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In the following, we shall introduce a type of generative
gramma.rs, called contextual gralﬁmars. They are not comi;arable
with regular graumars. But every language generated by a con-
textual grammar is a context-free language., Generalized con-
textual grammars are introduced, which may generate non-con-

text-free languages.

Let V Dbe a finite non-void set ; ¥V is called a vocabu-
lary. Every finite sequence of elements in V Vis said to be a
string on V. Given a string x = alaa...an . tﬁe nﬁmber n is
called the lengt;h of x, The string of length zero is called
the nu‘strlng and is denoted by e . Any set of strings on ¥
is called a _J.anguage on V. The set of all strings on ¥ (the
nul}-string inclusively) is called the universal language on V.
By _a?‘— we denote .t'ne string a...a, where a is iterated n
tinmes, '

Any ordered pair {u,v» of strings on V is said to be a
context on V. The . - string x 1is admitted by the context
{u,v) with respect to the language L if uxv e L.

Let 1, be a finite set of strings on the vocabulary Y.
and 1'et©be a finite seb of contexts on V. The triple

V11, @) €5
is said to be é contextual grammar ; V. is the vocabulary of

the grammar, h is the base of the grammar'and @ia the con~
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faext‘uaj. component of the grammar,
Let us denote by & the contextual grammar defined by - ..
(1). Consider the smallest language L on V, fulfilling the
following two conditions ' '
(% I, &L _
@) if xe I and <_u,v>e@, then uxvel.
The language I 1is said to be the language generated by
the contextual grammar G. This means that the language gene-
rated by G is the intersection of all lamguages L fulfill-
ing the confitions («) and (p) .
4 language I is said to be a contertual language if
there exists a contextual grammar G which generates 1.
FProposition 1., Every finite language is a conte-xtual lan~-

guage,
Proof, Let V Dbe a vocabulary and let Ii]. be a finite lan.

guage on V. It is obvious that the contextual grammar (V,i,,0),
where 4 denotes the void set of contexts, generates the lan-
guage Ll' The same language may be generated by means of the
contextual grammar (Y,Ll,@, where @ is forméd by the nul-
conbext only, o

' Two contextual grammars are called eguivalent if they gene-
rate the same language. The gramars (V,L1,,0) and (V;Ll,@ are
equivalent, since they both generate the language _x.li

The converse of Proposition 1 is not true. Indeed,we have

Proposition 2. The universal language is a contextual lan~-

guage. .
===
Proof, Let V = {81485900098,%e Denote by L the univer

sal language on V. Let us put 1 ={w] and = { <exyag>
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{m 1857 ,...,<w,_;van>}. It is eaﬁy to see that the grammar

(V,&,@) generates the universal langusge on V.

Remarks, If we put, in the proof ¢f Proposition 2, In=V
instéad of I =f{w), then the grammar (V_,;l,@) does not ge-
nerate the universal language on V, since the language it ge—
nerates does not contain the null.string.

In order %o illustrate the activity of the gramﬁlar (_}_r,h.
@defi.ned in the proof of Proposition 2, let us consider the
particular case wﬁen the vocabulary i% formed by two elem_ents

only : V ={a.b}. The general form of a string x on V is
3, 35 i, 3 i 3 E
x=a v ta Zb"2",_a PpR |, where 11437, Aia,ja,...,jp,gp are

arbitrarynon-negative integers. In order to generate the string
X, we start with the null-string co and we apply i, times the

context <ev ,a) . The result of this operation is the string

i
_aj.‘l yto which we apply j; times the context <« ,b> and obtain

i, d
the string a Lyl . Now we apply 1, times the context {ew,ay

then j, tiwmes the context << ,b> and we continue 8o al-

ternatively. When, after 2p-2 steps, we have obtained the

i; 4y i, d, 0 & b :
string y = a 1y iy Z_b’ Zo”a P11 , it is enough to ap-

ply ;2 times che context {ea,a> and, to the string so ob-

dp
coupletely tine string X.

tained, times Ghe context < ,b)» , in order to generate

Haskell Curry cousidered vne language L = {ﬁkf-"} (B=1,25000)
as a model of the set of natural numbers [5} » We call 1L the
language of Currp.

