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In the following, we shall introduce a type of generative 

grammars, called contextual grammars. They are not comparable 

with regular grammars- But every language generated by a con- 

textual grammar is a context-£ree language. Generalized con- 

textual grammars are introduced, which may generate non-cox,- 

text-free languages. 

Let V be a finite non-void set ; V 

lary. Every finite sequence of elements in 

ia called a vocnbu- 

V is said to be a 

s t r i n g  o n  V. G i v e n  a s t r i n g  x = a l a 2 . . . a n  , t h e  n u m b e r  n i s  

c a l l e d  t h e  l e n g t h  o f  x .  The  s t r i n g  o f  l e n g t h  z e r o  i s  c a l l e d  

t h e  n t r i n g  a n d  i s  d e n o t e d  b y  r~J . Any s e t  o f  s t r i n g s  o n  V 

i s  c a l l e d  a l a n g u a g e  o n  V. The  s e t  o f  a l l  s t r i n g s  on  V ( t h e  

n u l l - s t r i n g  i n c l u s i v e l y ) i s  c a l l e d  t h e  u n i v e r s a l  l a n g u a g e  o n  V.  

By a n- we denote the string a...a, where a is iterated n 

times. 

Any ordered pair (u,v~ of strings on V_ is said to be a 

contex~ on V. The string x is admitted by the context 

<u,v> With respect to the language L if u~ G L. 

Let .~ be a finite set of strings on the vocabulary V~ 

and let@be a finite se@ of contexts on V. The triple 

(v,~, ~)) (1) 

is said to be a contextual l~rammar ; V is the vocabulary of 

the grammar, ~ is the ba_s_e_ of the grammar and ~is the c o  m~,- 



-2- 

textual ccmoonent of the grammar. 

Let us denote by ~ the contextual grammar defined by 

(1). Oonsider the smallest language L on Vj fulfilling the 

following two conditiom8 

(~J Iz  ~ and < u , v > , ( ~ ) ,  t h - -  ~ = , L .  

The language L is said to be the lsmguage generated by 

the contextual grammar G. This means that the language gene- 

rated by G is the intersection of all languages L fulfill- 

ing the conai~ions (~) and (pj . 

A language ~L is said to be a eonteF~ual language if 

there exists a contextual grammar G which generates L. 

Proposition i. Eyer~ finite language is a cont~ual lan- 

Proo__f. Let V be a vocabulary and let ~ be a finite lan. 

guage on V. It is obvious that the contextual grammar (V,L4jO), 

where 9 dauotes the void set of contexts, gauerates the lan- 

guage L I. The same language may be gamerated by means of the 

.g ® contextual grammar (V,I~ , where is formed by the nu~ 

cont ex~ only. 

Two contextual grammars are called e~uivalemt if they gems- 

same language. The grammars CV,LI, O ) and (V,~,~ rate the are 

equivalent, since they both generate the language ~ 

The converse of Proposition 1 is not true. Indeed, we have 

Proposition 2. The universal language is a contextual lan- 

guage. 

ProOf. Let V = ~alLa2,...~ ~. De~ote by I~ the umiver. 

Sal language on V.'T.et us put ~" S~.~.~ and t <~''i" " 

C 
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~,a~, ,...s(~,ian> ~ It is easy to see that thegrammar 
. 

( V , ~  generates the universal language on V. 

Remarks. If we put, in the proof Of Proposition 2, LI-V 

instead of h =~' then the grammar (V_,h,@) does not ge- 

nerate the universal language on V, since the language it ge- 

nerates dDes not contain the nu/l-strlng. 

In order to illustrate the activity of the grammar (V,~, 

~defined in the of let consider the proof proposition 2, US 

particular case when the vocabulary iS formed by two elements 

only : V =(a.b~. The general form of a string x on V is 

x = a ~b ~a-~b~...a ~b~ , where il, Jl , i2,j2,...,~,j ~ are 

arbitra~non-negative integers. In order to generate the string 

x, we start with the null.string @@ and we apply il times the 

context ~ ,a~ . The result of this operation is the string 

a 11 ,to which we apply Jl times the context <~,b> and obtain 

the string al~ ~I . Now we apply i~ times the context <~,a> , 

than J2 ti~es the context ~,b_> and we continue so al- 

ternatively. ~hen, ~dter 2p-2 steps, we have obtained the 
J 

= ai bJlai b 2ooo LP" ib -i , it is 

ply .~ ti~es ~ne context ~@,~ and, to the string so ob- 

tained, jp times ~:e contex~ ~gb> , in order to generate 

completely Uhe string Xo 

Haskell Curry considered Ghe larlg~age L = {abn~ (n=l,2~..o) 

as a model of ~he set of natural numbers [5~ o We call L the 

language of Curry. 

