILLY,FATUOUS,ASfNINE,;
FOOLISH, 5,SIMPLE,SILLY,FATUOUS,ASLNINE,;
SILLY, S,SIMPLE, POOLISH, FATHOUS,ASINIRE,;
FATUOUS, S,ASININE,SILLY,FOOLISH,SIMPLE,;
FATUOUS, A,SENSIBLE,;
ASININE, S,SIMPLE,FATUOUS,SILLY,FOOLISH,;
ASININE, A,SENSIBLE,JUDICIOUS,:
SIMPLE, ~A,WISE,;
WISE, S,SENSIBLE,JUDICIOUS,;
WISE, A,SIMPLE,;
SENSISLE, A,FOOLISN,FATUOUS,AS~RINE,:
5ENSIBL~, S, NISE,JUDICIOUS,;
JUDICIOUS, S,N[SE,SENSIULE,;

22

J~JD[CIO(]~;, A,ASININE,:
INFE~TOH, S,UNDERLING,SUBORDI~&TE,:
I~F~HIOH, 5,1NFERIOR,:
I~FERIOR, A,SUPERIOR,;
UNDERLING, ~,INFERIOR,SUBORDINATE,:
UNDERLING, A,LEADER,~ASTER,;
5UBO~DI~ATE,NIS,INFERIOR,UNDENLING,;
SUBORDINATE,JIS,SECONDARY,DEPENDENT,SUBJECT,TRIBUTAR¥,COLLATERAL,:
SUBORDINATE,JIS,SUBORDINATE,;
SUBORDINATE,JIA,CHIEF, LEADENG,:
SUBORDINATE,J2A,DOMINANT,;
SUPEPrOR, S,BETTER, PREFERABLE,;
SUPERIOR, A,INFERIOR,;
PREFERABLE, S,BETTER,SUPERIOR,;
BETTER, S,SUPERIOR,PREFE~ABLE,BETTEB,;
LEADER, S,HEAD,CBIEE, CHIEFTAIN,MASTES,;
lEADER, A,FOLLOWER,;
MAST£R, S,CHIEF,C~IEFTAIN,HEAD,LEADER,:
FOLLOWER, S,ADHEBENT,DXSCIPLB,SECTAR¥,PABTIS&B,HENCHMAN,SATELLITE,;
FOLLOWER, A,LEADER,;
hOD

-SELECT NODE FOR QUERY
FAR,S,BEMOTE,;
STERN,~,SEVERE,:
~TERN,A,SOFT,;
~,S,STERN,;
STBBN,S,#,;

STERN,S,AUSTERE,;
FULL,A,EMPTY,;
IF FAR,A,NEAR,.AND. CLOSE,&,REMOTE,.THEN. FAR,S,BEMOTE,:
IF FAR, A, REAR,.THEN. NEAE,&,FAR#;
F£R,A,HIGH,:
FAR,&,*,.AND.*,S, HIGB,;
IF FAR,A,HIGH,.AND. HIGH,A,IOW,.THEN. HIGB,A,FAB,;
IF UNDEBLING,A,LEADER,.AND.LEADEB#&,FOLLOWEB,.THEN-UWDERLING,S,FOLLOWEB,;
SIMPLE J1,S,SIMPLE al,;
SIMPLE J~,S,SIMPLE a~,;
IF SIMPLE J1,A,COMPLEX,.AND.COMPLEX,A,SIMPLE J~,.THER.

SIMPLE JI,S,SI~PLE J1,;
? IF ASININE,A,SENSIBLE,.&MD.SENSXBLE, S,JUDIC[O~S,-THEN-ASININE, A,JUDICIOUS,;

-EQUIVALENCE MODE
ECUV(FULL,COMPLETE,FULL, PLENARY,FULL,BEPLETE,COMPLETE,PLENARY,RBPLETE,FULL,)
E~UV(HIGH,TALL,HIGH,LOFTY,LEADER,HEAD, LEADE~,MASTBB,)

y