Proposition 3, The language of Curry is a contextusl lan-

guage.
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Proof, The considered language is generated by the grammar
(V,L»L,@), where V = {g._b} v In =£aj and@z {<cn,_l_)_>} .

We recall that a language is said to be regular if it may
be generated by means of a finite automaton (or, eguivalently,

by means of a finite state grammar in the sense of Ohomsky).

Proposition 4. There exigtg a gontextual language which is
nbt_regular, ' '

Proof. Let us consider the language 1 = {&P’tz’-"} (n=1,25...)
If we put V= {a,b}, I, = {ab} and @ {<a.t>} , then it is

easy to see that L is generated by the contextual grammar (V,

Ll'@’ On the other hand, L 1s not a regular language., This
fact was asserted by Chomsky in (3] and (4], but the proof he
gives is wrong. A correct proof of this assertion and a_ discus-
sion of Chomsky's proof were given in [3]. and [-7].
_PrOpositions 243 and # show that there are many infinite
languages which are contextual. This fact may be explained by

means of
Proposition 5. If the set L; is non-void and if the 531:@

contains at leagt one non.null ¢context, then the contextual gram- .
mar‘(V.L1,© gen»ei'.ateg an infinite language.

Proof. Since I is non-void, we wmay find a string x be-

longing to «I‘l‘ Since @ contains,at least one non.-null context,
let <u.vy be a non-null context belonging to@ . From.these
assuniptions, we infer that the strings

wv , u2xv?, ... 5B, ..,
are mutually distinct and belong all to the language generated
by the grammar (y,L,,). Thus, this language is infinite.

The converse of Proposition 5 is true. Indeed, we have
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Proposition 6. If the contextual grammar (V,Ll@ gene-

rates an infinite language, then I, is non-void,. whereas'@ con—

tains a non-null context. -

_ Proof. Let L be the language generated by (V,Ll.@. 1f
1, is void, L is void too, hence it camnot be infinite. If
contains no non-null context, we have L = Lq. But _L,i is in any
case finite ; thus, I is finite, in contradiotion with the hypo-
thesis.

Since there are contextual language which afe not regular
(see Provosiiion 4 above), it would be interesting o establish
whether all contextual languages are context-free languages. The

angwer is affirmative

Proposition 7. Bvery contextual Jlanguage is a conbtext-free
language, -

cmiari—

Proof. Let L_ be a contextual langusge, If L is finite,

-it is a regular language. But i is well known that every regu-
lar language is a context-free languagé. IThérefore, L is a
context-free language. Howe let us suppose that L is infinite.
Denote by G = (\{,']'.31,@ a contextual grammar which g'enerates
the language L, In view of Proposition 6, Ll is non-void,whe-
reas there exists an integer i, l¢i<p , such that the con-
text <uyyVyy is non-null, i.e. at least one of the equalities
U =@ q_{:u is false. Let us make a choice and suppose
t.ha{-. Eii #e i Let I = {g‘l,l_ca,...gggq‘; and@:{{gl,h7 s

<u2,v2>- geeey <>u?,_v{.)7} . We define a context;-free grammar
r' as follows. 'l‘he>te1:m.inal vocabulary of F is V, The none
terminal vocabulary of r‘ cont';ains one ele‘men’c only- denoted by

S _~ which is, of course, the axiom of the grammar r « The ter-



minal rules of f‘ are
8 —.x
8> x,
PETEE
8 2 x,
whereas the non~terminal rules are
5 —> WSy,
8§ — u8v,,
5 —> "ps Y e
It is obvious that the number of terminal rules is equal to the
number of strings in L\'L , Whereas the number of noneterminal
rules is precisely the number of contexts in @. Among the non
Gerwinal rules, there is one at least which is non-trivial : it
is the rule § —» u;S vy , where 1y #eo .
It is not difficult i:o prove théﬁ'tbe grammar F generates
‘the given ianguage T.. Indeed, the general form of a string in
L is

dq 3
ok ;e

d ds d
: “p L2 vl

where ¥y €V and
<9:j{5 ’ 1;9)6@ © for 8 = 1,2,.ee5D0
In order to generate the conéidered string we begin by apply-
ing _jl times the rule . !
8 — uil 8 !i-l .
In this way, we obtain the expression