Prooosiuion 3. The language of Curry is a contextual lan- 

g u ~ e o  



proof. The considered language is generated by the grammar 

(V,LI,~) , where V= ~a.b~ , I~ =~a 3 -nd~ ~<~,b~. 

We recall that a language is Said to be regular if it may 

be generated by means of a finite aatoma$on (or, equivalently, 

by means of a finite state grammar in the sense of Ohomsky). 

Proposition 4. There exis$~ a contextual language which is 

Proof. Let us consider the language L = ~a-nb n} (n=l,2,...) 

If we put V = {a°b} , L 1 = ~ab~ and ~ ~<a.b>} , then it is 

easy to see that L is generated by the con~extuai grammar (V, 

LI, ~. On the other hand, L is n~t a regular language. This 

fact was assel~ed by Ghomsky in [3~ and[~], but the proof he 

gives is wrong. A correct proof of this assertion and a.discus- 

sion of Chomsky' s proof were given in [~]. and ~. 

Propositions 2,3 and # show that there are many infinite 

languages w~ioh are oontextual. This fact may be explained by 

means of 

P~posi~ion 5. If the set ~ is non-void and if the set~ 

contains at least one non-nu/1 contex~ I ~hen the contextual gram- 

ma___r_r (V.Ll, ~ ~enerate s an infinite language. 

Proof. Since L A is non-void, we may find a string x be- 

@ longing to ~i o Since contains, at least one non-nu/] context, 

@ • 
let ~u,v~ be a non-null context belonging to . l~rom these 

assumptions, we infer that the strings 

, u2xv 2, . •. ,un~, ,.. 

are mutually distinc~ and belong all to the language generated 

by the grammar (V,I~,). Thus, ~his language is infinite. 

The converse of Proposition 5 is true. Indeed, we have 
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Proposition 6. If the contextual 6rammar (V, LI~ gau~ 

rates an infillite language, then ~Ll. is non-void, whereas@ c0n- 

rains a no~-nult context. 

proof. Let L be the language generated by ~V)LI~. If 

is void, L is void too, hence it cannot be infinite. If 

contains no non-null context, we have L = L I. But ~d is in any 

ease flni~e ; ~hus, L is finite, in contradictiom With the h vpo- 

thesis. 

Since there are contextual language which are not regular 

(see Proposition 4 above), it would be interesting t o  establish 

whether all contextual languages are context-free ls~guages. The 

amswer is affirmative : 

Proposition 7. _Every contextua~ lan?.ua~e is a context-free 

PrP~oof. Let b be a contextual language. If L is finite, 

it is a regular language. But i~ is well knowm that every regu- 

lar language is a context-free language. Therefore, L is a 

context-free language. Nowe let us suppose that L is infinite. 

Deao~e by G = (V,,L l, a contextual grammar which generates 

the language L, In view of Proposition 6, L I is non-void,whe- 

ream there exists an integer i, l~ i~p , such that the con- 

~ext ~ui,vi~ is non-nu~ Joe. at least one of the equalities 

ui =co , v i =~ is false. Let us make a choice a~d suppose 

tha@ ~.i ~ ~ Let  L~ = {xcA,xp_, . . .  9~a} and ( ~ )  ={<ultVl> , 

~.,U,.~,V."y} . We define a context-free grammar ~)..@| 

as follows. The terminal vocabulary of ~ is V. The non- 

terminal vocabulary of ~ contains one element only- denoted by 

S - which is, of course, the axiom of the grammar ~ . The ter- 
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minal ~ rul es o f ~' are , 

S -->_x 1 , 

g--~x a , 

S.--* _Xn 

whereas uhe non-terminal rules are 

S ---> u~5% v-i ' 

S ---) uqS v~ , 

It is obvious tha~ the number of terminal rules is equal to the 

number of strings in ~ , whereas the number of non-terminal 

rules is precisely the number of conuexts in ~. Among the non- 

terminal rules, there is one at least which is non-trivial : it 

is the rule S ---> UiS v~. , where '*4 {~ " 

It is not difficult to nrove that the grammar ~ generates 

the given language L. Indeed, the general form of a string in 

L__ is 

where yG V and 

<~i , V~ > E ~  for s = 1,2,...,p. 

In order to generate the considered string we begin by apply- 

ing --Jl $imes She rule 

In this way, we obtain the expression 

h 

The next step consists in applying J~2 times the rule 
v 
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-a ~ ,~2 s v~.~. , 

which yields the expression 

J~ Ja -Ja -J~ 
s Ha N 1 )t~... , -7! l 

Oontinuing in this way, we arrive, after 

pression 

,~z "ia ~-i s J~-]. J2 ~a 
us-1 ~,a . . . .  . ' $ 1  - " -%' i  "'" ~12 ".% " 

Vie now apply j.p times the rule 

and thus we obtain the expression 

p-1 steps, to the ex- 

--Jp.~ .~!2-1 . Ja ':ll .J.l. ,.i2. u jp-1 ~ S - - 
"Ull '~i2 .... ~-l . V~p ~-l "" vi2-V-il 

where, by applying the terminal rule 

S---@ Z, 

the considered string is completely generated, Thus, we have 

proved that L is contained in the language generated by ~ , 

Conversely, let z be a string generated by ~ . The ge- 

neral form of this generation involves sev(ral consecutive ap- 

plications of non-terminal rules (the number of these applica- 

tions may be eventually equal to zero) followed by one and only 

one application of a terminal rule. It is easy to see that the 

result of this generation • is always a string of the form (2). 

Thus we have proved that the language generated by ~ is con- 

taiued in L, In view of the precedim~ eonsiderations, L iS 

precisely the language generated by ~ o 

Proposition 7 easily permits to obtain simple examples of 

..... J 
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languages which are not contextual l~guages. For instance, ~he l~- 

~uage of Kleene~an~ (m=~,2,...), the first example of an infinite 

language which is not regular, is a very simple example of ~ 

contextual language. It is enough to remark that the sequence 

~n2} (~ = 1,2,...) contains nO subsequaucewhioh is an infinite 

ari~hmebio progression ~ (We have (n+l)2-n22~+l and lira (~+i)=~, 

therefore for every subsequence of ~n2} the difi'erance of two conse- 

cutive terms has the limiu equal to +oo wh~ n-@ ~ ). But a result 

of[4] asserts, among others, that given am infinite contex~-f1~ee lan~ 

guage L, the set of integers which represent the len~hs of the 

strings in L contains an infinite arithmetic progression. It follows 

uhab b~Je language of Kleene is not context-free and, in view of Pro- 

oosition 7, it is not a conbex~ual language. T~ sa-~ ~a~T ~@l{ow* ~,~ 
~h~- ,~  :3.A,~. ®~ [g'J, ~,,#¢. 

A natural question now arrises : Do there exist non-contextual 

languages a~ong context-free languages 7 The affirmative answer 

follows fro~ the following remark : 

The converse of Proposition 7 is not true. Indeed, we have 

Prooositiou 8. There exists a. cont e.~-free language which is 

not a contextual language. 

Proof. Let V = ~a,b~. In view of a theorem of Gru~Lkl ~ 

~__.-----~there exists, for every positive integer _n~ a context-free 

language I~ on V, such that every context-free grammar of I~ 

contains at least n non-terminal symbols. But, as we can see in 

the proof of Proposition 7, every contextual language may be gene- 

rated with a context-free grammar containing only one non-~erminal 

symbol. Therefore, if _n ~ 2, ~ is not a contex~usl l~guage. 

Proposition 8 suggests the natural question whe~bsr ~bere 

exist regular languages which are not contextual lan~ages. The 
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answer is affirmative : 

Pronosition 9- There exists a regular language which is not a 

context ual language. 

Proof~ Let us consider the laugaage L = {abm-~c~a.~ n,) ~,n= 

=1,2,...), which was used b~ H.B.Curry [5], in order to descrlbe 

the set of mathematical (true or not) propositions. This language 

is regular, since it can be generated by the rules S--> Abj Ac->Ab, 

A.--~ Ba, B--> CC. , G_--~ ~ , C--~ Db, .D_--~ a, We shall show that .L 

is not a contextual language, Tndeed, let us admit that the contra- 

ry holds and let G = <V,~, ~> be a contextual grammar of L_ 2 

Here, the gene_.-al form of a string in L is 

~ ""-us ~I x~ -~ ... vi= (3) 