3 33
S vt
b SR %)

The next step consists in applying j, times the rule
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B—>u, 8v o
p g

which yields the expression

Sv v
I P

»%

Continuing in this way, we arrive, after p-l steps, to the ex-

pression
33 a 2 3 J Jp d
p=1 el 2 -1
u. ee “ug=- -S,_v\-“ oo v V.
3y tap e B T T L T

We now apply j.p times the rule

§S—2u; Sv
STy
and thus we obtain the expression
:_i‘ i coe ui;))'i ilp;s vi ip 32 vil
D= D P -l 1
where, by applying the terminal rule
 s— g
the considered string is completely generated. Thus, we have
proved that L is contained in the langugge generased by | .
Conversely, let z be a string generated by P « The ge-
neral form of this generation involves several consecutive ap-
plications of non-terminal rules (the number of these applica-
tions ma.;y be eventﬁally equal to zero) followed by one and only
one application of a terminal rule, It is easy to see that the
result of this generation is always a string of the form (2).
Thus we have proved that the language generated by r‘ is con-~
tained in Le In view of the preéed;i.n’g considerations, 1 1is
precisely the lméuage generated by C.

Proposition 7 easily permits to obtain simple examples of



-8 =

languages which are not contextual 1anguages; For instance, the lan-
guage of Kleene {a-’_'l?} (n=1,244+4.), the first example of an infinite
langmage which is not regular, is -a very simple example of non-
contextual language. It is enough to remark that the sequencé

{11_2'} (n = 1,2,4..) contains no subsequence Which is an infinite

arithmetic progression (We have (n+l )2-n2=2n+1 and 1lim (au-l):m,
n—>o0

therefore for every subsequence of {22} the difference of two conse=
cutive terms bhas the limit equal to +00 when n-> ® }. But a result
of[4]) asserts, awong others, that given an infinite context-free lan-
guage L, the set of integers which represent the lengths of the
strings in L coatains an infinite arithmetic progression, It follows
vhat bthe laaguage of Kleene is not context-free and, in view of Pro-
position 7, it is not a conbextual language. The same Fact ‘c""’“"' From
theorem 3.4.2 of [£], p.8

A natural quebtlon now arrises : Do there exist non.contextual
languages awong context-free languages 7 The affirmative answer
follows frow the following remark 3 .

The converse of Proposition 7 is not true. Indeed, we have

Propositiou 8. There exists_a context-free language which is

not a contextual language.

Proof. Let V ={a,h}. In view of a theoren of Grudka { ¥ ]
*é...ﬂ—-)there exists, for every positive integer n, a context-free
language I‘h on V, such that every context-free grammar of Itn
contains at least n non-terminal sy'mbols. But, as we can see in
the proof of Proposition 7, every contextual language may be gene-
rated with a context-free grammar contéining only one non-terminal
symbol. Therefore, if n # 2, 1L, is not a contextual language.

Proposition 8 suggests the natural question whether there

exist regular languages which are not comtextual langusges. The



answer is affirmative :

Proposition 9. There exists a regular language which is not a

contextual language.

Proof. Let us consider the language L = {\abml‘g‘]‘/gl}%w} (m,n=
=1,24..4), Which was used by H.B.Curry [5], in order to describe
the set of mathewatical (true or not ) propositions. This language
is regular, since it can be generated by the rules S_—#A‘g, A—> 4D,
A—> Ba, B—>» Cc, G—> Cb , C—> Db, D — a. We shall show that L
is not a contextual language, Indeed, let us admit that the: contra-
Ty holds and let G =<V,Ly, @) be a contextual grammar of L.