, wh eas ( t  = 1 , 2 , . . . , = )  where 

"'',Pn are arbitrary positive integers. This means that ul,~2,... 
.°- 

---,_Un , Vl,Y2,-..,v ~ in the expression (3) are formed only by 

those elements of V whnse number of occurences in the strings of 

L is unlimited. Only h satisfies this requirement. It follows 

that in any string of .L both occurrences of sand the occurence 

of ~ are terms of the string x in (3). But this implies that 

the intermediate terms between the occurrences of a are terms 

of x, hence we can find two strings y and 

, m l 

The string y is obvioasly .the null-string ~o 

t h e  f o r m  1 ~ .  , h e n c e  " 

z such that 

,whereas z is of 

But m may be here an arbitrary positive integer. Therefore, since 
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X6~ , it follows that ~ is an infinite se~ of mtrimgs. This 

fact contradicts the assus~tion concern_tug G ! v, is ~t a con- 

textual language and Proposition 9 is proved. 

The contextual grammars may be generalized in order to ge- 

nerate some lauguages which are not context-free. 

A generalized contextual ~r~mmar is a quadruple G =~ , 

,L2, ~ , where V, L I and ~have the same meal~g as in 

bhe definition of a contextual grammar, whereas J'2 is a finite 

set of strings on the vocabulary V. We define the language L G 

generabed by G in the following way : Y~ is a language on V 

a~d xe~ if and only if we may e~press x in the form 

. -  

w h e r e  z ~ ,  y~Le , <ui,Yi>~for i : 1,2,...,n and 

pl,P2,...,pn , p are positive integers such that pl+P2..,~n=p. 

Every language generated by a generalized contextual grammar 

is said to be a generalized contextual lsnguage. 

I~, in the delini~ion of G, we take L~ =~c~}, G is equi- 

valent ~o a contextual grammar ! the lang,.% is then precisely 

the language generated by the contextual grammar ~V,LI~.In_ 

deed, the general form of a string in the contextual language ge- 

nerated by ~Y~LA, ~ is 
l 

P~a Pn Pa P2 Pl 

p roy ed 

~roposition lo. ]~ery oontex~ual language ~s a ~eneralized 

context ual lan~uaKe, 



- ll- 

We may consider a conte~ual grammar as a parbicular case 

of generalized contextual grammar, .by ideatifyimg the contextual 

grammar ~ ¥ ' ~ 1 ~  with the generalized contextual  grammam~,V,,~, 
" 

It is interesting to point out that somet~imes a cont~ual 

language may be easy generated by a generalized contextual gram- 

mar which is not a contextual grammar. For instance, let. us con- 

sider the l~.~e L= (~=} (~X,2,...) . ~ ~is, or the 

proof of ProDosition A, L is a contextual language. We map ge- 

nerate L by the generalized contextual grammar (which is not 

a co=textual ~r~a~) <v, h ~ >  , where v : {~,b}, .L i_ -  

[c~}, ~ = Ibm, ~ =  [ a , ~  . I t  i s  known tha t  ,~_ i s  not re -  

S~L%ag. We ma~ give a similar example, wi~h a language which is 

regular. In this respect let us consider the language of G~x~V~.~. 

In view of Proposition 5, it is a contextual language. It is a 

regular language too~ since it may be generated by the regular 

gramm~r contain~ ~he following two rules : q--~ Sb and S--> a. 

Now let us consider the generalized contextual grammar < ~i' 

This grammar generates the language of Curlew, but if'is not a 

cent ext,~ al gran~nar. 

~ow let us show that generalized contextual languages are 

an effective generalization of contextual languages. 

Propo .sit ion ii. Th ere _ exist s a_g en=e=~ iaed_gA~nt ext ua! 

language which is ~IQ~ a eon~ext~sl language, 

~ ,  Let us consider the language T, = £an_b.n~.. n} (n:=-l,2,. 4 

I t  is known that this language is not context-free (see,£or 

instance,66] ,p.~). 7n view of Proposition 7, every contextual 
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language is a context-free language ; hence~ ~ is not a con. 

textual language. Now let us consider the generalized contextual 

gr~m~ G = <V,~,~2,~>, .here v = £~,~ , ~ ~, ,~{~  
and~ ~(~a>~ . It is easy to see that G generate§ the iea- 

guage L. 

Yrom the proof of Proposition ll it follows immediately; 

Proposition 12. There exists a ~eneralized contextual lan- 

g u_~e which is not a ~.nnteYt-f~ee language. 