Here, the gen2xzl form of a string in L is

wPn Po Py Py Po © Pn
un' eoe 92 \_xl X Vl ‘_’2 see V‘P* (3)

where x€X, , whereas (lllig,v,-?E@ (1 =1,2,040yn) ad PysDorese
«eeyPy are arbitrary positive integers. This means that uj,Uspees
...,y; s V19V5see0yVy in the expression (3) are formed only by
those elewents of V whose nuwber of occurences in the strings of
L is unlimited. vnly » satisfies this requirement?. It follo.ws'
that in any string of I both occurrences of a and the occurence
of ¢ are terms of the string x in (3). But this impliesv that
the intermediate terms between the occurrences of a are terms

of X, hence we can find two strings y and 2z such that

P
x=73 a|plcaz,

The string y 1is obviously.the null-string «w ,whereas z 1is of
the form ;Dp s hence ’ '

-~
X = gt_rnl L: ab.
) g

But m way be here an arbitrary positive integer. Therefore,since
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X€ I‘;L s it follows that I‘l is an infinite set of strings., PThis
fact contradicts the assumption concerning G 3 L i8 not a cone
textual language and Proposition 9 is proved,

The contexbual grammars mAy be generalized in order to ge-
nerate some languages which are not context-free. ) )

A generalized conbextual grammar is a quadruple G ..(Y
LpaLos @) y where V, I, and @have the same meaning as in
the definition of a com‘:extual graucar, whereas zo is a finite
set of strings on the vocabulary V. We define the language L ' G
general,ed by G, in the following way ;. IG is a language on v
and erl.{} if and only if we may eypress x in the form

S s2 n 1rp 2 l
x" lI‘]- qz ‘...“ V‘ ..0-\2 I’

where zel, , ye€L, , <ui,_vi>e@for i= 1,2yee0o and

DPjsPoresespy » D Aare positive integers such that P1*PpesePp=De

Every language generated by a generalized contextual grammax
is said to be a generalized contextual language,

If, in the detinition of G, we take I, ={w}, G is equi-
valent to a contexbual grammar 3 the 1angu15e I(, is then precisely
the 1anguage generated by the contextual grammar <V, Ll,@>.1n-
deed, the general form of a string in the contextual language ge-

nerated by <V,L«1,@> is '

Po Pn  Pg P2 P1
ui,u cee Uy B Wy Cees VU N

where Qi'-!;)é@ (4=142444.4n) and 2€L;s We have thus

proved
Proposition lo. Bvery contextual language is a generalize

gontextual lang__g_,
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We may consider a cohtéxtual grammar a8 a particular case
of generalized contextual grammar, by identifying the conmtextual
gramnar < 7,1, (B with the genoralized contextual grammardV,L,
B | | |

It is interesting to poin{: out that somebtjpimes a contesttual
language m be eassr generated by a generalized contextual grame
mar which is not a contextual grammar, For instance, let. us con-

sider the language L ={a%2} (n=1,2,...) . In view of the

' proof of Proposition 4, L is a contextual langusge. We may ge-
nerate L by the gemeralized contextual grammar (which is npot
a contextual grammar) <V, I‘l';?‘@> , where V = {a,b}, I/=
{es} L, = {n}, @: {g_,w} « It is known that L is not re-
gular. We may give a similar example, with a language which is
regular, In this respect let us consider the language of Curxy{gl;}
In view of Proposition 3, it is a contexbual language. It is a
regular language too, since it may be generated by the regular
grammar contalining the following two rules : S—> 8b and S—a.
Now let us consider the generalized contextual grammar <Y_,;l,
I‘Q’@> » where V = {§4.b}! Ay= {.a,'} s Iy = {'bn} @ ={<°°)°;‘>_}-
This grauuar generaf:es the la.ngﬁage of Curl':'y, but it is not a
convextual grauwmar,

liow let us s‘nhw that generalized contextual languages are

an effective generalization of contextual languages.

Proposition 1l. There .exista a generaljiged gontextual
language whigh is not & gombextual language.

Proof, Let us consider the language L = {a’?}f@n} (D=1,2, o)
It is known that this language is not context-free (see,for
instance,f‘] sDeB4). In view of Proposition 7, every contextual



- 12 -

language is a context-free language ; henée, L is not a con~ '
textual language. Now let us consider the generalized contestual
grammar G = < V,ly,Lpy @D , where V.= {a,h}, 1y ={eo}y Lo={b}
and@: {<a,8>Y . It is easy to see that G generates the lan-
guage Ti
From the proof of Proposition 11 it folléws immediatelys
Proposition 12. There exists a generalized contextual lan-

guage which is not a gontiext-free language,

We may now ask whether the converse of Proposition 12 is

true. The answer is given by

Proposition 13. There exists a context-free language ganmc_i_

even a ;'egu:}:_ar language) which is not a generalized contextual

Languages. . | | -
Proof, We may consider the langusge L = {abmsgbn-}'(xg,n_:

=1,2,+..) used in the proof of Proposition 9. It was showed in

the proof of Proposition 9.that L is regular. Let us adnit

- that L is a generalized contextual language. Given a string x

in 1,-its representation is of the form

- ? P Pn p
ap™ cab' = ullu:g vee unn,_z ¥ Yn ees Vgg’ .

where 4“1"’1)‘@ (1=1,e004m),2€1y,y Y€ L2,p1+...+pn = p and
G -<V,L1,L9,@> is the grammar of L, By @ reasoning s:Lmlar
to that used in the proof of Propo's:Ltlon 9, we find that for
every positive integer ®m there exists a string 2 :Ln I‘l such
that ‘
z = apcap,

where s is a non-negati\-/e integer, depending _'nt %. But this
means ths_\t: Iq_ contains infinitely many strings. This fact coPp
tradicts the definition of a gemeralized contextugl grammar, 15
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follows that L is not a generalized count extual language.

It is to be expected that every generalized contextual lan-
guage is a context-sg;itj.ve language., But the construction of
the corresponding context-sensitive grammar seems to be very
couplicated, if we thing to the generation of the language
{e™Pa"}. '

Ju.A.3reider has introduced a new type of grammars, called

neighborhood grauuwars (okrestnostnye graufmatiki) and defined in

the following way ({40]; see %AJ. OQur presentation is some
what different). Given a finite set V called vocabulary, Gwo
strings x ad y on V, and a coatext <u,v> on V, we say
that the pair {<u.v> ,y} is a neightorhood of y with respect
to x if we can find two strings 2z and w, such that x:zlgig_w;.
Bvery pair of the forw {<u,v>, y} , where <u,v)> is a context on
Y, whereas y 4is a string on V, is called a neighborhood on

V. Let us consider an element 6 which does not belong to V 3

® will be called the boundary element. A neighborhood grammar is

a triple of the form £V, 6 ,@), where V is a vocabulary, €
is the boundary element and @is a finite set of neighborhoods
on the vocabulary VU{Q} . Let L te a language on V. ie say
that 1 1is geuerated by the considered neighborhood gramwar if
in' every string x of the form x =65y9 (with ye€L)-and only
in such strings - there exists in@, far every term a; of
=18 00085 4 @ neighlorhood of &; with respeet to ;_r.‘

. Neigb:orhood graumnars are clo‘sely related to the notion of
conbext, since this notion occurs in the definibtion of a neighe

borhood. There is another notion, due to Ja.P.L.Vasilevskil and
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M.V.Chomjakov (see the refesrence in[2],p.40), which explains

this fact. Following these authors, a grammar of contexts (this

" name is improper, since no context occurs among its objects) ias
a triple LV, 8 10> o+ where V and € have the same meaning as
in the definition of a neighborhood grammar, whereas Q is a
finite set of strings on the vocabulary xu{é} « This grammar
generates the language L on V in the following way : x€ L
if and only if for every string k4 and any strings 2z and Aw~
for which there exist strings u and v such that ©x8 =
= uzywv_ we have either

1) Y =msp , where Bge€ Q, whereas the stringé :n}‘ and p
uay be evenitually null

or _

2) Ox® = qrynt, where gr=z , nt =w amd rym is a
string belohgiﬁg to Q. i

A string belouging to __Q is said to be closed frou the
left (—i;z;oaxi_tbe right) if iﬁs first (last) term is @ , 4 string
belonging to- Q is said to be closed if it i3 closed both from
the left énd fwém the right.

A grammar of contexts is said to be k-bounded if every
non-closed string of - Q is of length k, whereas every closed

. string of Q is of length not greater than ke

An important theorem of Borsev asserts the equivalence
between languages generated by neighborhood grammars and lan~
guages generated by k-bounded grammars of contexts ([2],p.%0).

Since grammars of contexts and contextual grammars have some
similarities in their definitions, it is interesting to estca-

blish more exactly the relation between them,
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Proposition 1#. There exists a contexbtual language Which

is regular, but which is not a neighborhbood language.