We may now ask whether the converse of Proposition 12 is 

true. The answer is given by 

Proposition 13. Th ere exists a cont ext-free~a~e~ 

even a regular language,~ which is.,not a generalized contextual 

!~ua~e.-~ 
P#oof. We may consider the language L = ~sbmc_abn-} (~,n= 

=1,2,...) used in the proof of Proposition 9. It was showed in 

the proof of Proposition 9 that L is regular. Let us admit 

that ~ is a generalized contextual language. Given a string x 

in L, its representation is of the form 

Pl P2 Pn P P~ P2Pl 
~m ~ : ui u~ ....~n..~. y'v." ... v2v i 

where ~ui,vi~ ~ (i = 1 .... ,n),ZG~, y~L2,pl+...+pn = p end 

G = ~V, L1,L~, ~ is the grsmmar of L. By a reasoning similar 

to "that used in the proof of Proposition 9, we find that for 

every positive integer m there exists a string z in ]i I such 

that 
z = abmcab s~, 

where s is a non.negative integer, depending mf m. But thls 

means that ~ eontain~ infinitely ma~ strips. This fact con... 

tradicts the definition of a generalized contextu~ grammar. It 

/ 
L 
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follows that L is not a generalized contextual language, 

It is to be expected ~hat every generalized contextual lan- 

guage is a contex~-s~itive language. But the construction of 

the corresponding context-sensitive grammar seems to be very 

complicated, if we thin~ to the generation of the language 

~u.A.~reider has introduced a new type of grammars, called 

gralamatlkl) and defined i~ neighborhood ~ira~.L~ars (okrestnostnye ' 

the following way ([4o); see ~ 4 ] .  Our presentation is some 

what different). Given a finite set V called vocabulary, two 

strings x and y on V, and a context <u,v> on V, We say 

that the pair ~u.v> ,y) is a neighborhood of y with respect 

to x if we can find two strings z and w, such that x=zu~vw. 

Every pair of the i or~ ~<u,v> , ~] , where ~u,v> is a context on 

~, Whereas y is a string on V, is called a neighborhood on 

V. Let us consider an element e which does not belong to V ; 

G will be called the bo~3dary element. A neighborhood grammar is 

a triple of the form ~ V, e ,~, where V is a vocabulary, 

is the boundary element and ~is a finite set of neighborhoods 

on the vocabulary VU(e} . Let L be a l~aguage on V. 2e say 

that L is generated by the considered neighborhood grammar if 

~i every string x of the form x =~ye (with ymL).and only 

in such strings - there ~ists in ~, far every tera a i of 

X=~la2...a s , a neighborhood of a i with respect to x. 

Neighborhood gray, mrs are closely related to the notion of 

context, since this notion occurs in the definition of a neigh- 

borhood. There is another notion, due to Ja.p.L.Vasilevski~ and 
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~.V.Ghom~ak6v (see ~he refermnce in~2],p,~o), which e~lains 

this fact. Following these authors, a grammar of contexts (this 

name is imp_roper, since no context occurs among its objects) is 

a triple <V, e ,9> , where .V and @ have the s-me meaning as 

in the definition of a neighborhood grammar, whereas Q is a 

finite set of strings on the vocabulary Vt3{e~ • This grammar 

generates the language _L on V in the following way : x6 

if and only if for every string y and a~y strings z and w 

for which there exist strings u and v such that @ x@ = 

= uzyuv we have either 

l) y = rasp , where sE Q, whereas the strings m and p 

may be eventually 

or 

2) (~x@ = urynt, where qr = z , n t = w mad ryn is a 

string belong~g to Q. 

A string belonging to Q is said to be closed from t ~  

le~ (from the right) if its first (last) term is @ . A string 

belonging to Q is said to be ~ if it is closed bosh from 

the left and f~m the right. 

A grammar of contexts is said ~o be k-bounded if every 

non-closed string of _~ is of length _k, whereas every Clesed 

string of ~ is of length not greater than _kj 

An important theorem of Bor§~ev asserts the equivalance 

between languages generated by neighborhood grammars and lan- 

guages generated by k-bounded grammars of con~s (~£3,p.4o). 
Since grammars of contexts and contextual grammars have some 

similarities in their definitions, it is Interesting to esta- 

blish more ~xac~ly the relation b~een them. 
v 
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Proposition 14. There exists a contextual language ~hioh 

is regular, but which is not a neighborhood language. 