Proof, Let us consider the language L = {_a?‘-n} (n=1,2y000 )0
PThis language is regular, since it is generated by the regular
grammar coansisting in the rules 8§ —>»Ta, T—>»Ua , U—>Da,

T —>a, whefe 8 is the start symbol, {a} is the terminal vo-
cabulary, whereas {8,T,U}y is the non-terminal vocabulary. Let
us consider the contextual grémmar G = {a} +{c3}» {<_§,§>}>.
I is easy to see that G generates the language L § therefore ‘
L 1s a coatextual language. .

We shall show that I is not a neighborhood language. In
this respect, our wmethod will be the following, We shall consider
all systems of possible neighborhoods of the terms of the string

8aal- and we shall show that every such system is either a
sﬁtem of heighborhoods of the terms of every string éa'e (n=

= 2,3,4,.40) Or it is not a system of neighborhoods of the terms
of the string 9&46 « It is easy to see that the first térm of
the string ©aa@ aduits the following neighborhoods : 1)6
2) 8sa, 3) lgga, 4) ¢@aa8 . The second term has the neigh-
borhoods : 1) e;a_,%h) aa , #4)saé °, S5) 6aa, 6) 6aab.
The neighborhoods of the third term are : 1) 8aa 4 - 2) .aa,
3) 8, 4) a6 , 5) ©aae¢ , 6) aa® . The last term has the
neighborhoods : 138 , 2) a8 , 3) aaf , 4) 6aa .« The no~
tation uxv represents hier the neighborhned {<u,v> 1 X} e

It is easy to see that the fourth neighborhood-of the first
and of the last term cannot be a neighborhood of 6§ with regpect
%o 0a'® . On the other hand, & is a neighborhood of a with
respect to 64" for every n = 1,2,..; + It follows that no
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neighborhood grammar of 1L = {aan_} way contain one of the neigh-
borhoods _ga.29 ’ 88._29 and 3. Phus, if a neighborhood gram-
mar of 1 exists, it contains at least one meighborhood from
every group. of the following four groups of neighborhoods :
8 , ga 8a°.
» P) 6a, aa, 2a , ©aa , Ozab.
Y) ®aa, aa, a6 , ¢az® , aal
H e, a8 ,d% .
¥e shall coasider all possible couwbinations between a neigh-
bornood of the group P and a neightorhood of the group ¥ . BY
mn  we shall deuote the combination formed by the m-th neigh-
borhood of f and the n-th neighborhood of Y- It is easy to see
that every neighborhood grammar containing one of the combina-
tions 12, 22, 23, 25, 42 generates a language which contains
every string a_p‘ with n 2 2. On the other hand, every neigh-
borhood grammar containing one of the combinations 11, i3, 14,
15, 21, 24, 31, 32, 33, 34, 35, 41, 43, 44, 45, 51, 52, 53, 54,
55 generates a language which either does not conbain the string
af*- or contains every string a with n>2 2 . (This depends on
the fact if the neighborhoods aa or aa belong or not to the
considered neighborhood graﬁmar). Thus, there exists no neigh-
borhood grammar which generates the language {qap‘j. |
But the definition of (generalized) contextual grammars,
though adequate to the investigation of the generative power of
purely contextual operations, does not correspond to the situa~-
tion existing in real (natural or artii:icial) languages, where

every string is admited only by some contexts and every. coxt axt

v



- 17 -

admits only sowe strings. Let us try to obtain a type of grammar

corresponding to this more complex situation. We define a con-

textual grammar with choice as a systein G =<,V,g,,@ ,‘?>, where
_V._I._.l and are the objects of a conbextual grammar, whereas b
is a mapping defined on the universal language on V_and having
the values in the set of subsets of@. We define the lanpguage

- generated bj G' as the smallest language L having;_ the follow-
ing properties : 1° If x€I, , x€L 5 2° If yeL, <u,we¢¥(y)
and z€L, then uyvéL, zvel and yz €L. Thus, every string
chooses some contexts and every context chooses some strings. We
define a contexbual language Wwith choice a language which is ge~
nerated by a contextual graumar witfi{c&o ice, The investigation

of these grammars and languages woulpd.better show the generative
power of contextual operations, in a manner which corresponds to

the situation existing in real languages.
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