Proof. Let us consider the language L = ~a~n~ (n=l,2,...). 

This language is regular, since it is generated by the regular 

grammar consisting in the rules S ~ ~a, T--->Ua , U--->Ta, 

--->a, where ~ is the start symbol, La~ is the terminal vo- 

cabulary, whereas {S,T,U} is the non-terlainal vocabulary. Let 

us consider the contextual gramnu~r G =~ {a} ,{CO}, {~a,a>~. 

I@ is easy to see that G generates the language ~ $ therefore 

L is a contextual language. 

We shall show that L is not a neighborhood language. In 

this respect, our method will be the following. We shall consider 

all systems of possible neighborhoods of the terms of ~he string 

0aae and we shall show t~}at every such sysbem is either a 

system of aeighborhoods of the ~erms of every string Cane (n= 

= 2,3,4,...) or it is not a system of nei@]borhoods of the terms 

0t the string ea@e . It is easy to see that the first ~erm of 

the string @aa@ admits ~he following neighborhoods : 1)e , 

2) Ca, 3) @aa, ~) eaa~ . The second term has the neigh- 

borhooas : l) G_a,~)-a~) aa , 4) ~e . ,  5) e_a_a , 6) e_~ae. 

The neighborhoods of the third term are : i) e@a , . 2) aa, - 

~) a, ~) _ae , 5) eaa8 , 6)_aaE) . The lass term has the 

neighborhoods - 1) 8 , 2) _a~_ , 3) a a@_ , 4) @aa~ . The no- 

ration _u_xv. represents hier the neighborh~d {<u,v> ,x} . 

It is easy to see that the fourth neighborhood of the firs~ 

and of the lass term c~t b'e a neighborhood of e with respect 

@o @g48 . On She other hand, a is a neighborhood of .aa with 

respect to ea~@ for every n = 1,2, .... It follows that no 
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neighborhood grammar of L = ~a2ZX 3 may contain one of She neigh. 

borhoods _0a2@ , Q a2~ and a. Thus, if a neighborhood gram- 

mar of ]~ exists, it contains at leas~ one neighborhood from 

every group of the following four groups of neighborhoods : 

~) _0 , _~a, _ea 2 . 

~) e_a, _aa, _aae , G~a , ~.aaO. 

b') 6~-~, aa ,  ..aO , ea_a~ , agO. 

We shall consider all possible combinations be tweau  a neigh- 

borhood of the group ~ and a neighborhood of the group E . By 

mn we shall denote the combination formed by the m.th neigh- 

borhood of ~ and the n-th neighborhood of ~ . It is easy to see 

Chat every neighborhood grammar containing one of the combina- 

tions 12, 22, 23, 25, 42 generates a language whioh eontain~ 

every string a n with n $ 2. On the other hand~ every neigh- 

borhood grammar containing one of the combinations ll, 13, 14, 

15, 21, 24, 31, 32, 33, ~, 35, 41, 43, 44, 45, 51, 52, 53, 5~, 

55 generates a language which either does not contain the string 

a 4 or contains every string a n with n~ 2 • (This depends on 

the fact if the neighborhoods aa or aa belong or not to the 

considered neighborhood grammar). Thus, there exists no neigh- 

borhood grammar which generates the language ~2n 3. 

But the definition of (generalized) contextual grammars, 

though adequate to the investigation of the generative power of 

purely contextual operations, does not correspond to ~he situa- 

tion existing in real (natural or artificial) l~guages, where 

every string is admired only by some contexts and every o~u~ 
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admits only some strings. Let us try to obtain a type of grammar 

corresponding to this more complex situation. We define a con___y - 

textual grammar with choice as a system G_ =<V,L,~ ,~o>, where 

V, L1 and~are the objects of a contextual grammar, whereas 

is a mappi~ defined on the universal language on V and havi~ 

the values in the set of subsets of~. We define the language 

generated by G as the smallest language L having the follow- 

1 ° ~ L l x ~ L 2 ° ing properties : If x , ! If ye L, <u,y>6 ~(y) 

and Z&~l, then u~L, z v~L and ~L. Thus, every strin~ 

chooses some contexts and every context chooses some strings. We 

define a contextual language with choice a language which is ge- 

nerated by a contextual grammar wit~oioe. The investigation 

of these grammars and languages would better show the generative 

power of contextual operations, in a manner which corresponds to 

the situation existing in real languages. 
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